Design and experiment of low-power BDS-SPP/INS fusion positioning system
-
摘要:目的
融合定位设备大多依赖于BDS-RTK,而BDS-RTK功耗大,在网络信号不佳的区域无法获取差分链路,只能使用标准单点定位(Standard point positioning,SPP),而SPP定位系统存在定位误差大、抗干扰能力弱的问题。本研究致力于解决这些问题。
方法提出一种惯性导航系统(Inertial navigation system,INS)和BDS-SPP传感器信息融合卡尔曼滤波方法,基于该方法开发了低功耗融合定位系统。采用BDS-RTK作为基准,测试了BDS-SPP的低功耗模块静态和动态的误差、航姿参考系统(Attitude and heading reference system,AHRS)零偏和噪声,同时进行滤波器融合定位试验,检测在单天线BDS受到干扰时AHRS的断点续航情况。
结果BDS定位的静态误差为0.4726 m,BDS-SPP/INS融合定位系统动态平均标准差小于1.9137 m,相较于融合前减少0.1652 m。断点续航试验结果表明,融合定位系统偏移距离平均标准差为3.6365 m,相较于融合前减少了2.5900 m。BDS-SPP/INS融合定位系统比BDS-RTK定位系统功率降低了33.3 W;融合后的输出频率较单独采用BDS-SPP情况提高了3倍。
结论本文的融合定位装置提高了BDS-SPP的抗干扰能力,减少了定位误差,可以在缺少RTK链路的情况下为农业机器人提供定位,可以为农业机器人导航研究提供了技术基础。
Abstract:ObjectiveMost fusion positioning devices rely on BDS-RTK, which has high power consumption. In areas with poor network signals, differential links cannot be obtained, and only standard point positioning (SPP) can be used. SPP system has problems such as large positioning errors and weak anti-interference ability. This study is committed to addressing these issues.
MethodThis study proposed a low-power fusion positioning device that used inertial navigation system (INS) and BDS-SPP sensors based on the Kalman filter fusion method. The device was tested using BDS-RTK as a benchmark to evaluate the static and dynamic errors of the BDS-SPP low-power module, the attitude and heading reference system (AHRS) zero bias and noise. Additionally, filtering fusion positioning experiments were conducted to test the AHRS breakpoint continuation in the case of BDS interference with a single antenna.
ResultThe static error of BDS positioning was 0.4726 m, the average standard deviation of the dynamic BDS-SPP/INS fusion positioning system was less than 1.9137 m, and the average standard deviation reduced by 0.1652 m compared to before fusion. The breakpoint continuation experiment showed that the average standard deviation of the offset distance of the fusion positioning system was 3.6365 m, which decreased by 2.5900 m compared to before fusion. The BDS-SPP/INS fusion positioning system reduced the power consumption by 33.3 W compared to the BDS-RTK positioning system, and increased the output frequency by three times.
ConclusionThe fusion positioning device in this article improves the anti-interference capability of BDS-SPP and reduces positioning errors. It can provide positioning for agricultural robots in the absence of an RTK link, and provide a technical basis for agricultural robot navigation research.
-
Keywords:
- Agricultural robot /
- Low-power /
- BDS /
- Information fusion /
- Kalman filter /
- INS
-
-
图 1 机器人运行学模型图
X和Y是质点运动方程的坐标系,(x,y)是此瞬时质点在坐标轴的投影,θ是此瞬时运动轨迹与X轴的夹角
Figure 1. Model diagram of robot operationology
X and Y are the coordinate system of the motion equation of the particle, (x, y) is the instantaneous projection of the particle on the coordinate axis, and θ is the angle between the instantaneous motion trajectory and X axis
图 4 低功耗的BDS-SPP/INS融合定位系统实物示意图
1:RTK-GNNS 定位系统;2:接收卫星信号天线;3:4G天线;4:AHRS系统;5:低功耗MCU测试系统
Figure 4. Physical diagram of BDS-SPP/INS fusion positioning system with low power
1: RTK-GNNS positioning system; 2: Antenna to receive satellite signal; 3: 4G antenna; 4: AHRS system; 5: Low-power MCU test system
图 8 融合前、后的系统动态定位散点图(A)和偏移距离图(B)
图A中,上方和下方的短平行线是对箭头指向位置的定位轨迹的放大
Figure 8. Dynamic positioning scatter plot (A) and offset distance plot (B) of the system before and after fusion
In Figure A, the short parallel lines above and below magnify the positioning trajectories of the positions pointed by arrows
表 1 BDS-SPP定位系统的静态误差
Table 1 Static error of BDS-SPP positioning system
t/s 标准差/m
Standard deviation圆概率误差/m
Circular probable error平均误差/m
Mean error北纬/(°)
North latitude东经/(°)
East longitude2100 0.6005 0.4982 0.4627 23.1626 113.3399 1800 0.6827 0.5564 0.5401 23.1560 113.3584 900 0.2631 0.2181 0.2404 23.2423 113.6378 2280 0.7381 0.6068 0.6471 23.2432 113.6380 平均值 Avearage 0.5711 0.4699 0.4726 表 2 不同定位系统的动态性能
Table 2 Dynamic performance of different positioning systems
t/s 速度/(m·s−1)
Speed行驶距离/m
Distance traveled偏移距离的标准差/m Standard deviation of offset distance BDS-SPP BDS-SPP/INS 450 5.77 2600 1.7635 1.7445 396 4.55 1800 1.8043 1.5160 441 5.21 2300 2.7938 2.7251 479 5.22 2500 1.1514 1.1415 456 5.15 2350 1.7726 1.4454 410 5.91 2500 3.2240 3.0516 平均值 Average 2.0789 1.9137 表 3 抗干扰试验的不同定位系统动态性能
Table 3 Dynamic performance for different positioning systems in anti-interference test
t/s 速度/(m·s−1)
Speed行驶距离/m
Distance traveled偏移距离的标准差/m Standard deviation of offset distance BDS-SPP BDS-SPP/INS 1080 4.78 2500 5.7119 4.4576 1020 5.33 2350 8.7269 4.6847 1020 5.67 2300 5.2408 2.7674 平均值 Average 6.2265 3.6365 -
[1] HASSALL J. Future trends in precision agriculture[R/OL]. [2023-05-01]. https://www.nuffieldscholar.org/sites/default/files/reports/2009_AU_James-Hassall_Future-Trends-In-Precision-Agriculture-A-Look-Into-The-Future-Of-Agricultural-Equipment.pdf.
[2] 罗锡文, 王在满. 水稻生产全程机械化技术研究进展[J]. 现代农业装备, 2014(1): 23-29. doi: 10.3969/j.issn.1673-2154.2014.01.008 [3] 罗锡文, 廖娟, 汪沛, 等. 提高农业机械化水平促进农业现代化发展[J]. 中国农村科技, 2021(1): 6-11. doi: 10.3969/j.issn.1005-9768.2021.01.003 [4] 陈庆根, 廖西元. 优质水稻生产投入与产出的经济效益评价[J]. 中国农村经济, 2001(3): 18-24. [5] 张智刚, 王进, 朱金光, 等. 我国农业机械自动驾驶系统研究进展[J]. 农业工程技术, 2018, 38(18): 23-27. [6] 韩树丰, 何勇, 方慧. 农机自动导航及无人驾驶车辆的发展综述(英文)[J]. 浙江大学学报(农业与生命科学版), 2018, 44(4): 381-391. [7] 张漫, 季宇寒, 李世超, 等. 农业机械导航技术研究进展[J]. 农业机械学报, 2020, 51(4): 1-18. doi: 10.6041/j.issn.1000-1298.2020.04.001 [8] 姚立健, SANTOSH K P, 杨自栋, 等. 基于超宽带无线定位的农业设施内移动平台路径跟踪研究[J]. 农业工程学报, 2019, 35(2): 17-24. doi: 10.11975/j.issn.1002-6819.2019.02.003 [9] 陈黎卿, 许鸣, 柏仁贵, 等. 高地隙植保机辅助驾驶系统设计与试验[J]. 农业机械学报, 2019, 50(9): 25-32. doi: 10.6041/j.issn.1000-1298.2019.09.003 [10] LIU Y, MA X Y, SHU L, et al. From Industry 4.0 to Agriculture 4.0: Current status, enabling technologies, and research challenges[J]. IEEE Transactions on Industrial Informatics, 2021, 17(6): 4322-4334. doi: 10.1109/TII.2020.3003910
[11] BECHAR A, VIGNEAULT C. Agricultural robots for field operations. Part 2: Operations and systems[J]. Biosystems Engineering, 2017, 153: 110-128. doi: 10.1016/j.biosystemseng.2016.11.004
[12] 庄朝文, 富立, 范跃祖. 多传感器融合技术在低成本车辆组合导航定位系统中的应用[J]. 中国惯性技术学报, 2002, 10(5): 1-5. doi: 10.3969/j.issn.1005-6734.2002.05.001 [13] 张京, 陈度, 王书茂, 等. 农机INS/GNSS组合导航系统航向信息融合方法[J]. 农业机械学报, 2015, 46(S1): 1-7. doi: 10.6041/j.issn.1000-1298.2015.S0.001 [14] 王力, 杨忠辉. 自适应序贯UKF的INS/BDS紧组合导航算法[J]. 计算机仿真, 2019, 36(12): 228-232. doi: 10.3969/j.issn.1006-9348.2019.12.047 [15] SHEN C, ZHANG Y, TANG J, et al. Dual-optimization for a MEMS-INS /GPS system during GPS outages based on the cubature Kalman filter and neural networks[J] Mechanical Systems and Signal Processing, 2019, 133(106222): 1-14.
[16] BROWN A K, LU Y. Performance test results of an integrated GPS/MEMS inertial navigation package[C]//Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004). Long Beach, California: ION GNSS, 2004: 825-832.
[17] 魏永超, 罗城仔, 邓岚, 等. 基于DS-SVR算法优化的BDS/INS组合导航[J]. 航空计算技术, 2020, 50(1): 57-60. doi: 10.3969/j.issn.1671-654X.2020.01.014 [18] 张晓寒, 赵景波, 董振振. 农机BDS/INS组合导航算法研究[J]. 中国农机化学报, 2021, 42(2): 171-177. [19] 张智刚, 罗锡文, 赵祚喜, 等. 基于Kalman滤波和纯追踪模型的农业机械导航控制[J]. 农业机械学报, 2009, 40(S1): 6-12. [20] 丁幼春, 何志博, 夏中州, 等. 小型履带式油菜播种机导航免疫 PID 控制器设计[J]. 农业工程学报, 2019, 35(7): 12-20. doi: 10.11975/j.issn.1002-6819.2019.07.002 [21] 李逃昌, 胡静涛, 高雷, 等. 基于模糊自适应纯追踪模型的农业机械路径跟踪方法[J]. 农业机械学报, 2013, 44(1): 205-210. [22] 张闻宇, 丁幼春, 王雪玲, 等. 基于SVR逆向模型的拖拉机导航纯追踪控制方法[J]. 农业机械学报, 2016, 47(1): 29-36. [23] BEVLY D M, GERDES J C, PARKINSON B W. A new yaw dynamic model for improved high speed control of a farm tractor[J]. Journal of Dynamic Systems, Measurement and Control, 2002, 124(4): 659-667. doi: 10.1115/1.1515329
[24] 何杰, 朱金光, 张智刚, 等. 水稻插秧机自动作业系统设计与试验[J]. 农业机械学报, 2019, 50(3): 17-24. doi: 10.6041/j.issn.1000-1298.2019.03.002 [25] 段贤强, 陶建峰, 覃程锦, 等. 变速条件下农业机械路径跟踪稳定控制方法[J]. 农业机械学报, 2019, 50(9): 18-24. doi: 10.6041/j.issn.1000-1298.2019.09.002 [26] 刘兆朋, 张智刚, 罗锡文, 等. 雷沃ZP9500高地隙喷雾机的GNSS自动导航作业系统设计[J]. 农业工程学报, 2018, 34(1): 15-21. [27] 王辉, 王桂民, 罗锡文, 等. 基于预瞄追踪模型的农机导航路径跟踪控制方法[J]. 农业工程学报, 2019, 35(4): 11-19. [28] 张闻宇, 王进, 张智刚, 等. 基于自校准变结构Kalman的农机导航BDS失锁续航方法[J]. 农业机械学报, 2020, 51(3): 18-27. doi: 10.6041/j.issn.1000-1298.2020.03.002 [29] 靳标, 李建行, 朱德宽, 等. 基于自适应有限冲激响应−卡尔曼滤波算法的GPS/INS导航[J]. 农业工程学报, 2019, 35(3): 75-81. [30] 洪剑青, 赵德安, 孙月平, 等. 基于卡尔曼滤波离散滑模控制的明轮船直线跟踪[J]. 农业机械学报, 2019, 50(9): 33-39. doi: 10.6041/j.issn.1000-1298.2019.09.004 [31] 白秉旭, 田光兆. 基于模糊算法的自主导航拖拉机转向系统设计[J]. 中国农机化学报, 2014, 35(6): 135-137. [32] 刘健, 卢加华, 杨新云, 等. 中纬度地区兰勃特投影和高斯−克吕格投影变形分析[J]. 地矿测绘, 2019, 35(3): 12-14. doi: 10.16864/j.cnki.dkch.2019.0037