Dynamic changes of LAI, SPAD and LTR of late-season indica hybrid rice and their effects on grain yield traits
-
摘要:目的
研究晚籼杂交稻单株穗数、叶面积指数(Leaf area index,LAI)、叶片SPAD和透光率(Light transmittance rate,LTR)等指标的动态变化,进一步明确它们之间的相互关系及其对杂交稻产量和产量性状的影响,为杂交水稻育种和生产实践提供理论指导。
方法以华南地区广泛应用的5个三系不育系和6个恢复系配置杂交组合,于2021年晚季在广州进行27个杂交组合的随机区组试验,分析杂种光合参数的动态变化规律以及不同发育阶段各光合参数对产量及产量性状的影响及相关性。
结果杂种茎蘖数自移栽后直线上升,于移栽后25 d达分蘖高峰,始穗期(移栽后60 d)进入平稳期;杂种LAI自移栽后快速上升,于幼穗分化后期(移栽后50 d)后达最高值,之后进入回落期;叶片SPAD自移栽后逐步走低,生长发育前期组合间叶片SPAD差异不明显,进入灌浆结实期后存在显著(P < 0.05)或极显著(P < 0.01)差异;杂种群体LTR随发育进程呈逐步下降趋势。相关分析表明:分蘖盛期前(移栽后10~20 d)以及始穗期至灌浆期(移栽后60~76 d)的单株茎蘖数与杂种产量呈极显著正相关,增产作用主要通过增加单株实粒数实现;分蘖盛期至幼穗分化后期(移栽后25~50 d)的茎蘖数过多,增加了杂种群体的无效分蘖,造成杂种结实率下降和产量显著降低;分蘖前期(移栽后20 d)和始穗期(移栽后60 d)杂种LAI与产量呈极显著和显著正相关,相关系数分别为0.296和0.255,增产作用主要通过提高单株实粒数和千粒质量实现;灌浆期(移栽后76 d)的LAI与产量呈极显著负相关,相关系数为−0.312;生育前期(移栽后15~50 d)杂种SPAD对产量具有显著或极显著增产效应,而灌浆结实期(移栽后76~90 d)的SPAD则造成极显著减产;杂种群体LTR与产量呈极显著负相关,分蘖前期(移栽后20 d)和幼穗分化前期(移栽后38 d)的LTR与产量的相关系数分别为−0.282和−0.384。
结论‘天丰A’‘五丰A’‘广恢998’和‘广恢308’组合的前期分蘖力强,茎蘖数多,叶面积系数大,早生快发性好;‘扬泰A’‘广恢998’等组合前期LTR较低、后期较高,有利于植株光合作用和产量提高。在不同生长发育阶段,光合参数通过影响杂种的不同产量性状,实现对杂种产量的影响。通过光合参数与杂种产量回归方程的拟合,能较好地对杂交水稻早期产量进行预测。
Abstract:ObjectiveThe study aims to analyze the dynamic changes of panicles per plant, leaf area index (LAI), leaf SPAD, and light transmittance rate (LTR) in late-season indica hybrid rice, further clarify their interrelationships and their effects on yield and yield-related traits, and provide a theoretical guidance for hybrid rice breeding and production practice.
MethodFive three-line sterile lines and six restorer lines, which are widely used in South China, were used as hybrid combination parents, and a random block experiment of 27 hybrid combinations was conducted in Guangzhou in the late season of 2021. The dynamic changes of photosynthetic parameters, the effects of photosynthetic parameters at different growth and development stages on yield and yield-related traits, and their dynamic correlation were studied.
ResultThe number of hybrid tillers increased linearly after transplantation, peaked on 25 d after transplantation, and entered a stable period at the initial heading stage (60 d after transplanting). The hybrid LAI rapidly increased after transplanting, reaching its highest value at the late stage of spike differentiation (50 d after transplanting), and then entered a decline period. The leaf SPAD of hybrids gradually decreased after transplantation, and there was no significant difference at the early growth and development stage, while there was significant (P < 0.05) or extremely significant (P < 0.01) differences between the SPAD at the grain-filling stage. The LTR of hybrid populations decreased gradually with the development process. The correlation analysis showed that there was a highly significant positive correlation between the number of tillers per plant and hybrid yield at peak tillering stage (10−20 d after transplanting), initial heading stage (60 d after transplanting), and grain-filling stage (76 d after transplanting). The yield increase effect was mainly achieved by increasing the number of filled grains per plant. The excessive number of tillers during peak tillering stage to the late stage of spike differentiation (25−50 d after transplanting) increased the ineffective tillers, resulted in a decrease in hybrid seed setting rate and a significant decrease in yield. The hybrid LAI value at tilering stage (20 d after transplanting) and initial heading stage (60 d after transplanting) showed a significant or extremely significant positive correlation with yield, with the correlation coefficients of 0.296 and 0.255, respectively. The yield increase effect were mainly achieved by increasing the number of filled grains per plant and the weight of 1000-grain. The LAI value at grain-filling stage (76 d after transplanting) showed a highly significant negative correlation with yield with the correlation coefficient of −0.312. The SPAD of hybrids at the early stage of growth (15−50 d after transplanting) had a significant or extremely significant increase in yield, while the SPAD value in the later stage (76−90 d after transplanting) caused a very significant decrease in yield. The LTR of hybrid populations showed extremely significant negative correlation with their yield, the correlation coefficients between LTR and yield at tillering stage (20 d after transplanting), and early stage of spike differentiation (38 d after transplanting) were −0.282 and −0.384, respectively.
ConclusionThe combinations derived from ‘Tianfeng-A’, ‘Wufeng-A’, ‘R998’ and ‘R308’ have strong early tillering ability, a large number of stem tillers, a large LAI, and good early growth and rapid development. The combinations of ‘Yangtai-A’ and ‘R998’ show a lower LTR in the early growing stage and a higher LTR in the later stage, which is much beneficial for plant photosynthesis and yield improvement. The yield of hybrids is affected by photosynthetic parameters at different stages of growth and development, through influencing the different yield traits. By fitting the regression equation between photosynthetic parameters and hybrid yield, the yield of hybrids can be well predicted at early growing stage.
-
-
表 1 不同亲本配置杂交组合在不同移栽后天数的叶面积指数动态变化1)
Table 1 Dynamic changes of leaf area indexes of hybrids derived from different parents on different days after transplanting
亲本 Parent 15 d 20 d 30 d 43 d 50 d 60 d 76 d 90 d 天丰A Tianfeng-A 0.72±0.28a 1.27±0.20a 3.24±0.51b 4.85±0.70ab 5.52±0.75ab 5.37±0.64a 3.78±0.72ab 3.15±0.54ab 五丰A Wufeng-A 0.76±0.24a 1.24±0.18ab 3.19±0.58b 4.74±0.70ab 5.48±0.73ab 5.15±0.72abc 3.31±0.55bc 2.83±0.54abc 荣丰A Rongfeng-A 0.76±0.23a 1.17±0.28ab 3.14±0.52bc 4.71±0.77ab 5.16±0.66b 4.82±0.63abc 3.26±0.57bc 2.58±0.48c 泰丰A Taifeng-A 0.68±0.27a 1.12±0.22ab 3.27±0.43ab 4.72±0.39ab 4.94±0.62b 4.88±0.38abc 3.32±0.46bc 2.72±0.43bc 扬泰A Yangtai-A 0.82±0.34a 1.26±0.20ab 2.84±0.38bc 4.54±0.42b 4.94±0.48b 4.72±0.53c 3.22±0.53bc 2.63±0.55c 广恢998 R998 0.74±0.25a 1.25±0.24ab 3.27±0.43ab 4.69±0.72ab 5.12±0.54b 4.95±0.57abc 3.93±0.52bc 2.64±0.40c 广恢122 R122 0.70±0.26a 1.05±0.26b 2.71±0.32c 4.50±0.67b 5.03±0.78b 5.14±0.77abc 3.34±0.50bc 2.92±0.49abc 广恢308 R308 0.76±0.29a 1.19±0.21ab 3.07±0.59bc 4.49±0.74b 5.28±0.52b 4.72±0.50c 3.31±0.54bc 2.85±0.54abc 华占 Huazhan 0.72±0.32a 1.15±0.24ab 2.87±0.52bc 4.35±0.77b 5.16±0.35b 4.75±0.46bc 3.08±0.40c 2.48±0.45c 桂99 Gui 99 0.69±0.23a 1.10±0.20ab 3.24±0.47b 4.54±0.53b 5.48±0.82ab 4.95±0.67abc 3.47±0.87ab 2.78±0.73bc 明恢63 Minghui 63 0.73±0.23a 1.29±0.21a 3.69±0.47a 5.28±0.73a 5.93±0.73a 5.34±0.74ab 3.93±0.41a 3.26±0.27a 1) 同列数据后的不同小写字母表示不同亲本配置杂交组合间差异显著(P<0.05,Duncan’s法)
1) Different lowercase letters in the same column indicate significant differences among different hybrids derived from different parents (P<0.05, Duncan’s method)表 2 不同亲本配置杂交组合在不同移栽后天数的SPAD动态变化1)
Table 2 Dynamic changes of SPAD of hybrids derived from different parents on different days after transplanting
亲本 Parent 15 d 20 d 30 d 43 d 50 d 60 d 76 d 90 d 天丰A Tianfeng-A 43.08±1.27abc 41.84±1.71a 39.81±1.99a 38.57±1.67a 40.54±1.70a 41.28±1.53ab 29.84±5.50abc 18.39±4.39ab 五丰A Wufeng-A 43.75±1.17ab 41.40±1.90a 38.82±2.26a 38.21±1.52a 39.68±2.25a 39.83±1.99bcd 26.52±4.37bcd 14.69±3.61bc 荣丰A Rongfeng-A 43.41±1.27abc 42.53±1.71a 39.89±1.74a 39.12±2.09a 40.52±1.86a 41.08±1.12abc 25.36±5.03cd 16.35±7.86abc 泰丰A Taifeng-A 43.73±0.99ab 42.10±2.66a 40.63±1.99a 39.74±0.98a 40.78±0.99a 40.72±1.12abc 26.31±3.56bcd 16.91±3.18abc 扬泰A Yangtai-A 43.78±1.76ab 42.48±1.28a 39.30±1.86a 39.47±1.03a 40.69±1.21a 40.64±2.11bcd 26.80±4.18bcd 16.83±2.19abc 广恢998 R998 43.35±1.28abc 41.23±1.84a 40.18±2.14a 39.01±1.80a 40.73±1.18a 41.23±1.09ab 28.11±4.60bcd 16.52±3.55abc 广恢122 R122 44.50±1.23a 42.83±1.47a 39.98±2.04a 39.15±1.51a 40.51±1.49a 40.83±1.74abc 29.28±4.94abc 17.48±4.04ab 广恢308 R308 43.23±1.37abc 42.05±1.46a 40.06±2.06a 39.53±2.04a 40.71±0.61a 39.79±1.94bcd 22.74±2.64d 14.98±9.30bc 华占 Huazhan 43.70±1.08ab 41.99±1.30a 39.46±2.08a 38.76±2.69a 39.72±2.06a 39.35±1.94d 23.09±5.47d 12.44±3.57c 桂99 Gui 99 43.16±1.48bc 42.25±1.88a 39.78±1.99a 39.97±1.11a 39.67±2.12a 41.53±1.47a 33.26±5.50a 20.91±4.42a 明恢63 Minghui 63 42.18±1.47c 41.24±2.67a 39.21±2.13a 36.41±1.89b 36.59±4.38b 39.59±1.36cd 29.94±4.55ab 20.35±3.21a 1) 同列数据后的不同小写字母表示不同亲本配置杂交组合间差异显著(P<0.05,Duncan’s法)
1) Different lowercase letters in the same column indicate significant differences among different hybrids derived from different parents (P<0.05, Duncan’s method)表 3 不同亲本配置杂交组合的生育期及产量性状差异性分析1)
Table 3 Differences in growth stage and yield-related traits of hybrids from different parents
亲本
Parent生育期/d
Growth stage单株穗数
Tillers per plant单株实粒数
No. of filled grains结实率/%
Seed setting ratio千粒质量/g
1000-grain weight产量/(t·hm−2)
Grain yield天丰A Tianfeng-A 102.8±0.46a 7.42±0.14bc 874.3±26.6de 64.35±0.72e 24.69±1.85a 6.54±0.11bc 五丰A Wufeng-A 97.94±0.55c 7.89±0.16bc 1079.5±31.9a 74.44±1.18ab 22.64±1.38b 7.27±0.15a 荣丰A Rongfeng-A 98.78±0.45bc 7.24±0.13c 894.1±22.9cde 73.11±0.92abc 24.89±1.49a 6.76±0.13abc 泰丰A Taifeng-A 98.67±0.56bc 8.78±0.19a 981.5±25.7abc 69.45±1.06cd 22.22±0.64c 6.53±0.20bc 扬泰A Yangtai-A 95.17±0.60d 7.88±0.19bc 990.2±27.8abc 76.12±1.58a 24.36±0.49a 7.20±0.22a 广恢998 R998 99.93±0.71b 7.97±0.19b 992.8±29.3abc 71.84±1.09abc 22.81±1.59cd 6.91±0.16abc 广恢122 R122 98.93±0.63bc 7.95±0.16b 952.9±25.8bcd 70.50±1.40bcd 23.67±1.09bc 6.78±0.16abc 广恢308 R308 97.78±1.05c 7.28±0.22c 1034.2±33.6ab 73.09±2.07abc 22.14±1.70de 7.08±0.14ab 华占 Huazhan 97.67±0.96c 7.58±0.14bc 1051.2±41.3ab 74.47±2.42ab 21.29±1.86e 7.06±0.18ab 桂99 Gui 99 100.80±0.89ab 7.57±0.26bc 892.9±47.5cde 68.34±2.09cde 24.64±1.17b 6.82±0.27abc 明恢63 Minghui 63 104.20±0.46a 7.26±0.27c 789.1±32.8e 67.73±1.63de 26.91±1.37a 6.33±0.21c 1)同列数据后的不同小写字母表示不同亲本配置杂交组合间差异显著(P<0.05,Duncan’s法)
1) Different lowercase letters in the same column indicate significant differences among different hybrids derived from different parents (P<0.05, Duncan’s method)表 4 杂交后代在不同移栽后天数光合参数与产量性状的相关性分析1)
Table 4 Correlation between photosynthetic parameters and yield-related traits of hybrid combinations on different days after transplanting
光合参数
Photosynthetic parameter10 d 15 d 20 d 25 d 30 d 43 d 50 d 60 d 76 d 90 d 产量 Grain yield TPP 0.368** 0.483** 0.388** −0.030 −0.012 −0.110 −0.261* 0.407** 0.531** — LAI — 0.094 0.296** — −0.137 0.191 0.116 0.255* −0.312** −0.169 SPAD — 0.294** −0.032 — −0.202 0.278* 0.361** 0.057 −0.339** −0.425** 单株实粒数 No. of filled grains per plant TPP 0.258* 0.272* 0.267* −0.018 0.013 −0.044 −0.099 0.524** 0.578** — LAI — 0.025 0.108 — −0.272* −0.067 −0.025 0.063 −0.335** −0.217* SPAD — 0.330** −0.079 — −0.169 0.291** 0.370** −0.076 −0.401** −0.485** 结实率 Seed setting ratio TPP −0.023 0.057 −0.071 −0.150 −0.145 −0.168 −0.324** −0.059 0.053 — LAI — 0.122 0.038 — −0.120 −0.089 −0.081 −0.280** −0.416** −0.443** SPAD — 0.043 0.005 — −0.078 0.108 0.139 0.244* −0.453** −0.337** 千粒质量 1000-grain weight TPP 0.030 0.152 0.049 0.059 −0.002 0.013 −0.069 −0.344** −0.376** — LAI — 0.094 0.224* — 0.301** 0.409** 0.277* 0.288** 0.278* 0.244* SPAD — −0.246* 0.025 — −0.100 −0.164 −0.198 0.164 0.300** 0.342** 1) TPP:单株茎蘖数,LAI:叶面积指数;“*”“**”分别表示在P < 0.05和P < 0.01水平相关性显著(Pearson法);“—”表示未获得数据
1) TPP: Tillers per plant, LAI: Leaf area index; “*” and “**” indicate significant correlations at P < 0.05 and P < 0.01 levels respectively (Pearson method); “—” indicates no available data表 5 杂种后代不同移栽后天数透光率与产量性状的相关性1)
Table 5 Correlation between light transmittance rate and yield traits of hybrid progenies on different days after transplanting
t移栽后/d
Days afler transplanting单株实粒数
No. of filled grains per plant结实率
Seed setting ratio千粒质量
1000-grain weight产量
Grain yield20 −0.128 −0.079 −0.269* −0.384** 38 −0.196 −0.077 −0.096 −0.282** 68 0.034 0.295** −0.341** −0.195 1)“*”“**”分别表示在P < 0.05和P < 0.01水平差异显著(Pearson法)
1) “*” and “**” indicate significant differences at P < 0.05 and P < 0.01 levels respectively (Pearson method)表 6 不同移栽天数光合参数间的动态相关性分析1)
Table 6 Dynamic correlation between photosynthetic parameters on different days after transplanting
移栽天数/
d光合参数
Photosynthetic parameterSPAD 单株茎孽数(TPP)
Tillers per plant透光率(LTR)
Light transmittance rate20 叶面积指数(LAI)
Leaf area index−0.054 0.456** −0.413** SPAD 1 −0.359** −0.033 TPP 1 −0.485** 30 LAI 0.253* 0.426** −0.340** SPAD 1 0.212 0.082 TPP 1 −0.300** 43 LAI 0.010 0.224* −0.452** SPAD 1 −0.061 −0.301** TPP 1 −0.195 50 LAI −0.130 0.119 — SPAD 1 0.188 — TPP 1 — 60 LAI −0.059 0.269* −0.643** SPAD 1 0.183 −0.030 TPP 1 −0.300** 76 LAI 0.378** −0.130 −0.491** SPAD 1 −0.427* −0.220* TPP 1 −0.166 1)“*”“**”分别表示在P < 0.05和P < 0.01水平显著相关(Pearson法);“—”表示未获得数据
1) “*” and “**” indicate significant correlations at P < 0.05 and P < 0.01 levels respectively (Pearson method); “—” indicates no available data -
[1] 张立新, 彭连伟, 林荣呈, 等. 光合作用研究进展与前景[J]. 中国基础科学, 2016, 18(1): 13-20. doi: 10.3969/j.issn.1009-2412.2016.01.003 [2] 林荣呈, 杨文强, 王柏臣. 等. 光合作用研究若干前沿进展与展望[J]. 中国科学, 2021, 51(10): 1376-1384. [3] 袁隆平. 发展超级杂交水稻保障国家粮食安全[J]. 杂交水稻, 2015, 30(3): 1-2. [4] 屠曾平, 林秀珍, 蔡惟涓, 等. 水稻高光效育种的再探索[J]. 植物学报, 1995, 37(8): 641-651. [5] 屠曾平. 水稻光合特性研究与高光效育种[J]. 中国农业科学, 1997, 30(3): 28-35. [6] MARENCO R A, ANTEZANA-VERA S A, NASCIMENTO H C S. Relationship between specific leaf area, leaf thickness, leaf water content and SPAD-502 readings in six amazonian tree species[J]. Photosynthetica, 2009, 47(2): 184-190. doi: 10.1007/s11099-009-0031-6
[7] 李媛媛, 常庆瑞, 刘秀英, 等. 基于高光谱和BP神经网络的玉米叶片SPAD值遥感估算[J]. 农业工程学报, 2016, 32(16): 135-142. doi: 10.11975/j.issn.1002-6819.2016.16.019 [8] 李杰, 冯跃华, 麻井彪, 等. 2个超级杂交水稻剑叶主脉两侧SPAD值的差异表现[J]. 核农学报, 2017, 31(4): 777-786. doi: 10.11869/j.issn.100-8551.2017.04.0777 [9] UDDLING J, GELANG-ALFREDSSON J, PIIKKI K, et al. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings[J]. Photosynthesis Research, 2007, 91(1): 37-46. doi: 10.1007/s11120-006-9077-5
[10] LEÓN A P, VIÑA S Z, FREZZA D. Estimation of chlorophyll contents by correlations between SPAD-502 meter and chromameter in butterhead lettuce[J]. Communications in Soil Science and Plant Analysis, 2007, 38(19): 2877-2885.
[11] 李杰, 冯跃华, 王旭, 等. 不同地力和施氮水平下水稻叶片SPAD值及产量的分析[J]. 中国稻米, 2017, 23(1): 26-30. doi: 10.3969/j.issn.1006-8082.2017.01.005 [12] YANG W H, PENG S B, HUANG J L, et al. Using leaf color charts to estimate leaf nitrogen status of rice[J]. Agronomy Journal, 2003, 95(1): 212-217. doi: 10.2134/agronj2003.2120
[13] YANG H, YANG J, LV Y, et al. SPAD values and nitrogen nutrition index for the evaluation of rice nitrogen status[J]. Plant Production Science, 2014, 17(1): 81-92. doi: 10.1626/pps.17.81
[14] PENG S, GARCIA F V, LAZA R C, et al. Increased N-use efficiency using a chlorophyll meter on high-yielding irrigated rice[J]. Field Crops Research, 1996, 47(2/3): 243-252.
[15] HAWKINS J A, SAWYER J E, BARKER D W, et al. Using relative chlorophyll meter values to determine nitrogen application rates for corn[J]. Agronomy Journal, 2007, 99(4): 1034-1040. doi: 10.2134/agronj2006.0309
[16] 赵士诚, 何萍, 仇少君, 等. 相对SPAD值用于不同品种夏玉米氮肥管理的研究[J]. 植物营养与肥料学报, 2011, 17(5): 1091-1098. doi: 10.11674/zwyf.2011.1059 [17] 朱寒, 时元智, 洪大林, 等. 水肥调控对水稻叶片SPAD值与产量的影响[J]. 中国农村水利水电, 2019(11): 50-53. doi: 10.3969/j.issn.1007-2284.2019.11.010 [18] RAMESH K, CHANDRASEKARAN B, BALASUBRAMANIAN T N, et al. Chlorophyll dynamics in rice (Oryza sativa) before and after flowering based on SPAD meter monitoring and its relation with grain yield[J]. Journal of Agronomy and Crop Science, 2002, 188(2): 102-105. doi: 10.1046/j.1439-037X.2002.00532.x
[19] 于亚利, 贾文凯, 王春宏, 等. 春玉米叶片SPAD值与氮含量及产量的相关性研究[J]. 玉米科学, 2011, 19(4): 89-92. [20] MONOSTORI I, ÁRENDÁS T, HOFFMAN B, et al. Relationship between SPAD value and grain yield can be affected by cultivar, environment and soil nitrogen content in wheat[J]. Euphytica, 2016, 211(1): 103-112. doi: 10.1007/s10681-016-1741-z
[21] 欧阳杰, 王楚桃, 何光华, 等. 水稻灌浆中后期功能叶中叶绿素含量及其变化趋势与谷物产量关系研究[J]. 西南农业学报, 2012, 25(4): 1201-1204. doi: 10.3969/j.issn.1001-4829.2012.04.015 [22] LE BAIL M, JEUFFROY M H, BOUCHARD C, et al. Is it possible to forecast the grain quality and yield of different varieties of winter wheat from Minolta SPAD meter measurements?[J]. European Journal of Agronomy, 2005, 23(4): 379-391. doi: 10.1016/j.eja.2005.02.003
[23] 贺帆, 黄见良, 崔克辉, 等. 实时实地氮肥管理对水稻产量和稻米品质的影响[J]. 中国农业科学, 2007, 40(1): 123-132. doi: 10.3321/j.issn:0578-1752.2007.01.017 [24] 王志东, 陈宜波, 龚蓉, 等. 优质籼稻剑叶SPAD值与稻米品质相关性研究[J]. 中国水稻科学, 2021, 35(1): 89-97. [25] 张丽, 张中东, 陶宏斌, 等. 利用玉米叶片SPAD值预测子粒蛋白质含量分析[J]. 玉米科学, 2014, 22(6): 74-79. [26] 鲍巨松, 薛吉全, 杨成书, 等. 不同株型玉米叶面积系数和群体受光态势与产量的关系[J]. 玉米科学, 1993, 1(3): 50-54. [27] 孙锐, 朱平, 王志敏, 等. 春玉米叶面积系数动态特征的密度效应[J]. 作物学报, 2009, 35(6): 1097-1105. [28] 黄仲青. 杂交水稻光合性能的探讨[J]. 安徽农学院学报, 1980(1): 8-13. [29] DE DATTA S K, 唐建军. 分孽力和叶面积系数对产量的影响[J]. 耕作与栽培, 1985(2): 61-62. [30] 黄耀祥, 张旭, 林道宣, 等. 水稻不同类型品种产量构成因素及其群体内透光率差异的研究[J]. 广东农业科学, 1986, 13(4): 6-8. [31] 丁颖. 中国水稻栽培学[M]. 北京: 农业出版社, 1961. [32] 王丰, 廖亦龙, 柳武革, 等. 籼型杂交稻恢复系动态株型与光能利用率评价[J]. 中国水稻科学, 2021, 35(2): 141-154. [33] 郭晓彦, 陈雪青, 史鹏飞, 等. 施用新型尿素水稻叶片SPAD值变化特征及产量分析[J]. 天津农业科学, 2018, 24(5): 51-54. doi: 10.3969/j.issn.1006-6500.2018.05.013 [34] WANG Y W, XU C, LV C F. Chlorophyll a fluoresenecence analysis of high-yield rice (Oryza sativa L. ) LYPJ during leaf senescence[J]. Photosynthetica, 2016, 54(3): 422-429. doi: 10.1007/s11099-016-0185-y
[35] 翟荣荣, 冯跃, 曹立勇, 等. 水稻叶片衰老研究进展[J]. 中国稻米, 2011, 17(1): 7-12. doi: 10.3969/j.issn.1006-8082.2011.01.003 [36] 李可, 禹晴, 徐云姬, 等. 水稻叶片早衰突变体的农艺与生理性状研究进展[J]. 中国水稻科学, 2020, 34(2): 104-114. [37] 杨行海, 吴艳艳, 陈辉云, 等. 广西早籼早熟杂交水稻产量与主要经济性状的分析[J]. 种子, 2011, 30(6): 85-87. doi: 10.3969/j.issn.1001-4705.2011.06.023 [38] 杨振玉, 张忠旭, 高勇, 等. 偏高秆偏大穗粳爪交组合的选育路线、高产生理基础及其栽培体系[J]. 杂交水稻, 1996(6): 5-7. [39] 黄耀祥, 陈顺佳, 陈金灿, 等. 水稻丛化育种[J]. 广东农业科学, 1983, 10(1): 1-6. [40] 段红霞, 夏桂龙, 欧阳建平, 等. 赣东北不同施肥模式下晚稻剑叶的SPAD值变化及其与产量的关系[J]. 安徽农业科学, 2016, 44(6): 16-18. doi: 10.3969/j.issn.0517-6611.2016.06.005 [41] 黄影华, 张华杰, 陈秋玉, 等. 不同生育期水稻叶片SPAD值与产量相关性研究[J]. 仲恺农业工程学院学报, 2021, 34(1): 1-7. doi: 10.3969/j.issn.1674-5663.2021.01.001 [42] 刘彦卓, 黄农荣, 黄秋妹, 等. 晚季不同类型高产水稻品种光合速率和叶绿素含量变化研究初报[J]. 广东农业科学, 2000, 27(1): 2-4. doi: 10.3969/j.issn.1004-874X.2000.01.001