• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

NaCl胁迫下新型四倍体水稻种子萌发特性及基因差异表达分析

林泓, 黄子娟, 邓瑞莲, 郭海滨, 陆紫君, 刘向东, 吴锦文

林泓, 黄子娟, 邓瑞莲, 等. NaCl胁迫下新型四倍体水稻种子萌发特性及基因差异表达分析[J]. 华南农业大学学报, 2023, 44(5): 696-707. DOI: 10.7671/j.issn.1001-411X.202306006
引用本文: 林泓, 黄子娟, 邓瑞莲, 等. NaCl胁迫下新型四倍体水稻种子萌发特性及基因差异表达分析[J]. 华南农业大学学报, 2023, 44(5): 696-707. DOI: 10.7671/j.issn.1001-411X.202306006
LIN Hong, HUANG Zijuan, DENG Ruilian, et al. Analysis of germination characteristics and differential gene expression in neo-tetraploid rice under NaCl stress[J]. Journal of South China Agricultural University, 2023, 44(5): 696-707. DOI: 10.7671/j.issn.1001-411X.202306006
Citation: LIN Hong, HUANG Zijuan, DENG Ruilian, et al. Analysis of germination characteristics and differential gene expression in neo-tetraploid rice under NaCl stress[J]. Journal of South China Agricultural University, 2023, 44(5): 696-707. DOI: 10.7671/j.issn.1001-411X.202306006

NaCl胁迫下新型四倍体水稻种子萌发特性及基因差异表达分析

基金项目: 广东省自然科学基金(2021A1515010748,2023A1515012672 );国家自然科学基金(32272154);岭南水稻种质资源基地库项目(2023)
详细信息
    作者简介:

    林 泓,硕士研究生,主要从事水稻遗传育种研究,E-mail: linhong.gdst@foxmail.com

    黄子娟,硕士研究生,主要从事水稻遗传育种研究,E-mail: huangzijuan98@163.com;†表示同等贡献

    通讯作者:

    吴锦文,助理研究员,博士,主要从事水稻遗传育种研究,E-mail: jwwu@scau.edu.cn

  • 中图分类号: S511;S332.6

Analysis of germination characteristics and differential gene expression in neo-tetraploid rice under NaCl stress

  • 摘要:
    目的 

    评价新型四倍体水稻在不同浓度NaCl处理下的种子萌发特性、幼苗建成期形态指标和根部细胞结构差异,评估盐胁迫相关基因的表达差异。

    方法 

    在不同浓度NaCl (0、50、100、150、200和250 mmol/L)处理下,以‘华多1号’为研究材料,统计其种子在萌发时间、发芽势、发芽率和萌发指数指标的差异。在幼苗形成期,统计和比较‘华多1号’在不同浓度NaCl处理下的总根数、幼苗苗长、根长、幼苗鲜质量、含水率和根冠比参数的差异。利用WE-CLSM和塑料半薄切片技术观察根尖组织细胞的形态。利用基因组重测序、生物信息学分析和qRT-PCR技术对‘华多1号’与双亲相关的盐胁迫基因进行分析和定量验证。

    结果 

    当NaCl浓度升高时,‘华多1号’种子发芽率和萌发指数呈递减趋势,但相对盐害率和平均发芽时间呈递增趋势。当NaCl浓度高达250 mmol/L时,‘华多1号’种子相对盐害率为35%,表明其具有较强的耐盐性。在NaCl处理8~20 d后,‘华多1号’幼苗随着NaCl浓度升高,总根数呈减少趋势,同时幼苗苗长、根长、幼苗鲜质量和含水率呈下降趋势,但根冠比呈上升趋势。NaCl胁迫会抑制‘华多1号’幼苗生长,导致其根尖细胞体积变小,细胞皱缩和细胞排列松散;盐胁迫条件下,根尖伸长区的表皮和外皮层的细胞会增厚,中间皮层的细胞层数增加,中柱直径缩小,木质部导管分化数目增加。在‘华多1号’中发现有85个盐胁迫基因在CDS区中较双亲存在差异,包括53个盐敏感相关基因、32个盐胁迫抗性相关基因。qRT-PCR结果表明:与对照相比,‘华多1号’的4个盐敏感基因(LOC_Os03g16900LOC_Os06g48510LOC_Os02g34810LOC_Os04g32920)和2个耐盐性基因(LOC_Os03g20090LOC_Os11g26790)表达量显著上升。

    结论 

    该研究可为后续系统评价四倍体水稻种质资源的耐盐性、揭示四倍体水稻的耐盐性调控机理,以及后续筛选耐盐多倍体水稻品种提供理论依据。

    Abstract:
    Objective 

    The purpose of this research was to evaluate differences in seed germination characteristics, morphological indexes, and root cell structure in ‘Huaduo1’ under different concentrations of NaCl and to evaluate the gene expression differences of salt stress related genes in ‘Huaduo1’.

    Method 

    Using ‘Huaduo1’ as the research material, the differences in seed germination time, germination potential, germination rate, and germination index under various concentrations of NaCl (0, 50, 100, 150, 200, and 250 mmol/L) were analyzed. The differences in total root number, seedling length, root length, seedling fresh weight, water content, and root-to-head ratio of ‘Huaduo1’ at seedling forming stage under various concentrations of NaCl were summarized and compared. Root tip cell morphology of ‘Huaduo1’ was observed by the WE-CLSM and semi-thin section analysis. Genomic resequencing, bioinformatics analysis, and qRT-PCR analysis were conducted to analyze and quantify the expression of the salt stress genes in ‘Huaduo1’ related to its parents.

    Result 

    The seed germination rate and germination index of ‘Huaduo1’ decreased with increased NaCl concentration, while the relative salt damage rate and average germination time increased. ‘Huaduo1’ showed a strong salt tolerance with the relative salt damage rate reached 35% under 250 mmol/L NaCl treatment. After 8 to 20 days of NaCl treatment, the total root number of ‘Huaduo1’ seedlings decreased with increased NaCl concentration. Meanwhile, the seedling length, root length, fresh weight and water content of seedlings under NaCl stress showed a decreasing trend, and the root-to-head ratio showed an increasing trend. NaCl stress inhibited the growth of the ‘Huaduo1’ seedlings, resulting in smaller cell volume, cell shrinkage, and loose cell arrangement in the root tip elongation zone. Moreover, the cells of the epidermis and outer cortex layer in the root tip elongation zone were thickened, the number of cell layers in the mesocortex increased, the diameter of the middle column decreased, and the number of xylem ductal differentiation increased under salt stress. Totally 85 salt stress-related genes of ‘Huaduo1’ showed variance in the CDS region compared with its two parents, including 53 salt sensitivity related genes and 32 salt stress tolerance related genes. The qRT-PCR results showed that the expressions of four salt sensitivity genes (LOC_Os03g16900, LOC_Os06g48510, LOC_Os02g34810, and LOC_Os04g32920) and two salt tolerance genes (LOC_Os03g20090 and LOC_Os11g26790) were significantly increased compared with the control.

    Conclusion 

    The study can be used to evaluate the salt tolerance of tetraploid rice germplasm, reveal the regulation mechanism of salt tolerance in tetraploid rice, and provide a theoretical basis of the salt-tolerant germplasm selection in polyploidy rice.

  • 草地贪夜蛾Spodoptera frugiperda为鳞翅目夜蛾科灰翅夜蛾属,该虫源自北美,2019年1月入侵我国云南省,并迅速扩展到全国26个省份[1-3]。作为联合国粮农组织全球预警的跨国界迁飞性重大害虫,草地贪夜蛾具有寄主范围宽、适生区域广、增殖能力强、扩散速度快、突发危害重等特点[4-5]

    与其他鳞翅目昆虫一样,草地贪夜蛾主要在幼虫时期为害。目前草地贪夜蛾雌、雄幼虫为害行为性别差异的研究较少,因为缺乏幼虫性别鉴定的快速简便的手段。与许多鳞翅目昆虫一样,草地贪夜蛾在蛹和成虫时期不再取食,因此幼虫时期的取食量对其化蛹、羽化、产卵、迁飞等行为具有重要影响,不同性别的幼虫取食量存在差异。林玉英等[5]对椰子织蛾Opisina arenosella 1龄幼虫取食量的研究表明,雌虫取食量显著大于雄虫,结合幼虫取食量可作为其龄期的判断依据之一,从而为制定椰子织蛾防控措施奠定基础;同时,大量研究表明,昆虫幼虫在抵抗高温、抗核型多角体病毒等方面有性别差异[6-8],成虫在感光、触角结构等方面也存在显著的性别差异[9],昆虫在取食、感光、抗病等行为上的性别差异研究,可为农业害虫的精准防控提供理论支持。因此,性别鉴定可以作为研究昆虫雌、雄行为差异的一种便捷有效的工具,有助于制定更加精准高效的农业害虫防控治理策略。

    目前,草地贪夜蛾的性别主要是通过蛹期和成虫时期的外露生殖器及翅上的斑纹差异进行区分[10-11]。草地贪夜蛾入侵中国后,性信息素诱捕、高空灯诱捕在虫情预测预报中发挥了非常重要的作用。由于缺乏对幼虫形态学有效的判断标准,而田间捕捉的草地贪夜蛾成虫非常活跃,鳞羽容易掉落,给性别鉴定造成了困难,影响了测报结果的准确性。对于鳞羽掉落的草地贪夜蛾样本和未经过性别鉴定的DNA样本,也缺乏有效的性别鉴定手段。因此,根据雌、雄虫性信息素结合蛋白(Pheromone-binding protein, PBP)基因的序列差异,开发简便、准确的功能性分子标记,对鉴定幼虫期乃至成虫期的草地贪夜蛾的性别具有理论和实际应用意义。

    草地贪夜蛾为实验室饲养种群,饲养条件参考王世英等[12]方法,温度为(26.0±0.5) ℃;相对湿度为 65%±5%;光周期为16 h光∶8 h暗。

    通过在线网站( https://pfam.xfam.org)寻找并下载PBP隐马尔科夫模型,使用Bio-Linux软件进行生物信息学分析得到草地贪夜蛾PBP基因家族的氨基酸序列,通过在线网站( http://www.omicsclass.com/article/681)手动确认每个蛋白的结构域,总共筛选得到21个PBP,使用Bio-Linux软件进行生物信息学分析获得对应蛋白的CDS序列等相关信息,所得序列与NCBI上已发表的PBP基因序列进行比对,比对结果为本研究的PBP基因的CDS序列与已发表的4个PBP基因(SfruPBP1SfruPBP2、SfruPBP3、SfruPBP4)[13]的CDS序列不存在相似性(结果未显示)。对获得的各基因片段进行PCR测序,结果发现Sf-10911基因序列在雌、雄个体中存在较大差异。通过多个已知雌、雄样本检测后,确认该基因为性别差异基因,针对草地贪夜蛾雌、雄虫Sf-10911基因的差异区段设计了3对引物(表1),开发雌、雄性别鉴定的特异标记,引物设计见图1。利用设计合成的引物,对鉴别过已知性别的草地贪夜蛾虫蛹样本进行PCR扩增,筛选得到分子标记。

    表  1  引物序列表
    Table  1.  List of primer sequence
    引物名称1) Primer name 引物序列(5′→3′) Primer sequence
    Sf-F TAGCCGTGAGTTTGAATAGGGT
    Sf-female-R-1 CCTGCCAGTGCCTTATTAATTAA
    Sf-male-R-1 TTTTGGCAGTGCCTTATTGATTA
    Sf-female-R-2 CTCAGAGGTTTTTGATATGGTTT
    Sf-male-R-2 TGTATTCTTCTCAGTGCGAAGAC
    Sf-female-R-3 TTAACAACGCTCCATAATAACCT
    Sf-male-R-3 TAAGAACCAGTTCTTATAAACAC
     1) F、R分别表示正、反向引物
     1) F and R respectively represents forward and reverse primers
    下载: 导出CSV 
    | 显示表格
    图  1  草地贪夜蛾性别鉴定引物设计
    深蓝色表示相同的核苷酸序列,浅蓝色表示差异位点,黑点表示缺失位点;Sf-male-R:雄虫基因差异区段;Sf-female-R:雌虫基因差异区段;Sf-F:正向引物;Sf-R:反向引物
    Figure  1.  Primers design for sexual identification of Spodoptera frugiperda
    Dark blue represents the same nucleotide sequence, light blue represents the differencial sites and black dots represent the missing sites; SF-male-R: Differential gene segment of male; Sf-female-R: Differential gene segment of female; Sf-F: Forward primer; Sf-R: Reverse primer

    根据草地贪夜蛾蛹期雌、雄虫形态差异区分出雌、雄后(图2),利用微量样品基因组DNA 提取试剂盒进行DNA的提取。采用雌、雄特异性引物对提取的DNA样本进行PCR扩增。扩增产物用琼脂糖凝胶电泳检测,筛选分子标记。PCR 扩增的体系为:PrimerSTAR Max 6.25 μL,上游和下游引物(10 μmol/L)各0.5 μL,模板0.5 μL,加 ddH2O至15 μL。PCR 扩增的反应程序为:98 ℃ 预变性2 min;98 ℃变性 10 s,58 ℃退火 30 s,72 ℃延伸 30 s,35 个循环;72 ℃延伸5 min。

    图  2  草地贪夜蛾蛹期雌、雄虫腹部末端差异对比
    a:臀刺;b:肛门;c:第10腹节;d:第9腹节e:半圆形瘤状突起;f:第8腹节;g:产卵孔;h:生殖孔
    Figure  2.  Distinction between abdomen ends of male and female of Spodoptera frugiperda at pupal stage
    a: Buttocks stab; b: Anus; c: The 10th abdominal segment; d: The 9th abdominal segment; e: Semicircular tumor-like protrusion; f: The 8th abdominal segment; g: Spawning hole; h: Genital hole

    针对草地贪夜蛾雌、雄虫Sf-10911基因的性别差异区段设计了3对引物,开发性别鉴定的特异标记。利用设计合成的3对引物,对已知性别的草地贪夜蛾样本进行PCR扩增,筛选得到分子标记,该分子标记可以扩增出450 bp左右的条带。之后,利用筛选出的分子标记对经过形态鉴定的雌、雄虫样本再次进行PCR扩增。

    首先,利用3对标记引物扩增草地贪夜蛾的雌、雄虫DNA样本,所用样本为经过测序鉴定的雌、雄虫DNA样本;图3表明,引物Sf-female-R-1、Sf-male-R-3搭配Sf-F均不能扩增出特异条带;搭配引物Sf-F扩增时,其中雄性样本可以用雄性特异性引物Sf-male-R-2扩增得到特异条带,而雌性样本只有雌性特异性引物Sf-female-R-2可以扩增得到特异条带,与测序结果一致。因此,选择Sf-female-R-2和Sf-male-R-2作为草地贪夜蛾雌、雄虫特异性引物。

    图  3  3对引物对草地贪夜蛾雌、雄虫样本的扩增
    M:2000 DNA marker; m1: Sf-F/ Sf-male-R-1; m2: Sf-F/Sf-male-R-2; m3: Sf-F/Sf-male-R-3; f1: Sf-F/Sf-female-R-1; f2: Sf-F/Sf-female-R-2; f3: Sf-F/Sf-female-R-3
    Figure  3.  Amplification of different sexual samples of Spodoptera frugiperdaby three pairs of primers

    为进一步验证筛选出的标记引物的准确性,对经过形态鉴定的雌、雄虫蛹进行PCR检测(图4)。从图4可以看出,利用雌虫标记引物Sf-female-R-2扩增雌、雄虫DNA样本时,只有雌虫才能扩增出450 bp左右的特异性条带;用雄虫标记引物Sf-male-R-2扩增雌、雄虫DNA样本时,只有雄虫才能扩增出450 bp左右的特异性条带。检测结果与形态鉴定结果一致,说明筛选出的引物适用于草地贪夜蛾的性别鉴定。

    图  4  基于PCR扩增对草地贪夜蛾雌、雄虫蛹性别鉴定
    F1~F5:雌虫蛹DNA;M1~M5:雄虫蛹DNA;a、c:雌虫标记引物对 Sf-F/Sf-female-R-2;b、d:雄虫标记引物对Sf- F/Sf-male-R-2
    Figure  4.  Sex identification of male and female pupae of Spodoptera frugiperdabased on PCR amplification
    F1−F5: DNA of female pupae; M1−M5: DNA of male pupae; a and c: Pair of female marker primers of Sf-F/Sf-female-R-2; b and d: Pair of male marker primers of Sf-F/Sf-male-R-2

    农业害虫的性别鉴定对于害虫的有效防治和农业生产具有重要意义。不同性别的昆虫在虫体形态上往往存在差异,甜菜夜蛾Spodoptera exigua Hübner、桉袋蛾Acanthopsyche subferalbata Hampson以及凤凰木夜蛾Pericyma cruegri在其蛹及成虫时期的形态存在明显的性别差异[14-16],利用这种形态上的差异,研究人员可以快速简便地鉴定雌、雄虫,及时为田间种群动态的监测和预测预报提供数据。

    利用雌、雄虫形态差异鉴定性别的方法虽然简单快捷,但却无法对一些不存在性别形态差异或是生长发育早期无形态差异的昆虫进行鉴定。牛宝龙等[17]以棉铃虫Helicoverpa armigera雌、雄虫基因组DNA为模板,筛选了1条雌特异随机扩增多态性DNA(Random amplified polymorphic DNA,RAPD),根据该特异性分子标记的核苷酸序列设计雌性特异引物,并对棉铃虫基因组DNA进行PCR扩增,雌性棉铃虫可以扩增出目的条带,可将此标记用于棉铃虫幼虫乃至胚胎的性别鉴定;王慧超等[18]也早在2004年运用RADP技术对家蚕Bombyx mori Linnaeus上得到的雌特异性片段设计引物并进行了PCR验证。此外,张利娜[19]从外部形态学、血清生化指标建立了鳗鲡Anguilla japonica的性别判定函数,用SRAP分子标记获得F5R2雌性特异DNA序列,根据测序结果设计序列特定扩增区域(Sequence characterized amplified regions,SCAR)特异引物并进行性别鉴定;Masaru等[20]用日本青鳉Oryzias latipes的雄性Y特异性DM结构域基因开发引物鉴定了弓背青鳉Oryzias curvinotus的遗传性别;中国大鲵Andrias davidianus、双须骨舌鱼Osteoglossum bicirrhosum的性别鉴定也利用雌、雄虫基因差异序列开发分子标记引物并进行了有效的验证[21-22]

    PBP在草地贪夜蛾的信息素识别过程中发挥着重要作用,雄虫通过触角感受雌虫性腺释放的性信息素,寻找合适的交配对象。PBP的功能特征决定了其基因序列以及表达模式在雌、雄虫之间必然存在差异,具有明显的性二型性[23]。牛小慧[24]对甜菜夜蛾的不同PBP进行RT-PCR检测发现,PBP在雌、雄虫之间的表达量存在显著差异;刘苏等[13]通过对草地贪夜蛾4个PBP基因的克隆及表达模式分析发现,定位于成虫触角上的SfruPBP1和SfruPBP2蛋白在雄虫中具有更高的表达量。本研究发现草地贪夜蛾雌、雄虫中的PBP基因Sf-10911存在核苷酸序列差异,进而根据该差异设计了针对雌、雄虫扩增的引物对,通过琼脂糖凝胶电泳检测出450 bp左右的特异条带,作为其性别鉴定的分子标记,以期为研究草地贪夜蛾某些性状可能存在的性别差异提供快速有效的手段。

  • 图  1   ‘华多1号’种子在不同浓度NaCl处理至7 d后的萌发情况比较

    Figure  1.   Comparison of seed germination of ‘Huaduo1’ after seven days under different NaCl concentrations

    A~F:0、50、100、150、200、250 mmol/L NaCl

    图  2   ‘华多1号’种子在不同浓度NaCl处理下的萌发特性

    各小图中,柱子上方的不同小写字母表示差异显著(P<0.05,LSD法)

    Figure  2.   Germination characteristics of ‘Huaduo1’ under different NaCl concentrations

    In each figure, different lowercase letters on bars indicate significant differences (P<0.05, LSD method)

    图  3   ‘华多1号’幼苗在不同浓度NaCl处理下的根部生长情况

    各小图中,柱子上方的不同小写字母表示差异显著(P<0.05,LSD法)

    Figure  3.   Root growth statistics of ‘Huaduo1’ seedlings under different NaCl concentrations

    In each figure, different lowercase letters on bars indicate significant differences (P<0.05, LSD method)

    图  4   ‘华多1号’在不同浓度NaCl处理下的幼苗长度及总鲜质量的变化情况

    各小图中,柱子上方的不同小写字母表示差异显著(P<0.05,LSD法)

    Figure  4.   Changes of ‘Huaduo1’ seedling length and total fresh weight under different NaCl concentrations

    In each figure, different lowercase letters on bars indicate significant differences (P<0.05, LSD method)

    图  5   ‘华多1号’幼苗在不同浓度NaCl处理下的含水率及根冠比变化情况

    各小图中,柱子上方的不同小写字母表示差异显著(P<0.05,LSD法)

    Figure  5.   Changes of water content and root/shoot ratio in ‘Huaduo1’ seedlings under different NaCl concentrations

    In each figure, different lowercase letters on bars indicate significant differences (P<0.05, LSD method)

    图  6   不同浓度NaCl处理下根尖细胞的形态差异

    A~D分别为0、50、100和150 mmol/L的NaCl溶液处理后的根尖细胞,标尺= 20 µm;E~H分别为A~D对应的分生区细胞,标尺= 40 µm;I~L分别为A~D对应的伸长区细胞,标尺= 40 µm;M~P分别为A~D对应的伸长区细胞,标尺= 100 µm

    Figure  6.   Morphological differences of root tip cells under different NaCl concentrations

    A−D: Root tip cells under NaCl concentration of 0, 50, 100, and 150 mmol/L, respectively, bar = 20 μm; E−H: Root tip meristematic zone cells corresponding to A−D respectively, bar = 40 μm; I−L: Root tip elongation zone cells corresponding to A−D respectively, bar =40 μm; M−P: Root tip elongation zone cells corresponding to A−D respectively, bar =100 μm

    图  7   不同浓度NaCl处理下根尖伸长区横切面差异

    A、B分别表示0 mmol/L NaCl溶液中处理8和20 d;C、D分别表示在50 mmol/L NaCl溶液中处理8和20 d;E、F分别表示100 mmol/L NaCl溶液中处理8和20 d;G、H分别表示150 mmol/L NaCl溶液中处理8和20 d;A1~H1:分别对应图A~H的根尖伸长区中柱结构细节;绿色和红色箭头分别表示盐胁迫处理下8和20 d后的根尖伸长区木质部;A~H:标尺=100 μm,A1-H1:标尺=20 μm

    Figure  7.   Transection of root tip elongation zone under different NaCl concentrations

    A, B: Transection of root tip elongation zone under the 0 mmol/L NaCl treatment after the 8th day and 20th day; C, D: Transection of root tip elongation zone under the 50 mmol/L NaCl treatment afterthe 8th day and 20th day; E, F Transection of root tip elongation zone under the 100 mmol/L NaCl treatment after the 8th day and 20th day; G, H: Transection of root tip elongation zone under the 150 mmol/L NaCl treatment after the 8th day and 20th day; A1−H1: Detailed diagram of the column structure in the root tip elongation zone corresponding to figure A−H; The green arrow indicates the xylem of the root tip elongation zone under salt stress treatment after the 8th day, and the red arrow indicates the xylem of the root tip elongation zone under salt stress treatment after the 20th day; Bar = 100 μm in figure A−H, bar = 20 μm in figure A1−H1

    图  8   ‘华多1号’及双亲在各染色体的基因组变异情况

    图C中,‘华多1号’分别与T44-4x和T45-4x的SNPs(粉红色)和InDels(浅绿色)的差值显示在纵轴上,正数表示H1和T44-4x之间的变化,负数表示H1和T45-4x之间的差异

    Figure  8.   Genomic variation of ‘Huaduo1’ and its parents on each chromosome

    In figure C, the difference of SNPs (pink) and InDels (light green) in ‘Huaduo1’ is listed on the vertical axis, compared with T44-4x and T45-4x, respectively, the positive numbers represent the change between ‘Huaduo1’ and T44-4x, and the negative numbers represent the differences between ‘Huaduo1’ and T45-4x

    图  9   ‘华多1号’中基因组变异基因的GO富集分析

    Figure  9.   GO enrichment analysis of genomic variant genes in ‘Huaduo1’

    图  10   ‘华多1号’中盐胁迫相关基因的差异比较

    “*”和“**”分别表示处理间存在0.05和0.01水平的显著差异(t检验)

    Figure  10.   Expression comparison of salt stress related genes in ‘Huaduo1’

    “*” and “**” indicate significant differences between treatments at the levels of 0.05 and 0.01, respectively(t test)

    表  1   盐胁迫相关基因的qRT-PCR引物序列

    Table  1   Primer sequence for qRT-PCR of salt stress related genes

    基因名称
    Gene name
    引物序列 (5'→3')
    Primer sequence
    LOC_Os03g16900 F: ATAATGAAGCATCCGATT
    R: ATATGAGCAACAGAACAC
    LOC_Os03g20090 F: ACAACGAGATCAAGAACTACTG
    R: TTGAACTGCTGGCTGTTG
    LOC_Os11g26790 F: TCCAGCTCAAGCTCGTCT
    R: AGCTTCTCCTTGATCTTCTCCTT
    LOC_Os04g32920 F: TCCTCTCCCTCATCCTCT
    R: CATTGTCGTTGGCGTAGA
    LOC_Os02g34810 F: GCTTATCCAACCAATCAA
    R: ACATCAACTCGTCCATAT
    LOC_Os06g48510 F: ACACCTCGTTGCCTCATA
    R: ATAGCCACCATCCAGATAGTT
    Ubiquition F: ACCACTTCGACCGCCACTACT
    R: ACGCCTAAGCCTGCTGGTT
    下载: 导出CSV

    表  2   不同浓度NaCl胁迫对‘华多1号’种子发芽时间的影响1)

    Table  2   Effects of salt stress with different NaCl concentration on seed germination time of ‘Huaduo1’

    c(NaCl)/(mmol·L−1)发芽起始时间/d
    Germination initiation time
    发芽终止时间/d
    Germination termination time
    平均发芽时间/d
    Average germination time
    0454.25±0.030a
    50454.36±0.009a
    100464.77±0.113b
    150474.97±0.154b
    200475.19±0.182c
    250586.81±0.409d
     1)同列数据后不同小写字母表示差异显著(P<0.05,LSD法)
     1)Different lowercase letters in the same column indicate significant differences (P<0.05, LSD method )
    下载: 导出CSV
  • [1] 蔡得田, 袁隆平, 卢兴桂. 二十一世纪水稻育种新战略Ⅱ: 利用远缘杂交和多倍体双重优势进行超级稻育种[J]. 作物学报, 2001, 27(1): 110-116.
    [2]

    WU J W, HU C Y, SHAHID M Q, et al. Analysis on genetic diversification and heterosis in autotetraploid rice[J]. SpringerPlus, 2013, 2: 439. doi: 10.1186/2193-1801-2-439

    [3]

    YANG P M, HUANG, Q C, QIN, G Y, et al. Different drought-stress responses in photosynthesis and reactive oxygen metabolism between autotetraploid and diploid rice[J]. Photosynthetica, 2014, 52: 193-202. doi: 10.1007/s11099-014-0020-2

    [4] 阮华强, 黄群策, 杨鹏鸣. 同源四倍体水稻光合特性初步研究[J]. 杂交水稻, 2016, 31(2): 76-80.
    [5] 宋文昌, 张玉华. 水稻四倍化及其对农艺性状和营养成分的影响[J]. 作物学报, 1992, 18(2): 137-144.
    [6]

    XIAN L, LONG Y, YANG M, et al. iTRAQ-based quantitative glutelin proteomic analysis reveals differentially expressed proteins in the physiological metabolism process during endosperm development and their impacts on yield and quality in autotetraploid rice[J]. Plant Science, 2021, 306: 110859. doi: 10.1016/j.plantsci.2021.110859

    [7]

    GUO H B, MENDRIKAHY J N, XIE L, et al. Transcriptome analysis of neo-tetraploid rice reveals specific differential gene expressions associated with fertility and heterosis[J]. Scientific Reports, 2017, 7: 40139. doi: 10.1038/srep40139

    [8]

    BEI X, SHAHID M Q, WU J, et al. Re-sequencing and transcriptome analysis reveal rich DNA variations and differential expressions of fertility-related genes in neo-tetraploid rice[J]. PLoS One, 2019, 14(4): e0214953. doi: 10.1371/journal.pone.0214953

    [9]

    GHALEB M A A, LI C, SHAHID M Q, et al. Heterosis analysis and underlying molecular regulatory mechanism in a wide-compatible neo-tetraploid rice line with long panicles[J]. BMC Plant, 2020, 20: 83. doi: 10.1186/s12870-020-2291-z

    [10]

    CHEN L, YUAN Y, WU J, et al. Carbohydrate metabolism and fertility related genes high expression levels promote heterosis in autotetraploid rice harboring double neutral genes[J]. Rice, 2019, 12(1): 34. doi: 10.1186/s12284-019-0294-x

    [11]

    YU H, SHAHID M Q, LI Q, et al. Production assessment and genome comparison revealed high yield potential and novel specific alleles associated with fertility and yield in neo-tetraploid rice[J]. Rice, 2020, 13(1): 32. doi: 10.1186/s12284-020-00387-3

    [12]

    YU H, LI Q, LI Y, et al. Genomics analyses reveal unique classification, population structure and novel allele of neo-tetraploid rice[J]. Rice, 2021, 14(1): 16. doi: 10.1186/s12284-021-00459-y

    [13]

    HUANG Y, HUANG Q, LI J, et al. Photosynthetic physiology and molecular response mechanisms of indica-japonica intersubspecific tetraploid rice seedlings to ion beams[J]. Journal of Plant Growth Regulation, 2021, 40(2): 722-735. doi: 10.1007/s00344-020-10136-x

    [14]

    TU Y, JIANG A, GAN L, et al. Genome duplication improves rice root resistance to salt stress[J]. Rice, 2014, 7(1): 15. doi: 10.1186/s12284-014-0015-4

    [15] 刘向东, 吴锦文, 陆紫君, 等. 同源四倍体水稻: 低育性机理、改良与育种展望[J]. 遗传, 2023. doi: 10.16288/j.yczz.23-074.
    [16] 汪宗立, 李建坤, 王志霞. 水稻耐盐性的生理研究 IV. 盐渍对超氧物歧化酶和过氧化氢酶活性的影响[J]. 江苏农业学报, 1990, 6(2): 1-6.
    [17] 顾兴友, 郑少玲, 严小龙, 等. 盐浓度对水稻苗期耐盐指标变异度的影响[J]. 华南农业大学学报[J], 1998, 19(1): 33-37.
    [18]

    ZENG Y X, HU C Y, LU Y G, et al. Diversity of abnormal embryo sacs in indica/japonica hybrids in rice demonstrated by confocal microscopy of ovaries[J]. Plant Breeding, 2010, 126: 574-580.

    [19]

    WU J W, CHEN Y, LIN H, et al. Comparative cytological and transcriptome analysis revealed the normal pollen development process and up-regulation of fertility-related genes in newly developed tetraploid rice[J]. International of Molecular Science, 2020, 21(19): 7046. doi: 10.3390/ijms21197046

    [20]

    WU J W, SHAHID M Q, GUO H B, et al. Comparative cytological and transcriptomic analysis of pollen development in autotetraploid and diploid rice[J]. Plant Reproduction, 2014, 27(4): 181-196. doi: 10.1007/s00497-014-0250-2

    [21]

    LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method[J]. Methods, 2001, 25(4): 402-408.

    [22]

    COMAI L. The advantages and disadvantages of being polyploid[J]. Nature Reviews Genetics, 2005, 6(11): 836-846. doi: 10.1038/nrg1711

    [23]

    VAN DE PEER Y, MIZRACHI E, MARCHAL K. The evolutionary significance of polyploidy[J]. Nature Reviews Genetics, 2017, 18(7): 411-424. doi: 10.1038/nrg.2017.26

    [24]

    WANG L, CAO S, WANG P, et al. DNA hypomethylation in tetraploid rice potentiates stress- responsive gene expression for salt tolerance[J]. Proceedings of the National Academy of Sciences, 2021, 118(13): e2023981118. doi: 10.1073/pnas.2023981118

    [25] 刘向东, 吴锦文, SHAHID M Q. 新型四倍体水稻创制及其杂种优势利用研究进展[J]. 生物技术通报, 2021, 38(1): 44-50.
    [26] 钟静, 陈大鹏. NaCl胁迫对水稻种子萌发和幼苗生长的影响[J]. 黑龙江农业科学, 2016, 5: 18-20.
    [27] 贺奇, 杨锋, 王昕, 等. NaCl胁迫对水稻宁粳48号种子萌发特性的影响[J]. 宁夏农林科技, 2017, 58(3): 4-6.
    [28] 信彩云, 马惠, 赵庆雷, 等. 不同浓度NaCl胁迫对水稻种子发芽及幼苗生长的影响[J]. 大麦与谷类科学, 2019, 36(3): 7-10.
    [29] 刘胜群, 宋凤斌. 不同耐旱性玉米根系解剖结构比较研究[J]. 干旱地区农业研究, 2007, 2: 86-91.
    [30]

    GANGULY M, DATTA K, ROYCHOUDHURY A, et al. Overexpression of Rab16A gene in indica rice variety for generating enhanced salt tolerance[J]. Plant Signaling and Behavior, 2012, 7(4): 502-509. doi: 10.4161/psb.19646

    [31]

    YANG A, DAI X Y, ZHANG W H. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice[J]. Journal of Experimental Botany, 2012, 63(7): 2541-2556. doi: 10.1093/jxb/err431

  • 期刊类型引用(21)

    1. 贺青,张静月,顾臻,汪建谊,赵文荣. 基于改进蚁群算法的变电站巡检机器人路径规划. 机械设计与研究. 2025(01): 282-287+292 . 百度学术
    2. 孙柱,吕宪勇,孙凯信,李佩霏,齐琪琪. 基于Dubins曲线的轮式机旋耕作业CCPP算法. 农业装备与车辆工程. 2024(05): 9-13 . 百度学术
    3. 孟浩德,吴征天,吴闻笛,施坤. 基于记忆模拟退火算法的扫地机器人遍历路径规划. 计算机与数字工程. 2024(03): 821-826+857 . 百度学术
    4. 李文峰,徐蕾,杨琳琳,刘文荣,潘坤,李超. 基于改进蚁群算法的农业机器人多田块路径规划方法与试验. 南京农业大学学报. 2024(04): 823-834 . 百度学术
    5. 王新彦,盛冠杰,张凯,易政洋. 基于改进A~*算法和DFS算法的割草机器人遍历路径规划. 中国农机化学报. 2023(02): 142-147 . 百度学术
    6. 潘富强,曾成,马国红,刘继忠. 一种融合改进A*算法与改进动态窗口法的AGV路径规划. 传感技术学报. 2023(01): 68-77 . 百度学术
    7. 沈跃,刘子涵,刘慧,杜伟. 基于多约束条件的果园喷雾机器人路径规划方法. 农业机械学报. 2023(07): 56-67 . 百度学术
    8. 董雅文,杨静雯,刘文慧,张宝锋. 基于改进A~*算法的机器人全覆盖衔接路径规划. 传感器与微系统. 2023(09): 125-128 . 百度学术
    9. 贺平,张德晖,侯志涛,洪夏明,李盼春,虞洋. 智能割草机路径规划研究现状. 福建农机. 2023(03): 36-40 . 百度学术
    10. 周龙港,刘婷,卢劲竹. 基于Floyd和改进遗传算法的丘陵地区农田遍历路径规划. 智慧农业(中英文). 2023(04): 45-57 . 百度学术
    11. 姜光,姜久超,李爱宁,李岩,常硕. 基于PLC的农业机器人电气控制系统设计. 农机化研究. 2022(02): 219-223 . 百度学术
    12. 田茹,曹茂永,马凤英,纪鹏. 基于改进A*算法的农用无人机路径规划. 现代电子技术. 2022(04): 182-186 . 百度学术
    13. 龙洋,苏义鑫,廉城,张丹红. 混合细菌觅食算法求解无人艇路径规划问题. 华中科技大学学报(自然科学版). 2022(03): 68-73 . 百度学术
    14. 陈凯,解印山,李彦明,刘成良,莫锦秋. 多约束情形下的农机全覆盖路径规划方法. 农业机械学报. 2022(05): 17-26+43 . 百度学术
    15. 王宁,韩雨晓,王雅萱,王天海,张漫,李寒. 农业机器人全覆盖作业规划研究进展. 农业机械学报. 2022(S1): 1-19 . 百度学术
    16. 刘胜,张豪,晏齐忠,张志鑫,申永鹏. 基于ACO-SA算法的变电站巡检机器人路径规划. 南方电网技术. 2022(09): 75-82 . 百度学术
    17. 宫金良,王伟,张彦斐,兰玉彬. 基于农田环境的农业机器人群协同作业策略. 农业工程学报. 2021(02): 11-19 . 百度学术
    18. 黄月琴,罗兵,邓辅秦,李伟科,杨勇. 智能扫地机器人的全覆盖路径规划. 五邑大学学报(自然科学版). 2021(02): 51-58 . 百度学术
    19. 董雅文,杨静雯,刘文慧,张宝锋. 基于BSO-GA算法的机器人子区域覆盖路径规划. 轻工机械. 2021(06): 57-64 . 百度学术
    20. 武义,欧明敏,段立伟. 基于改进A~*算法和动态窗口法的机器人路径规划研究. 工业控制计算机. 2020(10): 67-70 . 百度学术
    21. 刘洋成,耿端阳,兰玉彬,谭德蕾,牟孝栋,孙延成. 基于自动导航的农业装备全覆盖路径规划研究进展. 中国农机化学报. 2020(11): 185-192 . 百度学术

    其他类型引用(22)

图(10)  /  表(2)
计量
  • 文章访问数:  231
  • HTML全文浏览量:  38
  • PDF下载量:  38
  • 被引次数: 43
出版历程
  • 收稿日期:  2023-06-16
  • 网络出版日期:  2023-11-12
  • 发布日期:  2023-09-12
  • 刊出日期:  2023-09-09

目录

/

返回文章
返回