秃杉素对水绵的抑制活性及叶绿体超微结构的影响

    Inhibition activity of 4-O-α-thevetopyranosyldiphyllin on Spirogyra communis and its effect on chloroplast ultrastructure

    • 摘要:
      目的 探究从秃杉Taiwania flousiana中提取得到的除草活性物质秃杉素(4-O-α-thevetopyranosyldiphyllin, TSC-3)对水生植物水绵Spirogyra communis的抑制活性和对其叶绿体的影响。
      方法 采用乙醇萃取−分光光度法测定秃杉素对水绵叶绿素和类胡萝卜素的IC50。采用显微镜以及透射电镜技术观察不同质量浓度秃杉素对水绵显微结构和超微结构的影响。
      结果 经秃杉素处理7 d后,水绵的类胡萝卜素、叶绿素a、叶绿素b及总色素的IC50分别为3.41、31.50、47.34和29.30 mg·L−1。秃杉素能破坏水绵细胞的细胞壁,引起细胞膜消失、叶绿体解体、类囊体完全消失、淀粉粒分散以及蛋白核降解和碎片化。
      结论 秃杉素可降低水绵叶绿素a、叶绿素b和类胡萝卜素的含量,对类胡萝卜素的抑制较其他色素更强;秃杉素主要作用于叶绿体和细胞壁。本研究为解释植物源除草化合物秃杉素的除草机理提供了基础的理论依据,也为水生藻类的防控提供了理论依据。

       

      Abstract:
      Objective The inhibition activity of 4-O-α-thevetopyranosyldiphyllin(TSC-3), extracted from Taiwania flousiana, on Spirogyra communis and its effect on S. communis chloroplast were investigated.
      Method The IC50 of 4-O-α-thevetopyranosyldiphyllin on chlorophyll and carotenoids in S. communis were determined by the ethanol extraction-spectrophotometric method. The effects of 4-O-α-thevetopyranosyldiphyllin on the microstructure and ultrastructure of S. communis were observed using microscopy and transmission electron microscopy.
      Result The IC50 of 4-O-α-thevetopyranosyldiphyllin on the contents of carotenoids, chlorophyll a, chlorophyll b and total pigments of S. communis after 7 d treatment were 3.41, 31.50, 47.34 and 29.30 mg·L−1, respectively. Further investigation showed that 4-O-α-thevetopyranosyldiphyllin could destroy the cells of S. communis, inducing broken cell wall, disappeared cell membrane, disintegrated chloroplast, completely disappeared thylakoids, dispersed starch granules, degraded and fragmented pyrenoids.
      Conclusion 4-O-α-thevetopyranosyldiphyllin can reduce the contents of chlorophyll a, chlorophyll b and carotenoids in S. communis. The inhibition rate of carotenoids was higher than those of the other pigments. 4-O-α-thevetopyranosyldiphyllin mainly acts on the chloroplasts and cell walls. This study provides a basis for further study of the molecular herbicidal mechanism of the plant-derived herbicidal chemical 4-O-α-thevetopyranosyldiphyllin, and also provides a theoretical basis for the control of aquatic algae.

       

    /

    返回文章
    返回