Inhibition activity of 4-O-α-thevetopyranosyldiphyllin on Spirogyra communis and its effect on chloroplast ultrastructure
-
摘要:目的
探究从秃杉Taiwania flousiana中提取得到的除草活性物质秃杉素(4-O-α-thevetopyranosyldiphyllin, TSC-3)对水生植物水绵Spirogyra communis的抑制活性和对其叶绿体的影响。
方法采用乙醇萃取−分光光度法测定秃杉素对水绵叶绿素和类胡萝卜素的IC50。采用显微镜以及透射电镜技术观察不同质量浓度秃杉素对水绵显微结构和超微结构的影响。
结果经秃杉素处理7 d后,水绵的类胡萝卜素、叶绿素a、叶绿素b及总色素的IC50分别为3.41、31.50、47.34和29.30 mg·L−1。秃杉素能破坏水绵细胞的细胞壁,引起细胞膜消失、叶绿体解体、类囊体完全消失、淀粉粒分散以及蛋白核降解和碎片化。
结论秃杉素可降低水绵叶绿素a、叶绿素b和类胡萝卜素的含量,对类胡萝卜素的抑制较其他色素更强;秃杉素主要作用于叶绿体和细胞壁。本研究为解释植物源除草化合物秃杉素的除草机理提供了基础的理论依据,也为水生藻类的防控提供了理论依据。
Abstract:ObjectiveThe inhibition activity of 4-O-α-thevetopyranosyldiphyllin(TSC-3), extracted from Taiwania flousiana, on Spirogyra communis and its effect on S. communis chloroplast were investigated.
MethodThe IC50 of 4-O-α-thevetopyranosyldiphyllin on chlorophyll and carotenoids in S. communis were determined by the ethanol extraction-spectrophotometric method. The effects of 4-O-α-thevetopyranosyldiphyllin on the microstructure and ultrastructure of S. communis were observed using microscopy and transmission electron microscopy.
ResultThe IC50 of 4-O-α-thevetopyranosyldiphyllin on the contents of carotenoids, chlorophyll a, chlorophyll b and total pigments of S. communis after 7 d treatment were 3.41, 31.50, 47.34 and 29.30 mg·L−1, respectively. Further investigation showed that 4-O-α-thevetopyranosyldiphyllin could destroy the cells of S. communis, inducing broken cell wall, disappeared cell membrane, disintegrated chloroplast, completely disappeared thylakoids, dispersed starch granules, degraded and fragmented pyrenoids.
Conclusion4-O-α-thevetopyranosyldiphyllin can reduce the contents of chlorophyll a, chlorophyll b and carotenoids in S. communis. The inhibition rate of carotenoids was higher than those of the other pigments. 4-O-α-thevetopyranosyldiphyllin mainly acts on the chloroplasts and cell walls. This study provides a basis for further study of the molecular herbicidal mechanism of the plant-derived herbicidal chemical 4-O-α-thevetopyranosyldiphyllin, and also provides a theoretical basis for the control of aquatic algae.
-
Keywords:
- Botanical herbicide /
- 4-O-α-thevetopyranosyldiphyllin /
- Spirogyra communis /
- Chloroplast /
- Thylakoid
-
-
图 3 透射电镜观察2.5 mg·L−1秃杉素处理7 d后水绵细胞壁和细胞膜的变化
A1、A2、A3:对照组;B1、B2、B3:处理组; a:细胞壁;b:细胞膜
Figure 3. Observation of changes in cell walls and membranes of Spirogyra communis after 7 d of treatment with 2.5 mg·L−1 4-O-α-thevetopyranosyldiphyllin using transmission electron microscopy
A1, A2, A3: Control group; B1, B2, B3: Treatment group; a: Cell wall; b: Cell membrane
图 4 透射电镜观察2.5 mg·L−1秃杉素处理7 d后水绵细胞叶绿体的变化
A1、A2:对照组;B1、B2:处理组;a:细胞壁;b:细胞膜;c:类囊体;d:淀粉粒;e:蛋白核;f:嗜锇颗粒;g:基粒
Figure 4. Observation of changes in chloroplasts of Spirogyra communis after 7 d of treatment with 2.5 mg·L−1 4-O-α-thevetopyranosyldiphyllin using transmission electron microscopy
A1, A2: Control group; B1, B2: Treatment group; a: Cell wall; b: Cell membrane; c: Thylakoid body; d: Starch granule; e: Protein nucleus; f: Osmium loving granule; g: Basal granule
表 1 不同质量浓度秃杉素对水绵叶绿素和类胡萝卜素的抑制率1)
Table 1 Inhibitory rate of 4-O-α-thevetopyranosyldiphyllin with different mass concentrations on chlorophyll and carotenoid of Spirogyra communis
色素组分
Pigment component抑制率/% Inhibition rate 2.5 mg·L−1 5.0 mg·L−1 10.0 mg·L−1 20.0 mg·L−1 40.0 mg·L−1 类胡萝卜素 Carotenoid 46.25±1.21a 56.22±1.27a 72.50±2.14a 86.23±2.23a 94.98±3.21a 叶绿素a Chlorophyll a 19.97±0.82b 25.01±1.59b 31.25±1.55b 38.74±1.96c 58.76±1.29b 叶绿素b Chlorophyll b 6.23±0.15d 15.01±0.97c 22.52±1.46c 35.63±1.72c 43.75±1.55c 总色素 Total pigment 10.02±0.23c 20.03±1.33b 26.25±0.88bc 44.75±1.01b 60.04±2.07b 1)表中数据为平均数±标准误,n=3;同列数据后的不同小写字母表示差异显著(P<0.05,Duncan’s法)
1)Data in the table is mean ± standard error, n=3; Different lowercase letters of the same column indicate significant differences (P<0.05, Duncan’s method)表 2 秃杉素对水绵叶绿素和类胡萝卜素含量的IC50
Table 2 The IC50 of 4-O-α-thevetopyranosyldiphyllin on the contents of chlorophyll and carotenoid of Spirogyra communis
色素组分
Pigment component回归方程1)
Regression equation相关系数
Correlation index (r)IC50/ (mg·L−1) 95%置信区间/ (mg·L−1)
95% confidence interval类胡萝卜素 Carotenoid y=4.36+1.20x 0.99 3.41 2.06~5.06 叶绿素a Chlorophyll a y=2.79+1.48x 0.97 31.50 22.00~45.09 叶绿素b Chlorophyll b y=2.12+1.72x 0.97 47.34 34.65~64.68 总色素 Total pigment y=2.62+1.62x 0.98 29.30 21.31~40.29 1) x为浓度对数,y为概率单位
1) x is logarithmic concentration, y is probit -
[1] HEAP I. The international herbicide-resistant weed database[DB/OL]. [2023-06-01]. http://www.weedscience.org/Home.aspx.
[2] HULME P E. Global drivers of herbicide-resistant weed richness in major cereal crops worldwide[J]. Pest Management Science, 2022, 78(5): 1824-1832. doi: 10.1002/ps.6800
[3] DUKE S O, DAYAN F E. The search for new herbicide mechanisms of action: Is there a ‘holy grail’?[J]. Pest Management Science, 2022, 78(4): 1303-1313. doi: 10.1002/ps.6726
[4] SPARKS T C, BRYANT R J. Impact of natural products on discovery of, and innovation in, crop protection compounds[J]. Pest Management Science, 2022, 78(2): 399-408. doi: 10.1002/ps.6653
[5] LIU H M, HUANG J G, YANG S F, et al. Chemical composition, algicidal, antimicrobial, and antioxidant activities of the essential oils of Taiwania flousiana Gaussen[J]. Molecules, 2020, 25(4): 967. doi: 10.3390/molecules25040967
[6] LIU L, ZHANG S, DAI W, et al. Comparing effects of berberine on the growth and photosynthetic activities of Microcystis aeruginosa and Chlorella pyrenoidosa[J]. Water Science and Technology, 2019, 80(6): 1155-1162. doi: 10.2166/wst.2019.357
[7] 陈世国, 强胜. 生物除草剂研究与开发的现状及未来的发展趋势[J]. 中国生物防治学报, 2015, 31(5): 770-779. [8] 伏桂仙. 水生植物对城市富营养化水体的净化效果研究[D]. 扬州: 扬州大学, 2022. [9] 孙万里. 大连地区稻田水绵危害性调查与防控方法比较研究[D]. 沈阳: 沈阳农业大学, 2018. [10] WANG W L, ZHU D R, LI L N, et al. Bioactive dimeric diterpenoids from Taiwania cryptomerioides (Hayata) and their biological activities[J]. Chemistry & Biodiversity, 2023, 20(2): e202201067.
[11] NICOLAS W J, BAYER E, BROCARD L. Electron tomography to study the three-dimensional structure of plasmodesmata in plant tissues From high pressure freezing preparation to ultrathin section collection[J]. Bio-protocol, 2018, 8(1): e2681.
[12] 凡传明, 刘云国, 郭一明, 等. 水绵(Spirogyra)对蓝藻复苏及藻类群落结构的影响[J]. 环境科学学报, 2011, 31(10): 2132-2137. [13] JAFFER M, ASHRAF H, SHAHEEN S. Comparative analysis of bio-culturing of fresh water algae, Spirogyra communis (Hassall) Kützing and Hydrodictyon reticulatum L[J]. Bangladesh Journal of Botany, 2019, 48(4): 1125-1132. doi: 10.3329/bjb.v48i4.49068
[14] SHERWOOD A R, NEUMANN J M, DITTBERN-WANG M, et al. Diversity of the green algal genus Spirogyra (Conjugatophyceae) in the Hawaiian Islands[J]. Phycologia, 2018, 57(3): 331-344. doi: 10.2216/17-111.1
[15] SATI M, VERMA M, RAI J P N. Biosorption of Pb (II) by Spirogyra communis: Kinetics and isotherm model studies[J]. Pollution Research, 2015, 34(4): 707-712.
[16] HE S, CRANS V L, JONIKAS M C. The pyrenoid: The eukaryotic CO2-concentrating organelle[J]. The Plant Cell, 2023, 35(9): 3236-3259. doi: 10.1093/plcell/koad157
[17] LINES T, BEARDALL J. Carbon acquisition characteristics of six microalgal species isolated from a subtropical reservoir: Potential implications for species succession[J]. Journal of Phycology, 2018, 54(5): 599-607. doi: 10.1111/jpy.12770
[18] SEAL T, HALDER N, CHAUDHURI K, et al. Effect of solvent extraction system on the antioxidant activities of algae[J]. International Journal of Pharmacy & Pharmaceutical Sciences, 2014, 6(10): 242-245.
[19] GUO B, ZHAO M, WU Z, et al. 19-nor-pimaranes from Icacina trichantha[J]. Fitoterapia, 2020, 144: 104612. doi: 10.1016/j.fitote.2020.104612
[20] DAI W, ZHANG J, TU Q, et al. Bacterioplankton assembly and interspecies interaction indicating increasing coastal eutrophication[J]. Chemosphere, 2017, 177(6): 317-325.
[21] JOHNSON W C, LUO X L. Cool-season weed control using ammonium nonanoate and cultivation in organic Vidalia® sweet onion production[J]. Weed Technology, 2018, 32(1): 90-94. doi: 10.1017/wet.2017.91
[22] ROMDHANE S, DEVERS-LAMRANI M, MARTIN-LAURENT F, et al. Evidence for photolytic and microbial degradation processes in the dissipation of leptospermone, a natural β-triketone herbicide[J]. Environmental Science and Pollution Research International, 2018, 25(30): 29848-29859. doi: 10.1007/s11356-017-9728-4
[23] BURLACOT A, DAO O, AUROY P, et al. Alternative photosynthesis pathways drive the algal CO2 -concentrating mechanism[J]. Nature, 2022, 605: 366-371.
[24] LIU Y, LI F, HUANG Q X et al. Allelopathic effects of gallic acid from Aegiceras corniculatum on Cyclotella caspia[J]. Journal of Environmental Sciences, 2013, 25(4): 776-784. doi: 10.1016/S1001-0742(12)60112-0
[25] YALÇIN S, KARAKAŞ Ö, OKUDAN E Ş, et al. HPLC detection and antioxidant capacity determination of brown, red and green algal pigments in seaweed extracts[J]. Journal of Chromatographic Science, 2021, 59(4): 325-337. doi: 10.1093/chromsci/bmaa107