• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

蔗糖对柱花草根尖类边缘细胞形成及耐铝功能的影响

郭雪琼, 林雁, 蔡泽菲, 陈倩倩, 田江, 陆星, 梁翠月

郭雪琼, 林雁, 蔡泽菲, 等. 蔗糖对柱花草根尖类边缘细胞形成及耐铝功能的影响[J]. 华南农业大学学报, 2024, 45(3): 329-335. DOI: 10.7671/j.issn.1001-411X.202304015
引用本文: 郭雪琼, 林雁, 蔡泽菲, 等. 蔗糖对柱花草根尖类边缘细胞形成及耐铝功能的影响[J]. 华南农业大学学报, 2024, 45(3): 329-335. DOI: 10.7671/j.issn.1001-411X.202304015
GUO Xueqiong, LIN Yan, CAI Zefei, et al. Effects of sucrose on the formation of root border-like cells and aluminum tolerance in Stylosanthes guianensis[J]. Journal of South China Agricultural University, 2024, 45(3): 329-335. DOI: 10.7671/j.issn.1001-411X.202304015
Citation: GUO Xueqiong, LIN Yan, CAI Zefei, et al. Effects of sucrose on the formation of root border-like cells and aluminum tolerance in Stylosanthes guianensis[J]. Journal of South China Agricultural University, 2024, 45(3): 329-335. DOI: 10.7671/j.issn.1001-411X.202304015

蔗糖对柱花草根尖类边缘细胞形成及耐铝功能的影响

基金项目: 国家自然科学基金(32172659)
详细信息
    作者简介:

    郭雪琼,硕士研究生,主要从事柱花草根系耐铝机制研究,E-mail: 3013329605@qq.com

    通讯作者:

    梁翠月,研究员,博士,主要从事豆科作物根际养分调控及其对酸性土壤胁迫适应的机制研究,E-mail: liangcy@scau.edu.cn

  • 中图分类号: S59

Effects of sucrose on the formation of root border-like cells and aluminum tolerance in Stylosanthes guianensis

  • 摘要:
    目的 

    根尖边缘细胞在植物对生物与非生物胁迫适应中起重要作用,但其形成的生理机制仍需进一步探究。本研究旨在探究蔗糖对柱花草Stylosanthes guianensis根尖类边缘细胞的形成及其铝毒耐受能力的影响。

    方法 

    以圭亚那柱花草‘热研2号’为试验材料,采用外源添加糖源的方法,分析柱花草根尖类边缘细胞的形态特征,研究蔗糖对柱花草幼苗耐铝能力的影响。

    结果 

    蔗糖和葡萄糖均能明显促进柱花草根尖类边缘细胞的形成。添加蔗糖处理的根尖类边缘细胞鲜质量、长度和宽度与无糖处理相比分别增加50%、14%和62%,细胞层数增加3~4层。保留根尖类边缘细胞的柱花草具有较强的耐铝能力;与无糖处理相比,蔗糖处理后形成的根尖类边缘细胞具有更强的吸铝能力,根尖铝累积明显减少,根系相对生长速率增加45%。

    结论 

    蔗糖可以促进柱花草根尖类边缘细胞的形成,增强铝处理下根尖类边缘细胞对柱花草的保护作用。本研究结果为进一步探究柱花草根尖类边缘细胞发育及其适应铝毒胁迫的机制提供了理论依据。

    Abstract:
    Objective 

    Root border cells (BCs) play important roles in plant resistance to biotic and abiotic stresses. However, the physiological mechanisms of BCs formation remains further exploration. This study was aimed to investigate the effects of sucrose on root border-like cells (BLCs) formation and aluminum (Al) tolerance function of stylo (Stylosanthes guianensis).

    Method 

    Genotype ‘Reyan No.2’ was used as plant material, exogenous carbohydrate sources were applied in the growth medium for treatments, and the morphology of stylo BLCs and the stylo Al tolerance were investigated.

    Result 

    Both sucrose and glucose obviously promoted stylo BLCs formation. Compared with sugar-free, sucrose increased the fresh weight, length and width of stylo BLCs by 50%, 14% and 62% respectively, and the number of cell layers was also higher as indicated by 3−4 layers more. The stylo retaining BLCs had strong aluminum resistance. Moreover, compared with sugar-free control, BLCs induced by sucrose showed stronger Al absorption ability, this subsequently enhanced the stylo Al resistance as indicated by the lower root tip Al accumulation and higher root relative growth rate, which increased by 45%.

    Conclusion 

    Sucrose can promote BLCs formation in stylo, and subsequently enhance the stylo Al resistance. These results expand the knowledge on the development of BLCs and their function in stylo Al resistance.

  • 图  1   不同糖源处理对柱花草主根生长的影响

    Figure  1.   Effects of different carbohydrate sources on the growth of Stylosanthes guianensis primary root

    图  2   不同糖源处理下柱花草的BLCs形态

    Figure  2.   Phenotypes of Stylosanthes guianensis BLCs treated with different carbohydrate sources

    图  3   不同糖源处理对柱花草BLCs生长的影响

    各小图中柱子上方的不同小写字母表示处理间差异显著(P < 0.05,Duncan’s法)

    Figure  3.   Effects of different carbohydrate sources on the growth of Stylosanthes guianensis BLCs

    Different lowercase letters on bars in each figure indicate significant differences among different treatments (P < 0.05, Duncan’s method)

    图  4   蔗糖对柱花草主根生长的影响

    Figure  4.   Effects of sucrose on the growth of Stylosanthes guianensis primary root

    图  5   蔗糖处理下不同萌发时间柱花草BLCs的表型

    Figure  5.   Phenotypes of Stylosanthes guianensis BLCs treated with sucrose at different germination time

    图  6   蔗糖处理对柱花草BLCs形成的影响

    “*”和“**”分别表示蔗糖和无糖处理在P < 0.05和P < 0.01水平差异显著(t检验)

    Figure  6.   Effect of sucrose on the formation of BLCs in Stylosanthes guianensis

    “*” and “**” indicate significant differences at P < 0.05 and P < 0.01 levels respectively between sucrose and sugar-free treatments (t test)

    图  7   蔗糖处理的柱花草根尖1 mm处BLCs横切图

    Figure  7.   BLCs cross section at 1 mm of root tip of Stylosanthes guianensis in sucrose treatment

    图  8   蔗糖处理对柱花草BLCs形态特征的影响

    各小图中,“*”和“**”分别表示蔗糖和无糖处理在P < 0.05和P < 0.01水平差异显著(t检验)

    Figure  8.   Effect of sucrose on the morphological characteristics of Stylosanthes guianensis BLCs

    “*” and “**” in each figure indicate significant differences at P < 0.05 and P < 0.01 levels respectively between sucrose and sugar-free treatments (t test)

    图  9   BLCs对柱花草根尖铝积累的影响

    Figure  9.   Effect of BLCs on aluminum accumulation of Stylosanthes guianensis root tip

    图  10   铝处理对柱花草根相对生长速率的影响

    “***”表示蔗糖和无糖处理在P < 0.001水平差异显著(t检验)

    Figure  10.   Effect of aluminum treatment on the relative growth rate of Stylosanthes guianensis root

    “***” indicates significant difference at P < 0.001 level between sucrose and sugar-free treatments (t test)

  • [1]

    ROPITAUX M, BERNARD S, SCHAPMAN D, et al. Root border cells and mucilage secretions of soybean, Glycine Max (Merr) L.: Characterization and role in interactions with the oomycete Phytophthora Parasitica[J]. Cells, 2020, 9(10): 2215.

    [2] 杨小环, 杨文秀, 孙亮亮, 等. 外源NO缓解紫茎泽兰提取物对黄瓜根边缘细胞的化感胁迫[J]. 应用生态学报, 2018, 29(1): 223-230. doi: 10.13287/j.1001-9332.201801.005
    [3]

    XIAO Z, LIANG Y. Silicon prevents aluminum from entering root tip by promoting formation of root border cells in rice[J]. Plant Physiology and Biochemistry, 2022, 175: 12-22.

    [4]

    KARVE R, SUÁREZ-ROMÁN F, IYER-PASCUZZI A S. The transcription factor NIN-LIKE PROTEIN7 controls border-like cell release[J]. Plant Physiology, 2016, 171(3): 2101-2111. doi: 10.1104/pp.16.00453

    [5]

    WEILLER F, MOORE J P, YOUNG P, et al. The Brassicaceae species Heliophila coronopifolia produces root border-like cells that protect the root tip and secrete defensin peptides[J]. Annals of Botany, 2017, 119(5): 803-813.

    [6]

    ENDO I, TANGE T, OSAWA H. A cell-type-specific defect in border cell formation in the Acacia mangium root cap developing an extraordinary sheath of sloughed-off cells[J]. Annals of Botany, 2011, 108(2): 279-290. doi: 10.1093/aob/mcr139

    [7]

    HAWES M C, BRIGHAM L A, WEN F, et al. Function of root border cells in plant health: Pioneers in the rhizosphere[J]. Annual Review of Phytopathology, 1998, 36: 311-327.

    [8]

    DRIOUICH A, FOLLET-GUEYE M L, VICRÉ-GIBOUIN M, et al. Root border cells and secretions as critical elements in plant host defense[J]. Current Opinion in Plant Biology, 2013, 16(4): 489-495. doi: 10.1016/j.pbi.2013.06.010

    [9]

    WATSON B S, BEDAIR M F, URBANCZYK-WOCHNIAK E, et al. Integrated metabolomics and transcriptomics reveal enhanced specialized metabolism in Medicago truncatula root border cells[J]. Plant Physiology, 2015, 167(4): 1699-1716. doi: 10.1104/pp.114.253054

    [10]

    TAIZ L, ZEIGER E, MØLLER I M, et al. Plant physiology and development[M]. 6th ed. Sunderland, MA: Sinauer Associates, Incorporated, 2015.

    [11]

    OSORIO S, RUAN Y L, FERNIE A R. An update on source-to-sink carbon partitioning in tomato[J]. Frontiers in Plant Science, 2014, 5: 516.

    [12]

    ALUKO O O, LI C, WANG Q, et al. Sucrose utilization for improved crop yields: A review article[J]. International Journal of Molecular Sciences, 2021, 22(9): 4704.

    [13]

    FENG Y, LI H, ZHANG X, et al. Effects of cadmium stress on root and root border cells of some vegetable species with different types of root meristem[J]. Life, 2022, 12(9): 1401.

    [14]

    YANG J, QU M, FANG J, et al. Alkali-soluble pectin is the primary target of aluminum immobilization in root border cells of pea (Pisum sativum)[J]. Frontiers in Plant Science, 2016, 7: 1297.

    [15]

    NAGAYAMA T, NAKAMURA A, YAMAJI N, et al. Changes in the distribution of pectin in root border cells under aluminum stress[J]. Frontiers in Plant Science, 2019, 10: 1216.

    [16] 李舟阳, 陆文玲, 钱旺, 等. 杉木根边缘细胞生物学特性及其对铝胁迫的响应[J]. 林业科学, 2022, 58(7): 73-81. doi: 10.11707/j.1001-7488.20220708
    [17]

    SUN L, LIANG C, CHEN Z, et al. Superior aluminium (Al) tolerance of Stylosanthes is achieved mainly by malate synthesis through an Al-enhanced malic enzyme, SgME1[J]. New Phytologist, 2014, 202(1): 209-219. doi: 10.1111/nph.12629

    [18]

    CHEN Z, SUN L, LIU P, et al. Malate synthesis and secretion mediated by a manganese-enhanced malate dehydrogenase confers superior manganese tolerance in Stylosanthes guianensis[J]. Plant Physiology, 2015, 167(1): 176-188.

    [19]

    CHEN Z, SONG J, LI X, et al. Physiological responses and transcriptomic changes reveal the mechanisms underlying adaptation of Stylosanthes guianensis to phosphorus deficiency[J]. BMC Plant Biology, 2021, 21(1): 466. doi: 10.1186/s12870-021-03249-2

    [20] 蔡泽菲. 柱花草根尖类边缘细胞形成的生理和分子机制初探[D]. 广州: 华南农业大学, 2018.
    [21] 林雁. SgPG1在柱花草根尖类边缘细胞形成及其耐铝机制中的功能研究[D]. 广州: 华南农业大学, 2022.
    [22]

    HAWES M C, GUNAWARDENA U, MIYASAKA S, et al. The role of root border cells in plant defense[J]. Trends in Plant Science, 2000, 5(3): 128-133. doi: 10.1016/S1360-1385(00)01556-9

    [23]

    NINMANONT P, WONGCHAI C, PFEIFFER W, et al. Salt stress of two rice varieties: Root border cell response and multi-logistic quantification[J]. Protoplasma, 2021, 258(5): 1119-1131. doi: 10.1007/s00709-021-01629-x

    [24]

    CURLANGO-RIVERA G, HUSKEY D A, MOSTAFA A, et al. Intraspecies variation in cotton border cell production: Rhizosphere microbiome implications[J]. American Journal of Botany, 2013, 100(9): 1706-1712. doi: 10.3732/ajb.1200607

    [25]

    VICRÉ M, SANTAELLA C, BLANCHET S, et al. Root border-like cells of Arabidopsis: Microscopical characterization and role in the interaction with rhizobacteria[J]. Plant Physiology, 2005, 138(2): 998-1008. doi: 10.1104/pp.104.051813

    [26]

    LARA-NÚÑEZ A, GARCÍA-AYALA B B, GARZA-AGUILAR S M, et al. Glucose and sucrose differentially modify cell proliferation in maize during germination[J]. Plant Physiology and Biochemistry, 2017, 113: 20-31. doi: 10.1016/j.plaphy.2017.01.018

    [27]

    FAN Z, HUANG G, FAN Y, et al. Sucrose facilitates rhizome development of perennial rice (Oryza longistaminata)[J]. International Journal of Molecular Sciences, 2022, 23(21): 13396. doi: 10.3390/ijms232113396

    [28] 张淑辉, 王红, 王文茹, 等. 蔗糖对桃幼苗生长发育及其SnRK1酶活性的影响[J]. 植物学报, 2019, 54(6): 744-752.
    [29]

    MISHRA B S, SINGH M, AGGRAWAL P, et al. Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development[J]. PLoS One, 2009, 4(2): e4502. doi: 10.1371/journal.pone.0004502

    [30]

    BOOKER K S, SCHWARZ J, GARRETT M B, et al. Glucose attenuation of auxin-mediated bimodality in lateral root formation is partly coupled by the heterotrimeric G protein complex[J]. PLoS One, 2010, 5(9): e12833. doi: 10.1371/journal.pone.0012833

    [31]

    KUSHWAH S, LAXMI A. The interaction between glucose and cytokinin signal transduction pathway in Arabidopsis thaliana[J]. Plant, Cell and Environment, 2014, 37(1): 235-253.

    [32]

    WIND J, SMEEKENS S, HANSON J. Sucrose: Metabolite and signaling molecule[J]. Phytochemistry, 2010, 71(14/15): 1610-1614. doi: 10.1016/j.phytochem.2010.07.007

    [33]

    PAN J W, YE D, WANG L L, et al. Root border cell development is a temperature-insensitive and Al-sensitive process in barley[J]. Plant and Cell Physiology, 2004, 45(6): 751-760. doi: 10.1093/pcp/pch090

    [34]

    CAI M, WANG N, XING C, et al. Immobilization of aluminum with mucilage secreted by root cap and root border cells is related to aluminum resistance in Glycine max L[J]. Environmental Science and Pollution Research, 2013, 20(12): 8924-8933. doi: 10.1007/s11356-013-1815-6

    [35] 张思琪. 蔗糖运输参与镁缓解蚕豆铝毒胁迫的作用机制[D]. 昆明: 昆明理工大学, 2022.
图(10)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-10
  • 网络出版日期:  2023-12-17
  • 发布日期:  2023-11-16
  • 刊出日期:  2024-05-09

目录

    /

    返回文章
    返回