• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

基于EEMD-WPT的温室环境数据优化处理研究

吴伟斌, 杨柳, 吴维浩, 吴贤楠, 沈梓颖, 张方任, 罗远强

吴伟斌, 杨柳, 吴维浩, 等. 基于EEMD-WPT的温室环境数据优化处理研究[J]. 华南农业大学学报, 2024, 45(3): 397-407. DOI: 10.7671/j.issn.1001-411X.202305029
引用本文: 吴伟斌, 杨柳, 吴维浩, 等. 基于EEMD-WPT的温室环境数据优化处理研究[J]. 华南农业大学学报, 2024, 45(3): 397-407. DOI: 10.7671/j.issn.1001-411X.202305029
WU Weibin, YANG Liu, WU Weihao, et al. Research on the optimization processing of greenhouse environmental data based on EEMD-WPT[J]. Journal of South China Agricultural University, 2024, 45(3): 397-407. DOI: 10.7671/j.issn.1001-411X.202305029
Citation: WU Weibin, YANG Liu, WU Weihao, et al. Research on the optimization processing of greenhouse environmental data based on EEMD-WPT[J]. Journal of South China Agricultural University, 2024, 45(3): 397-407. DOI: 10.7671/j.issn.1001-411X.202305029

基于EEMD-WPT的温室环境数据优化处理研究

基金项目: 广东省现代农业产业技术体系创新团队建设项目(2023KJ120);国家自然科学基金青年科学基金(52005188)
详细信息
    作者简介:

    吴伟斌,教授,博士,主要从事智能农业装备研究,E-mail: wuweibin@scau.edu.cn

    通讯作者:

    罗远强,副研究员,博士,主要从事机电一体化技术研究,E-mail: luoyq@scau.edu.cn

  • 中图分类号: TP274

Research on the optimization processing of greenhouse environmental data based on EEMD-WPT

  • 摘要:
    目的 

    解决温室系统中的数据采集传感器容易受到多种环境因素的干扰,从而导致数据中存在噪声的问题。

    方法 

    提出一种集合经验模态分解(Ensemble empirical mode decomposition,EEMD)与小波包自适应阈值 (Wavelet packet adaptive threshold,WPT) 算法联合的数据降噪处理方法,并采用卡尔曼滤波与自适应加权平均算法对降噪后的数据进行融合。

    结果 

    将EEMD-WPT算法应用于含噪温、湿度数据的降噪处理,相较于降噪前的数据,信噪比提升了73.08%。该算法相较于传统WPT算法具有更好的降噪效果,处理后的数据信噪比提升了40.31%,均方根误差降低了84.75%。

    结论 

    该算法能解决数据跳动、冗余和丢失等问题,并为温室控制系统提供了有效的参数,具有较大的实际应用价值。

    Abstract:
    Objective 

    To address the problem that the data acquisition sensors in greenhouse system are easily disturbed by various environmental factors, leading to the presence of noise in the data.

    Method 

    This study proposed a data noise reduction processing method combining ensemble empirical mode decomposition (EEMD) and wavelet packet adaptive threshold (WPT) algorithm, and the Kalman filter and adaptive weighted average algorithm were used to fuse the noise-reduced data.

    Result 

    After applying the EEMD-WPT algorithm to the noise reduction processing of the noise-containing temperature and humidity data, the signal-to-noise ratio was improved by 73.08% compared with the data before noise reduction. The EEMD-WPT algorithm had better noise reduction effect compared with the traditional WPT algorithm, and the signal-to-noise ratio of the processed data was improved by 40.31% and the root mean square error reduced by 84.75%.

    Conclusion 

    The algorithm can solve the problems of data skipping, redundancy and loss, and provides effective parameters for the greenhouse control system, making it highly practical and valuable for application.

  • 图  1   原始温、湿度数据

    Figure  1.   The original data of temperature and humidity

    图  2   传感器节点在温室中的位置

    红色数字表示节点编号,括号中为节点位置

    Figure  2.   Positions of sensor nodes in the greenhouse

    The red number represents the node number, and the node position is indicated in parentheses

    图  3   EEMD联合WPT降噪流程

    Figure  3.   Noise reduction process of EEMD combined with WPT

    图  4   纯净温度数据(A)与含噪温度数据(B)

    Figure  4.   Pure temperature data (A) and temperature data with noise (B)

    图  5   不同算法对温度数据降噪处理的仿真结果

    Figure  5.   Simulation results of different algorithms for noise reduction processing of temperature data

    图  6   温度(A)和相对湿度(B)误差补偿模型

    Figure  6.   Temperature (A) and relative humidity (B) error compensation models

    图  7   温度(A)和相对湿度(B)误差分布直方图

    Figure  7.   Temperature (A) and relative humidity (B) error distribution histogram

    图  8   温度数据EEMD分解结果

    Figure  8.   EEMD decomposition results of temperature data

    图  9   相对湿度数据EEMD分解结果

    Figure  9.   EEMD decomposition results of relative humidity data

    图  10   温度数据不同阈值降噪效果对比

    Figure  10.   Comparison of noise reduction effects of different thresholds for temperature data

    图  11   相对湿度(RH)数据不同阈值降噪效果对比

    Figure  11.   Comparison of noise reduction effect of different thresholds for realative humidity (RH) data

    图  12   不同算法对温度数据降噪处理结果

    Figure  12.   Results of noise reduction processing of temperature data by different algorithms

    图  13   不同算法对相对湿度(RH)数据降噪处理结果

    Figure  13.   Results of noise reduction processing of relative humidity (RH) data by different algorithms

    图  14   不同温度传感器的数据融合

    Figure  14.   Data fusion of different temperature sensors

    图  15   不同湿度传感器的数据融合

    Figure  15.   Data fusion of different humidity sensors

    表  1   模型和训练的超参数设置

    Table  1   Hyperparameter settings for models and training

    参数类型
    Parameter type
    参数
    Parameter
    参数值
    Parameter value
    模型参数
    Model parameter
    全连接神经网络的层数
    The number of layers of a fully connected neural network
    3
    输入维度 Input dimension 2
    隐藏层维度
    Hidden layer dimension
    10
    输出维度 Output dimension 2
    训练参数
    Training parameter
    学习率 Learning rate 0.001
    训练轮次 Training round 100
    批量训练的批大小
    Batch size for batch training
    32
    交叉验证的 K-fold
    Cross-validated K-fold
    5
    优化器 Optimizer Adam
    下载: 导出CSV

    表  2   不同算法温度数据输出结果的RMSE、SNR和R

    Table  2   The RMSE, SNR and R of the temperature data output result of each algorithm

    算法 AlgorithmRMSESNR/dBR
    LMS 0.219 41.20 0.999
    FIR 0.112 47.05 0.999
    IIR 0.189 42.52 0.998
    VMD-WT 0.136 45.33 0.999
    VMD 0.155 44.23 0.999
    WPT 0.236 40.56 0.997
    EMD-WPT 0.047 54.61 1.000
    EEMD-WPT 0.036 56.91 1.000
    CEEMDAN-WPT 0.056 53.10 1.000
    下载: 导出CSV

    表  3   不同阈值去噪方法温度数据输出结果的RMSE、SNR和R

    Table  3   RMSE, SNR and R of temperature data output results of different threshold denoising methods

    去噪方法 Denoising methodRMSESNR/dBR
    硬阈值去噪 Hard threshold denoising0.22440.690.996
    软阈值去噪 Soft threshold denoising0.22440.700.995
    固定阈值去噪 Fixed threshold denoising0.22440.700.996
    自适应阈值去噪 Adaptive threshold denoising0.16943.130.998
    下载: 导出CSV

    表  4   不同阈值去噪方法相对湿度数据输出结果的RMSE、SNR和R

    Table  4   RMSE, SNR and R of relative humidity data output results of different threshold denoising methods

    去噪方法 Denoising methodRMSESNR/dBR
    硬阈值去噪 Hard threshold denoising0.33546.450.951
    软阈值去噪 Soft threshold denoising0.33646.450.950
    固定阈值去噪 Fixed threshold denoising0.16252.760.989
    自适应阈值去噪 Adaptive threshold denoising0.12055.400.994
    下载: 导出CSV
  • [1] 杜肖鹏, 李恺, 王春辉, 等. 国内温室空气温湿度检测及传输技术研究进展[J]. 农业工程技术, 2022, 42(34): 28-34.
    [2] 张敏, 方健, 王勇, 等. 基于ZigBee无线通信的变电站端子箱温湿度传感器系统设计[J]. 制造业自动化, 2023, 45(2): 169-174. doi: 10.3969/j.issn.1009-0134.2023.02.034
    [3] 于玉婷, 柳平增, 王秀丽, 等. 北方番茄日光温室温度传感器布设位置研究[J]. 中国农业科技导报, 2023, 25(3): 107-118.
    [4]

    MANOHARAN D S. Supervised learning for microclimatic parameter estimation in a greenhouse environment for productive agronomics[J]. Journal of Artificial Intelligence and Capsule Networks, 2020, 2(3): 170-176. doi: 10.36548/jaicn.2020.3.004

    [5]

    LIU F, LI J, LIU L, et al. Application of the EEMD method for distinction and suppression of motion-induced noise in grounded electrical source airborne TEM system[J]. Journal of Applied Geophysics, 2017, 139: 109-116. doi: 10.1016/j.jappgeo.2017.02.013

    [6]

    THUC V C, LEE H S. Partial discharge (PD) signal detection and isolation on high voltage equipment using improved complete EEMD method[J]. Energies, 2022, 15(16): 5819. doi: 10.3390/en15165819

    [7]

    VANUS J, KUBICEK J, VILIMEK D, et al. A innovative wavelet transformation method optimization in the noise-canceling application within intelligent building occupancy detection monitoring[J]. Heliyon, 2023, 9(5): e16114. doi: 10.1016/j.heliyon.2023.e16114

    [8] 熊春宝, 于丽娜, 常翔宇. 基于EEMD−小波阈值去噪的桥梁结构模态参数识别[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(4): 378-385.
    [9]

    XIA S, NAN X, CAI X, et al. Data fusion based wireless temperature monitoring system applied to intelligent greenhouse[J]. Computers and Electronics in Agriculture, 2022, 192: 106576. doi: 10.1016/j.compag.2021.106576

    [10]

    WANG C, WANG Z, ZHU Y, et al. The application of data-level fusion algorithm based on adaptive-weighted and support degree in intelligent household greenhouse[M]//Innovative Techniques and Applications of Modelling, Identification and Control. Singapore: Springer, 2018: 93-108.

    [11] 王子乐, 王子谋, 蔡莹, 等. 基于长短期记忆神经网络组合算法的短期电力负荷预测[J]. 现代电力, 2023, 40(2): 201-209.
    [12] 肖旰, 周莉, 李敬兆, 等. 基于EEMD融合BAS-CNN的高压电缆故障诊断[J]. 电子测量技术, 2022, 45(4): 160-167.
    [13]

    VENKATESAN C, KARTHIGAIKUMAR P, VARATHARAJAN R. A novel LMS algorithm for ECG signal preprocessing and KNN classifier based abnormality detection[J]. Multimedia Tools and Applications, 2018, 77(8): 10365-10374. doi: 10.1007/s11042-018-5762-6

    [14]

    ALMALCHY M T, CIOBANU V, POPESCU N. Noise removal from ecg signal based on filtering techniques[C]//2019 22nd International Conference on Control Systems and Computer Science (CSCS). Bucharest, Romania: IEEE, 2019: 176-181.

    [15]

    APPATHURAI A, JERUSALIN CAROL J, RAJA C, et al. A study on ECG signal characterization and practical implementation of some ECG characterization techniques[J]. Measurement, 2019, 147: 106384. doi: 10.1016/j.measurement.2019.02.040

    [16] 陈龙, 史文库, 陈志勇, 等. 基于小波−VMD联合降噪的传动系扭振信号分析[J]. 振动. 测试与诊断, 2022, 42(4): 703-709,825.
    [17] 刘伯相, 张远民, 江竹. 基于变分模态分解的管道泄漏信号降噪方法[J]. 振动. 测试与诊断, 2023, 43(2): 397-403.
    [18] 杨洪涛. 样本熵改进小波包阈值去噪的轴承故障诊断[J]. 组合机床与自动化加工技术, 2020(1): 79-82.
    [19]

    KE L. Denoising GPS-based structure monitoring data using hybrid EMD and wavelet packet[J]. Mathematical Problems in Engineering, 2017, 2017: 4920809.

    [20] 李瑞, 谷立臣, 赵鹏军, 等. 应用EEMD和小波包分解的压力脉动信号时域特征提取方法[J]. 现代制造工程, 2018(7): 1-6.
    [21] 栾孝驰, 李彦徵, 徐石, 等. 基于小波包变换与CEEMDAN的滚动轴承故障诊断方法[J]. 航空动力学报, 2024, 39(5): 20220473.
图(15)  /  表(4)
计量
  • 文章访问数:  261
  • HTML全文浏览量:  35
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-24
  • 网络出版日期:  2024-03-06
  • 发布日期:  2024-03-07
  • 刊出日期:  2024-05-09

目录

    /

    返回文章
    返回