• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

水稻次生代谢物质介导红腹缢管蚜与白背飞虱的种间互作关系

胡杰, 贡常委, 袁好, 蒲建, 王学贵

胡杰, 贡常委, 袁好, 等. 水稻次生代谢物质介导红腹缢管蚜与白背飞虱的种间互作关系[J]. 华南农业大学学报, 2023, 44(5): 735-741. DOI: 10.7671/j.issn.1001-411X.202305006
引用本文: 胡杰, 贡常委, 袁好, 等. 水稻次生代谢物质介导红腹缢管蚜与白背飞虱的种间互作关系[J]. 华南农业大学学报, 2023, 44(5): 735-741. DOI: 10.7671/j.issn.1001-411X.202305006
HU Jie, GONG Changwei, YUAN Hao, et al. Interspecific relationships between Rhopalosiphum rufiabdominalis and Sogatella furcifera mediated by rice secondary metabolites[J]. Journal of South China Agricultural University, 2023, 44(5): 735-741. DOI: 10.7671/j.issn.1001-411X.202305006
Citation: HU Jie, GONG Changwei, YUAN Hao, et al. Interspecific relationships between Rhopalosiphum rufiabdominalis and Sogatella furcifera mediated by rice secondary metabolites[J]. Journal of South China Agricultural University, 2023, 44(5): 735-741. DOI: 10.7671/j.issn.1001-411X.202305006

水稻次生代谢物质介导红腹缢管蚜与白背飞虱的种间互作关系

基金项目: 西南作物基因资源发掘与利用国家重点实验室“生物育种”揭榜挂帅项目(SKL-ZY202221)
详细信息
    作者简介:

    胡 杰,硕士研究生,主要从事植物保护研究,E-mail: hojay@stu.sicau.edu.cn

    通讯作者:

    王学贵,教授,博士,主要从事农药毒理学研究,E-mail: wangxuegui@sicau.edu.cn

  • 中图分类号: Q946.8

Interspecific relationships between Rhopalosiphum rufiabdominalis and Sogatella furcifera mediated by rice secondary metabolites

Article Text (iFLYTEK Translation)
  • 摘要:
    目的 

    探究白背飞虱Sogatella furcifera与红腹缢管蚜Rhopalosiphum rufiabdominalis种间互作机制,以及2种昆虫互作过程中水稻次生代谢物质的作用。

    方法 

    将白背飞虱和红腹缢管蚜按不同比例混合饲养,待白背飞虱长至成虫后分组配对,分析白背飞虱总产卵量及日均产卵量;测定各处理的水稻草酸、黄酮及总酚含量,利用GC/MS仪器分析各处理水稻幼苗次生代谢物质成分的差异。

    结果 

    “15头蚜虫 + 5头白背飞虱”处理的白背飞虱总产卵量仅为131.67粒,与“20头白背飞虱”处理(214.60粒)差异显著,日均产卵量也呈现相同的规律;“15头蚜虫 + 5头白背飞虱”处理的水稻黄酮和总酚含量分别为1.98和63.71 mg/L,均显著高于其他处理。GC/MS分析表明,“15头蚜虫 + 5头白背飞虱”处理的水稻中丙丁酚相对含量高达75.78%,而其余处理的水稻中不存在此种酚类物质。

    结论 

    红腹缢管蚜可能是通过刺激水稻提高黄酮及总酚含量,进而抑制白背飞虱的生殖能力,其中丙丁酚可能在白背飞虱和红腹缢管蚜种间互作中起着关键作用。

    Abstract:
    Objective 

    To explore the interaction mechanism between species of Sogatella furcifera (white-backed planthopper) and Rhopalosiphum rufiabdominalis (aphid), and the role of secondary metabolites in rice during the interaction between the two insects.

    Method 

    S. furcifera and R. rufiabdominalis were mixed in different proportions, and the total egg production and average daily spawning of white-backed planthopper adults were analyzed after pairing. The contents of oxalic acid, flavones and total phenols of each treated rice seedlings were determined, and the differences in compositions of secondary metabolites were analyzed by GC/MS instrument.

    Result 

    The total egg production of white-backed planthoppers treated with “15 aphids + 5 white-backed planthoppers” was only 131.67 grains, which was significantly different from that of “20 white-backed planthoppers” (214.60 grains), and the average daily fecundity was the same. The contents of rice flavones and total phenols treated with “15 aphids + 5 white-backed planthoppers” were 1.98 and 63.71 mg/L, respectively, which were significantly higher than those of other treatments. GC/MS analysis showed that the relative content of probucol in rice treated with “15 aphids + 5 white-backed planthoppers” was as high as 75.78%, while this phenolic substance was not present in the rest of the treatments.

    Conclusion 

    R. rufiabdominalis may inhibit the reproductive ability of S. furcifera through stimulating rice to promote the content of flavones and total phenols. The probucol may play a key role in the interaction between S. furcifera and R. rufiabdominalis.

  • 动物的采食行为是维持机体能量稳态的基础,畜禽生产中获得充足的食物是其生长发育的前提。动物采食量受中枢调控,其中胃肠道状态是决定畜禽食欲的关键部位。揭示饥饿状态下鸡食欲调控的潜在肠−脑轴机制可为如何提高鸡采食量提供理论依据。下丘脑弓状核作为食欲调控中枢[-]存在大量的促采食的刺鼠相关蛋白(Agouti-related protein,AgRP)/神经肽 Y(Neuropeptide Y,NPY)神经元和抑采食的前阿片黑色皮质素(Proopiomelanocortin,POMC)/可卡因−苯丙胺调节转录肽(Cocaine and amphetamine regulated transcript,CART)神经元[-]。影响动物食欲的因素有很多,遗传、环境因素、机体健康以及肠道充盈状态等均能影响动物采食量[]。其中胃肠道作为营养物质暂时储存和消化吸收的关键部位,存在大量食欲调控信号[]。这些食欲调控信号一方面通过血液循环被中枢所感应[, ],另一方面被肠道迷走感觉传入神经元直接感应,经脑干孤束核最终将信号投递至食欲调控中枢,肠道和中枢间的这种信息传递被称为“肠−脑轴” [, ]。肠道迷走感觉神经作为假单极双向神经元,位于结状神经节处的胞体分别向中枢孤束核和肠道发出轴突,其中肠道迷走神经末梢存在多种受体感应肠道各种理化信号,例如游离脂肪酸受体2 (FFAR2)、生长激素促分泌素受体(GHSR)、胆囊收缩素受体(CCKR),以及炎症受体TLR4等 [-]

    肠道健康对机体维持高食欲具有重要作用,维持肠道平衡可以维持机体正常食欲,反之肠道菌群紊乱等原因导致肠道健康受损则会引起采食量降低[-],而肠道屏障是肠道发挥其正常生物学功能的重要前提[-],肠道黏膜屏障包括肠上皮细胞及胞间连接,其中,紧密连接是肠上皮细胞间的细胞旁通路的主要屏障,闭合(Occludin)和紧密连接(Claudin)家族成员是影响其功能的主要封闭蛋白,二者与胞浆蛋白相互作用维持紧密蛋白的完整性[-]。当肠道出现炎症时,会导致Claudin蛋白结构变化,进而引起肠道屏障功能性障碍,并且受致病菌侵害也会导致肠道屏障通透性增加[];动物炎症性肠病会导致肠道隐窝改变、小肠绒毛萎缩或变平以及一系列的形态学变化[]。大量研究发现间歇性饥饿有助于维持肠道及肠道屏障的完整性[-]

    此外,胃肠道中上皮基质和微生物群落共调控生成活性氧,导致生成H2O2;而H2O2是维持正常细胞稳态和生理功能所必需的第二信使[]。Miller等[]研究发现,结肠内壁中的细胞会释放H2O2(而非氧气)来限制微生物的生长,H2O2可以协同其他物质在肠道黏膜上形成保护,防止菌群紊乱或肠道炎症对机体造成损伤,并且可以治疗肠道炎症,恢复机体正常生理功能。然而,目前并不清楚短期饥饿是否影响肠道炎症水平和屏障功能、是否被迷走感觉神经所感应。本研究旨在揭示禁食后肠道炎症水平和肠道屏障变化,以及提高食欲的潜在机制,并提供理论基础和试验依据。

    选用20只1日龄初生黄羽肉鸡[-](购于广东省清远市凤翔麻鸡发展有限公司生产基地),试验前称体质量并排序,随后按配对随机设计的原则将体质量相近的小鼠分为2组:对照组和禁食组,每组10只黄羽肉鸡,正常饲喂饲料至5日龄并采样。采样前12 h,禁食组禁食,对照组正常采食。禁食12 h后收集小肠肠道内容物检测H2O2水平,采集黄羽肉鸡结状神经节(Nodose ganglia,NG),检测炎症和食欲相关受体的表达;采集十二指肠、空肠和回肠及其肠道黏膜,检测黄羽肉鸡肠道形态、闭锁小带蛋白−1 (Zonula,ZO-1)、闭合蛋白 (Occludens-1,OCC)、紧密连接蛋白(Claudin-1) 以及炎症因子的表达。

    分离小肠,区分十二指肠、空肠和回肠,取部分肠道轻轻挤压,将内容物收集于 2 mL 离心管中,使用过氧化氢测定试剂盒(A064-1-1,南京建成生物工程研究所)检测H2O2水平。

    取一段1 cm长的空肠,剪开后平铺,用生理盐水轻轻清洗内容物,而后修剪为5 mm边长的正方形放于保存液中,于4 ℃条件下保存。而后脱水、干燥,进行电镜扫描。

    小肠分离后剪取约 3 cm 空肠中段放于 40 g/L 的多聚甲醛中固定,按照常规方法制作石蜡切片,HE染色,光学显微镜下拍照,然后用Image软件测取肠道绒毛长度(lv)和隐窝深度(dc),每个切片取 3~5 个视野,取其平均值计算绒毛长度与隐窝深度比值(lv/dc)。

    小肠黏膜及NG总 RNA 使用 RNA 提取试剂盒(R4130-02,广州美基生物科技有限公司)和 TRIzol 试剂提取。1 g 总 RNA 按试剂盒说明书用 4× Reverse Transcription Master Mix(EZB-RT2GQ,美国 EZBioscience 生物技术有限公司)逆转录成 cDNA。引物序列见表1,按照2× SYBR Green qPCR Master Mix(A0012-R2,美国 EZBioscience 生物技术有限公司)说明书配制反应体系:10 μL 的体系中含有 5 μL 2× Color SYBR Green qPCR Master Mix、3.6 μL dd H2O、1 μL cDNA、0.4 μL 引物工作液;使用 Applied Biosystems QuantStudio 3 实时 PCR 系统并按照以下程序反应:95 ℃预热 5 min;95 ℃ 10 s,60 ℃ 30 s,循环 40 次。根据对照组 β-actin mRNA 表达进行归一化处理[]

    表  1  实时荧光定量PCR所用引物
    Table  1.  Primers used for quantitative real-time PCR
    基因
    Gene
    上游引物序列(5′→3′)
    Forward primer sequence
    下游引物序列(5′→3′)
    Reverse primer sequence
    序列号
    Accession number
    β-actin CTGTGCCCATCTATGAAGGCTA ATTTCTCTCTCGGCTGTGGTG L08165
    AgRP CTCTTCCCAGGCCAGACTTG GCAGAAGGCGTTGAAGAACC XM_046925680.1
    CCKAR AGCTCTTCTGCCAACCTGAT GTGTAGGACAGCAGGTGGAT NM_001081501.2
    Claudin-1 TGGAGGATGACCAGGTGAAG TGTGAAAGGGTCATAGAAGG NM_001013611.2
    CART CGAGAGAAGGAGCTGATCGA AGAAAGGAGTTGCACGAGGT XM_046937244.1
    FFAR2 GCACTCTCTTTATGGCTGCC GGATTCCCTGGTCTTGGTCA XM_040693461.2
    IL-1 CCTCCTCCAGCCAGAAAGTG CGGTAGAAGATGAAGCGGGT XM_015297469.3
    IL-4 CCCCAGGTGTAGGCTCTAGT ACTCTGTCATTGCTGCTCCC XM_040683457.2
    IL-6 ACCCGAGCTCTTTGGTGATG CGTGCCCTCTGTTTGTACCT XM_025143427.3
    IL-10 GCTGCCAAGCCCTGTT CCTCAAACTTCACCCTCA NM_001004414.4
    GHSR ATTAGTGCTGGCCCCATCTT CGGACCGATGTTCTTCCTCT XM_046923539.1
    MC4R AGGGGTCATCATCACATGCA GATGGCCCCTTTCATGTTGG NM_001031514.2
    NPY GTGCTGACTTTCGCCTTGTC ATCTCTGCCTGGTGATGAGG NM_205473.2
    Occludin TGGAGGAGTGGGTGAAGAAC ATCCTTCCCCTTCTCCTCCT XM_046904540.1
    POMC AGAGGAAGGCGAGGAGGAAA GTAGGCGCTTTTGACGATGG XM_046914234.1
    TLR-4 GGCTCAACCTCACGTTGGTA AGTCCGTTCTGAAATCCCGT NM_001030693.2
    TNF-α TTCTATGACCGCCCAGTT CAGAGCATCCAACGCAAAA XM_046920820.1
    NPY2R GGCCATCATCTCCTATGCCT GGAAGCCAACTGACAGCAAA NM_001398092.1
    ZO-1 TCATCCTTACCGCCGCATAT GTTGACTGCTCGTACTCCCT XM_046925214.1
    下载: 导出CSV 
    | 显示表格

    所有数据均以平均值±标准误差(Mean±SE)表示。用GraphPad Prism 8.0 软件进行统计分析。采用 t 检验对2组均值进行差异显著性分析。

    通过 q-PCR 检测下丘脑内食欲肽相关基因表达,结果发现,与对照组相比,雏鸡禁食12 h后促采食食欲肽基因AgRP (P<0.05)和 NPY (P<0.01)的 mRNA 相对表达量均显著上调(图1),提示雏鸡饥饿模型构建成功。

    图 1 黄羽肉鸡禁食12 h后下丘脑内食欲肽相关受体表达的变化
    图  1  黄羽肉鸡禁食12 h后下丘脑内食欲肽相关受体表达的变化
    “*”和“**”分别表示差异达到 0.05和0.01的显著水平(t检验)
    Figure  1.  Expression changes of orexin-related receptors in hypothalamus of yellow-feathered broilers after 12 h of fasting
    “*” and “**” indicate that the difference reaches 0.05 and 0.01 significance levels respectively (t test)

    空肠肠绒毛电镜扫描及分析结果如图2A3A、3B 所示,观察发现雏鸡禁食12 h 后,同对照组相比空肠肠绒毛表面更加完整,单位面积内绒毛总数更多、受损更少并且排列更加整齐。空肠 HE 染色及分析结果如图2B3C、3D 所示,与正常采食的雏鸡相比,禁食后雏鸡的隐窝深度和lvdc均无明显变化,但是对照组绒毛有明显损伤,而禁食组绒毛排列整齐、长度更长。

    图 2 黄羽肉鸡禁食12 h对空肠肠道绒毛形态的影响
    图  2  黄羽肉鸡禁食12 h对空肠肠道绒毛形态的影响
    Figure  2.  Effects of fasting for 12 h on jejunum intestinal villus morphology of yellow-feathered broilers
    图 3 黄羽肉鸡禁食12 h后空肠肠道绒毛形态变化的电镜扫描结果(A、B)和HE 染色结果(C、D)统计
    图  3  黄羽肉鸡禁食12 h后空肠肠道绒毛形态变化的电镜扫描结果(A、B)和HE 染色结果(C、D)统计
    Ⅰ:对照组,Ⅱ:禁食组;“*”和“**”分别表示差异达到 0.05和0.01的显著水平(t检验)
    Figure  3.  Statistics of the scanning electron microscopy results (A, B) and HE staining results (C, D) for the morphological changes of jejunum intestinal villi of yellow-feathered broilers after fasting for 12 h
    Ⅰ: Control, Ⅱ: Fasting group; “*” and “**” indicate that the difference reaches 0.05 and 0.01 significance levels respectively (t test)

    图4 可知,与对照组相比,禁食12 h后雏鸡小肠黏膜中紧密蛋白标志性基因ZO-1Occludin mRNA的相对表达量均显著上调(P<0.05),在十二指肠中,Claudin-1 的mRNA相对表达量也显著上调(P<0.05)。

    图 4 黄羽肉鸡禁食12 h后小肠肠道黏膜紧密蛋白的mRNA相对表达量变化
    图  4  黄羽肉鸡禁食12 h后小肠肠道黏膜紧密蛋白的mRNA相对表达量变化
    “*”和“**”分别表示差异达到 0.05和0.01的显著水平(t检验)
    Figure  4.  mRNA relative expression changes of intestinal mucosal compact protein in small intestine of yellow-feathered broilers after 12 h fasting
    “*” and “**” indicate that the difference reaches 0.05 and 0.01 significance levels respectively (t test)

    图5可知,黄羽肉鸡禁食12 h后,与对照组相比,十二指肠、空肠和回肠黏膜上炎症因子IL-1IL-6TNF-α的 mRNA表达量无明显变化,但是空肠黏膜抗炎因子IL-4IL-10的 mRNA表达量均有显著升高(P<0.01)。并且空肠和回肠内容物中H2O2浓度均有不同程度的增加(图3 D )。

    图 5 黄羽肉鸡禁食12 h后小肠炎症因子mRNA相对表达量及H2O2浓度变化
    图  5  黄羽肉鸡禁食12 h后小肠炎症因子mRNA相对表达量及H2O2浓度变化
    图D中,DU:十二指肠,Anterior JE:空肠前段,Middle JE:空肠中段,Posterior JE:空肠后段,Anterior IL:回肠前段,Posterior IL:回肠后段;“*”和“**”分别表示差异达到 0.05和0.01的显著水平(t检验)
    Figure  5.  Changes in mRNA relative expressions of intestinal inflammatory factors and H2O2 concentrations in yellow-feathered broilers after 12 h of fasting
    In figure D, DU: Duodenum, Anterior JE: Anterior jejunum, Middle JE: Middle jejunum, Posterior JE: Posterior jejunum, Anterior IL: Anterior ileum , Posterior IL: Posterior ileum; “*” and “**” indicate that the difference reaches 0.05 and 0.01 significance levels respectively (t test)

    图6A 可知,与对照组相比,雏鸡禁食12 h后 NG 内肠道炎症因子IL-4的受体基因IL-4R的mRNA相对表达量显著上调(P<0.01)。由图6B 可知,禁食组雏鸡NG内食欲相关受体基因的mRNA相对表达量有所增加,其中FFAR2和神经肽2受体(NPY2R)表达量增加显著(P<0.01)。

    图 6 黄羽肉鸡禁食12 h后结状神经节内炎症(A)与食欲(B)相关受体mRNA相对表达量
    图  6  黄羽肉鸡禁食12 h后结状神经节内炎症(A)与食欲(B)相关受体mRNA相对表达量
    “**”表示差异达到0.01的显著水平(t检验)
    Figure  6.  mRNA relative expression of inflammation-related (A) and orexin-related (B) receptors in nodose ganglia of yellow-feathered broilers after 12 h of fasting
    “**” indicates that the difference reaches 0.01 significance level (t test)

    已有研究发现,特异性激活下丘脑弓状核AgRP神经元显著提高动物采食量[],诱导肥胖发生[],而消除AgRP神经元则会导致厌食症[]。因此,本研究首先检测了下丘脑弓状核食欲肽表达变化,结果发现短期禁食后黄羽肉鸡下丘脑 AgRP/NPY表达显著上调(P < 0.05),而POMC有下降趋势(P = 0.07),提示黄羽肉鸡饥饿模型构建成功。

    肠道健康对机体维持高食欲具有重要作用,而肠道炎症则会影响肠道代谢水平、破坏微生物平衡[]以及肠道屏障的完整性[],甚至会影响中枢神经系统中神经肽的分泌,大量研究发现间歇性饥饿有助于维持肠道及肠道屏障的完整性[-]。据报道,胃肠道中上皮基质和微生物群落共调控生成活性氧,导致H2O2形成;而H2O2是维持正常细胞稳态和生理功能所必需的第二信使[]。本试验通过检测小肠不同肠段内容物的H2O2浓度发现,短期禁食导致禁食组空肠和回肠内容物中H2O2浓度均有不同程度的增加,推测饥饿状态下肠道可能通过生成适量H2O2维持肠道稳定。为进一步验证这一假设,我们通过电镜扫描、HE染色以及q-PCR结果发现,短期禁食并未对肠道形态造成损伤,且由于缺少食物影响,肠道绒毛排列更加紧凑整齐。我们推测,机体短期禁食后尚未引发肠道疾病,并且在肠道饥饿状态下,因肠道营养物质缺乏,机体可能出于自我保护机制防止肠道毒素等有害因子进入机体,从而紧密连接增强,即肠道物理屏障增强,且抗炎因子的表达增加,降低空肠损伤比例,避免肠道受损,以抵抗禁食给机体带来的不良影响,维持肠道正常的生理功能,这对维持较高食欲至关重要。

    大量研究报道,肠道食欲调控信号不仅可以通过血液信号被中枢所识别,还可以被肠道迷走感觉传入神经元直接感应,经肠−脑轴最终将信号投递至食欲调控中枢[-]。本试验结果发现,与对照组相比,雏鸡禁食12 h后结状神经节内IL-4受体基因的mRNA相对表达量显著上调,和肠道黏膜抗炎因子表达变化相对应;提示机体在饥饿状态下,可能通过提高肠道抗炎能力以及增强物理屏障来抵抗由禁食所导致的轻微炎症,维持肠道健康。

    此外,结状神经节内食欲相关受体基因的mRNA相对表达量有所增加,其中FFAR2NPY2R表达量增加显著(P < 0.01),推测黄羽肉鸡饥饿后由于AgRPNPY表达量增加[],并且FFAR2NPY2R表达增加,二者将肠道饥饿信号传递至中枢神经系统,提高动物食欲进而促进采食量增加。

    综上所述,饥饿可引起肠道抗炎因子水平升高,并维持肠道屏障完整性,同时促进迷走感觉神经末梢抗炎因子受体表达,最终引起食欲增强。

  • 图  1   各处理组白背飞虱的单雌总产卵量及日均产卵量

    T2:15头蚜虫 + 5头白背飞虱,T3:10头蚜虫 + 10头白背飞虱,T4:5头蚜虫 + 15头白背飞虱,T5:20头白背飞虱;图A中,柱子上方的不同小写字母表示处理间差异显著(P<0.05,Duncan’s法)

    Figure  1.   Total egg production and average daily spawning of white-backed planthopper in each treatment

    T2: 15 aphids + 5 white-backed planthoppers, T3: 10 aphids + 10 white-backed planthoppers, T4: 5 aphids + 15 white-backed planthoppers, T5: 20 white-backed planthoppers; In figure A, different lowercase letters above the bars indicate significant differences among treatments (P<0.05, Duncan’s method)

    图  2   各处理组水稻的草酸、黄酮和总酚含量

    T1:20头蚜虫,T2:15头蚜虫 + 5头白背飞虱,T3:10头蚜虫 + 10头白背飞虱,T4:5头蚜虫 + 15头白背飞虱,T5:20头白背飞虱,T6(CK):0头蚜虫 + 0头白背飞虱;各图中,柱子上方的不同小写字母表示处理间差异显著(P<0.05,Duncan’s法)

    Figure  2.   Contents of oxalic acid, flavones and total phenols in rice of each treatment

    T1: 20 aphids, T2: 15 aphids + 5 white-backed planthoppers, T3: 10 aphids + 10 white-backed planthoppers, T4: 5 aphids + 15 white-backed planthoppers, T5: 20 white-backed planthoppers, T6 (Control treatment): 0 aphid + 0 white-backed planthopper; In each figure, different lowercase letters above the bars indicate significant differences among treatments (P<0.05, Duncan’s method)

    表  1   各试验处理的白背飞虱和红腹缢管蚜初始数量

    Table  1   Initial number of white-backed planthopper and aphid in each experimental treatment

    处理
    Treatment
    蚜虫/头
    Aphid
    白背飞虱/头
    White-backed planthopper
    T1200
    T2155
    T31010
    T4515
    T5020
    T6(CK)00
    下载: 导出CSV

    表  2   各处理组水稻主要次生代谢物质成分及相对含量

    Table  2   The main secondary metabolite components and relative contents in rice of each treatment

    化合物名称
    Compound name
    分子式
    Molecular formula
    t保留/min
    Retention time
    相对含量1)/% Relative content
    T2T4T6
    2,3−二氢−3,5−二羟基−6−甲基−4H−吡喃−4−酮
    2,3-Dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one
    C6H8O4 5.664 0.67 3.71 13.21
    萘 Naphthalene C10H8 5.931 0.41 0.95 2.82
    2,4−二甲基苯甲醛 2,4-Dimethyl-benzaldehyde C9H10O 6.662 1.53 8.38 3.45
    3−乙酰氧基−3−羟基丙酸甲酯
    3-Acetoxy-3-hydroxypropionic acid-methyl ester
    C6H10O5 7.800 0 0 6.39
    1−硝基−1−脱氧−d−甘油−l−甘露庚醇
    1-Nitro-1-deoxy-d-glycero-l-mannoheptitol
    C7H15NO8 8.943 0 0 1.87
    十二烷醛 Dodecanal C12H24O 11.407 0.08 1.07 1.70
    5−羟甲基糠醛 5-Hydroxymethylfurfural C6H6O3 12.881 0.35 0 16.67
    2,4−二叔丁基苯酚 2,4-Di-tert-butylphenol C14H22O 14.001 5.38 28.59 2.70
    7,9−二叔丁基−1−氧杂螺(4,5)癸−6,9−二烯−2,8−二酮
    7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione
    C17H24O3 22.629 2.79 15.95 2.23
    二苯基砜 Diphenyl sulfone C12H10O2S 23.036 4.21 28.02 23.68
    9−十八烯酰胺 (Z)-9-Octadecenamide C18H35NO 30.918 0 0.73 1.30
    β−谷甾醇 Beta-sitosterol C29H50O 33.250 0.24 0.74 1.33
    3−[(三甲基硅)氧基]麦角甾−7−烯
    3-[(Trimethylsilyl)oxy]ergost-7-ene
    C31H56OSi 35.274 0 0 0.98
    1,6−双[甲基(三甲基)硅氧基]己烷
    1,6-Bis[methyl (trimethylene) silyloxy]hexane
    C14H30O2Si2 36.375 0 0 0.92
    (1R,4R)−4−二丙基−1−甲基环己基−2−烯醇
    (1R,4R)-4-Lsopropyl-1-methylcyclohex-2-enol
    C10H18O 38.780 0 0 0.90
    丙丁酚 Probucol C31H48O2S2 38.935 75.78 0 0
    3−羟基−(3β,5α,14β,20β,22β,25R)−螺甾−8−烯−11−酮
    3-hydroxy-(3β,5α,14β,20β,22β,25R)-Spirost-8-en-11-one
    C27H40O4 38.941 0 0 1.05
    7−溴−8−氯−2−甲基十八烷
    7-Bromo-8-chloro-2-methyloctadecane
    C19H38BrCl 41.439 1.12 0 1.53
    其他 Other 7.44 11.86 17.27
     1) T2:15头蚜虫 + 5头白背飞虱;T4:5头蚜虫 + 15头白背飞虱;T6(CK): 0头蚜虫 + 0头白背飞虱
     1) T2: 15 aphids + 5 white-backed planthoppers; T4: 5 aphids + 15 white-backed planthoppers; T6 (Control treatment): 0 aphid + 0 white-backed planthopper
    下载: 导出CSV
  • [1] 陈堑. 麦长管蚜与禾谷缢管蚜种间竞争的研究[D]. 杨凌: 西北农林科技大学, 2010.
    [2] 邱良妙, 刘其全, 陈秀琴, 等. 六斑月瓢虫对草地贪夜蛾低龄幼虫的捕食作用[J]. 中国生物防治学报, 2023, 39(2): 471-477.
    [3] 张晓明, 徐海云, 杨念婉, 等. 两种蚜小蜂对烟粉虱MED隐种的田间笼罩控效评价[J]. 植物保护学报, 2018, 45(6): 1281-1288.
    [4]

    KAPLAN I, DENNO R F. Interspecific interactions in phytophagous insects revisited: A quantitative assessment of competition theory[J]. Ecology Letters, 2007, 10(10): 977-994. doi: 10.1111/j.1461-0248.2007.01093.x

    [5] 刘晓飞, 陈强, 叶辉. 桔小实蝇与番石榴实蝇幼虫的种间竞争研究[J]. 环境昆虫学报, 2014, 36(1): 33-38.
    [6] 禹云超, 郅军锐, 曾广, 等. 入侵种西花蓟马与其它昆虫的种间竞争[J]. 环境昆虫学报, 2020, 42(1): 94-100.
    [7]

    ANDERSON P, SADEK M M, WÄCKERS F L. Root herbivory affects oviposition and feeding behavior of a foliar herbivore[J]. Behavioral Ecology, 2011, 22(6): 1272-1277. doi: 10.1093/beheco/arr124

    [8] 李建领. 寄主植物介导的枸杞瘿螨和枸杞木虱种间互作关系研究[D]. 北京: 北京协和医学院, 2019.
    [9]

    ZHAO H P, ZHANG X Y, XUE M, et al. Feeding of whitefly on tobacco decreases aphid performance via increased salicylate signaling[J]. PLoS One, 2015, 10(9): e0138584. doi: 10.1371/journal.pone.0138584.

    [10] 陈华才. 挥发物在水稻−二化螟、稻纵卷叶螟−二化螟绒茧蜂、螟蛉绒茧蜂相互关系中的作用[D]. 杭州: 浙江大学, 2002.
    [11] 张茂新, 凌冰, 庞雄飞. 非嗜食植物中的昆虫产卵驱避物及其利用[J]. 昆虫天敌, 2003, 25(1): 28-36.
    [12] 张钰明. 三氟苯嘧啶介导的核受体USP过表达对白背飞虱生殖发育的影响[D]. 雅安: 四川农业大学, 2022.
    [13] 段立珍, 汪建飞, 赵建荣. 比色法测定菠菜中草酸含量的条件研究[J]. 安徽农业科学, 2007, 35(3): 632-633.
    [14] 李明阳, 姚宇波, 徐翔, 等. 几种水稻对褐飞虱的抗性鉴定及抗性相关次生物质分析[J]. 应用昆虫学报, 2020, 57(6): 1375-1384.
    [15] 蔡文国, 吴卫, 邵金凤, 等. Folin-Ciocalteu法测定鱼腥草多酚的含量[J]. 食品科学, 2010, 31(14): 201-204.
    [16]

    PENG L, ZHAO Y, WANG H Y, et al. Comparative metabolomics of the interaction between rice and the brown planthopper[J]. Metabolomics, 2016, 12(8): 28746-28764.

    [17]

    DENNO R F, MCCLURE M S, OTT J R. Interspecific interactions in phytophagous insects: Competition reexamined and resurrected[J]. Annual Review of Entomology, 1995, 40: 297-331. doi: 10.1146/annurev.en.40.010195.001501

    [18] 石永秀, 上官超智, 王婷婷, 等. 黑豆蚜与豌豆蚜的种间竞争及密度效应[J]. 应用昆虫学报, 2022, 59(4): 862-873.
    [19] 吴佳昊, 黄波, 王德辉, 等. 光肩星天牛与星天牛种间竞争行为研究[J]. 环境昆虫学报, 2022, 44(3): 651-657. doi: 10.3969/j.issn.1674-0858.2022.03.16
    [20] 张祥, 刘长仲, 宋维虎. 不同CO2浓度条件下两种色型豌豆蚜的种群密度效应[J]. 甘肃农业大学学报, 2019, 54(3): 78-83+92.
    [21] 王健立, 李洪刚, 马志国, 等. 西花蓟马与烟蓟马在紫甘蓝上的种间竞争[J]. 中国农业科学, 2011, 44(24): 5006-5012. doi: 10.3864/j.issn.0578-1752.2011.24.005
    [22] 闫文静, 王俊刚, 张玉栋, 等. 棉长管蚜和棉蚜对受蚜虫取食胁迫棉花植株的选择行为[J]. 新疆农业科学, 2019, 56(1): 52-60.
    [23]

    PAPADOPOULOU G V, DAM N M. Mechanisms and ecological implications of plant-mediated interactions between belowground and aboveground insect herbivores[J]. Ecological Research, 2017, 32(1): 13-26. doi: 10.1007/s11284-016-1410-7

    [24]

    NGUYEN D, RIEU I, MARIANI C, et al. How plants handle multiple stresses: Hormonal interactions underlying responses to abiotic stress and insect herbivory[J]. Plant Molecular Biology, 2016, 91(6): 727-740. doi: 10.1007/s11103-016-0481-8

    [25] 纪祥龙, 刘长庆, 胡玲玲, 等. 桃蚜与萝卜蚜交互为害对寄主氮营养及蚜虫种间竞争的调节[J]. 中国农学通报, 2019, 35(4): 97-101.
    [26]

    SOLER R, BEZEMER T M, CORTESERO A M, et al. Impact of foliar herbivory on the development of a root-feeding insect and its parasitoid[J]. Oecologia, 2007, 152(2): 257-264. doi: 10.1007/s00442-006-0649-z

    [27] 马广民. 朱砂叶螨取食诱导的棉花防御反应及其对棉蚜发育的影响[D]. 北京: 中国农业大学, 2017.
    [28]

    WALLING L L. Avoiding effective defenses: Strategies employed by phloem-feeding insects[J]. Plant Physiology, 2008, 146(3): 859-866. doi: 10.1104/pp.107.113142

图(2)  /  表(2)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-07
  • 网络出版日期:  2023-11-12
  • 发布日期:  2023-07-06
  • 刊出日期:  2023-09-09

目录

Corresponding author: WANG Xuegui, wangxuegui@sicau.edu.cn

  1. On this Site
  2. On Google Scholar
  3. On PubMed

/

返回文章
返回