• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

拟南芥H3K27甲基转移酶CLF响应环境温度和参与温度形态建成研究

谢文浩, 李成章, 俞瑜

谢文浩, 李成章, 俞瑜. 拟南芥H3K27甲基转移酶CLF响应环境温度和参与温度形态建成研究[J]. 华南农业大学学报, 2023, 44(5): 818-826. DOI: 10.7671/j.issn.1001-411X.202303031
引用本文: 谢文浩, 李成章, 俞瑜. 拟南芥H3K27甲基转移酶CLF响应环境温度和参与温度形态建成研究[J]. 华南农业大学学报, 2023, 44(5): 818-826. DOI: 10.7671/j.issn.1001-411X.202303031
XIE Wenhao, LI Chengzhang, YU Yu. Study of Arabidopsis H3K27 methyltransferase CLF responding to ambient temperature and involving in temperature morphogenesis[J]. Journal of South China Agricultural University, 2023, 44(5): 818-826. DOI: 10.7671/j.issn.1001-411X.202303031
Citation: XIE Wenhao, LI Chengzhang, YU Yu. Study of Arabidopsis H3K27 methyltransferase CLF responding to ambient temperature and involving in temperature morphogenesis[J]. Journal of South China Agricultural University, 2023, 44(5): 818-826. DOI: 10.7671/j.issn.1001-411X.202303031

拟南芥H3K27甲基转移酶CLF响应环境温度和参与温度形态建成研究

基金项目: 国家自然科学基金(31930017)
详细信息
    作者简介:

    谢文浩,硕士研究生,主要从事植物表观遗传学研究,E-mail: 20210700089@fudan.edu.cn

    通讯作者:

    俞 瑜,副教授,博士,主要从事植物表观遗传学研究,E-mail: yuy@fudan.edu.cn

  • 中图分类号: Q522;Q945

Study of Arabidopsis H3K27 methyltransferase CLF responding to ambient temperature and involving in temperature morphogenesis

Article Text (iFLYTEK Translation)
  • 摘要:
    目的 

    探索拟南芥H3K27甲基转移酶CURLY LEAF(CLF)在温度形态建成中的作用。

    方法 

    在不同温度条件(22和16 ℃)下,对拟南芥Arabidopsis野生型Col-0和突变体clf-29进行表型分析和转录组分析,筛选差异表达基因。

    结果 

    在不同温度条件下,clf-29表现出显著的表型差异,相较于22 ℃,16 ℃时clf-29和Col-0的表型差异更小。转录组分析发现CLF的缺失会导致大量基因表达差异,并将其分为4种类型(仅在Col-0显著上调、下调,仅在clf-29突变体显著上调、下调),包含96个温度响应基因。

    结论 

    拟南芥表观遗传调控因子CLF响应环境温度,并参与温度形态建成。

    Abstract:
    Objective 

    To explore the role of Arabidopsis H3K27 methyltransferase CURLY LEAF (CLF) in temperature morphogenesis.

    Method 

    The differentially expressed genes were screened by phenotypic analysis and transcriptome analysis of Arabidopsis wild type Col-0 and mutant clf-29 under different temperatures of 22 and 16 ℃.

    Result 

    clf-29 showed significant phenotypic differences under different temperatures, there was less difference between clf-29 and Col-0 at 16 ℃ than at 22 ℃. Transcriptome analysis found that deletion of CLF led to expression changes of a large number of genes, which were divided into four types (significantly up-regulated/down-regulated only in Col-0, significantly up-regulated/down-regulated only in clf-29 mutant), containing 96 temperature responsive genes.

    Conclusion 

    Arabidopsis epigenetic regulator CLF responds to ambient temperature and is involved in temperature morphogenesis.

  • 桑树Morus alba Linn.属桑科Moraceae桑属Morus,原产我国中部,是一种具有重要经济价值的落叶乔木。种桑养蚕是我国的传统产业,我国已有约4 000的桑树栽培历史[]。随着“东桑西移”发展战略的实施,广西逐步成为我国蚕茧生产第一大省区和世界重要原料蚕茧生产基地,2012年,广西桑树种植面积达1.69×105 hm2,家蚕饲养量为655万张,蚕茧产量达2.56×105 t[]。由可可毛色二孢Lasiodiplodia theobromae Pat.Griffon & Maubl桑树的新病害,2014年,Xie等[]曾报道该病害在我国广西横县发生,发病面积达2 400 hm2,其后在广西其他蚕桑种植区均发现该病害的存在。

    桑根腐病是一种根部新病害,目前生产上鲜见有防治效果好的化学药剂,且化学防治易对桑树和家蚕产生药害,因此,针对该病害开展生物防治的研究具有重要意义,而获得有显著拮抗效果的菌株是病害生物防治的基础。本研究采集健康桑树根际土壤,筛选能显著抑制L. theobromae的拮抗细菌,以期为桑根腐病的生物防治奠定基础。

    Ezup柱式细菌基因组DNA抽提试剂盒、DNA Ladder Min Marker(SM0337)、Dream Taq Green PCR MasterMix(2×)、PCR引物等均购自上海生物工程技术服务有限公司;PDA粉(广东环凯微生物科技有限公司);快速革兰氏染色试剂盒(济南百博生物科技有限责任公司);孔雀石绿(天津市大茂化学试剂厂)。

    NA培养基:牛肉浸膏3.0 g、蛋白胨5 g、葡萄糖2.5 g,琼脂粉15 g,用少量蒸馏水加热溶解后,补充蒸馏水至1 L。

    可可毛色二孢Lasiodiplodia theobromae菌株由广西大学农学院植保系实验室分离保存。

    从广西自治区南宁市、河池市和来宾市的桑园中,采集健康桑树根际土壤用于分离拮抗细菌。参考孙正祥等[]的方法分离和纯化细菌菌株。

    采用平板对峙法[]测定拮抗细菌对菌丝生长的影响。将保存的病原菌菌株和细菌菌株分别在PDA培养基和NA培养基上活化。用灭菌打孔器(直径6 mm)取L. theobromae菌饼接种至PDA培养基平板中央,其两侧2 cm处对称放置细菌菌落块,放置于28 ℃培养箱中培养。待对照处理的菌落长满平板后,测量各处理菌落的直径,参照谢晨昭等[]的方法计算生长抑制率,并在显微镜下观察抑菌带菌丝的形态特征。各处理重复3次。从参试的细菌菌株中筛选出拮抗效果最好的菌株进行后续试验。

    将筛选出的细菌菌落块接种到150 mL液体NA培养基中,于振荡培养箱中(28 ℃,150 r·min-1)培养3 d。培养液经0.22 μm的微孔滤膜过滤后,备用。取活化好的L. theobromae菌饼接种到PDA培养基中央,在其周围对称放置3片灭菌滤纸片(直径5 mm),再用移液枪吸取10 μL细菌上清液滴在滤纸片上。重复3次,计算生长抑制率。

    采用载玻片孢子萌发法[]:利用过滤的细菌培养液配制孢子悬浮液(约1×106个·mL-1),以清水为对照, 将500 μL孢子悬浮液滴在干净的载玻片上,再将载玻片放入垫有湿润滤纸的培养皿中,然后放置于28 ℃培养箱中培养20 h后观察孢子萌发情况,计算孢子萌发率。以芽管长度超过孢子长度的一半作为萌发标准。

    将活化好的拮抗菌株菌落划线接种在NA培养基平板上,放入28 ℃培养箱中培养2 d后,观察菌落特征,并进行革兰氏染色和芽孢染色观察形态特征[]。参照《常见细菌系统鉴定手册》[]的方法测定拮抗细菌的生理生化特征。试剂盒提取菌株总DNA,保存于-20 ℃备用。参考并利用Chun等[]的引物扩增gyrA基因。PCR反应体系:Dream Taq Green PCR MasterMix(2×)25 μL,引物各2 μL,DNA模板2 μL,加ddH2O至50 μL。反应条件:95 ℃预变性3 min;95 ℃ 35 s,62 ℃ 1 min,72 ℃ 2 min,重复30次;72 ℃ 10 min。gyrB基因引物为UP1和UP2r[]。除引物不同外,PCR反应体系中各成分的量和反应条件与gyrA基因序列扩增试验相同。

    PCR扩增完成后,取PCR产物在10 g·L-1琼脂糖凝胶中电泳(150 V、100 mA、20 min)检测产物的特异性并委托上海生工测序。将测得的菌株序列在NCBI上进行BLAST比对,确定菌株的分类地位,同时下载NCBI中与参试菌株序列相似性高的序列用Mega 5软件进行同源性分析,构建系统发育树。

    在广西自治区横县石塘镇选择树龄为4~6年的桑园作为试验田,试验田随机设置3个小区,每小区65~70棵桑树。施用生防菌剂前,先调查记录好各小区的病死桑树。将YZ14-3培养液9 L(4.8×108 CFU·mL-1)兑水18 L后均匀浇灌于各小区桑树根部土壤。试验期限为2014年4月至2015年5月,前5个月,每月施用培养液2次,其后每月施用1次。对照用等量的清水代替YZ14-3培养液。最后1次施药1个月后,调查各处理小区及对照的病死株数,参照赖传雅的方法[]并稍作改进计算防治效果:

    防治效果=[(对照区校正病死率-处理区校正病死率)/对照区校正病死率]×100%,

    校正病死率=用药后病死率-用药前病死率。

    从采集的45份土样中分离到菌落形态有明显差异的菌株22个,经筛选得到对L. theobromae有显著抑制效果的8个菌株,其中菌株YZ14-3的抑菌效果最好(图 1)。YZ14-3菌落与L. theobromae对峙培养时,抑菌圈半径为12 mm,对L. theobromae的生长抑制率为73.3%。因此,选定菌株YZ14-3进行后续试验。研究发现,菌株YZ14-3的培养液能显著抑制L. theobromae的生长,抑菌圈半径为8 mm,抑制率为55.6%。观察发现抑菌圈外缘的L. theobromae菌丝变黑(图 1),挑取变黑的菌丝在显微镜下观察,发现菌丝膨大、畸形、易断裂(图 2)。

    图 1 菌株YZ14-3对Lasiodiplodia theobromae菌丝生长的抑制效果
    图  1  菌株YZ14-3对Lasiodiplodia theobromae菌丝生长的抑制效果
    A:YZ14-3菌落的抑菌效果;C:YZ14-3培养液的抑菌效果;B和D分别为A和C的对照。
    Figure  1.  Inhibitory effect of YZ14-3 on myceliium growth of Lasiodiplodia theobromae
    图 2 菌株YZ14-3对Lasiodiplodia theobromae菌丝形态的影响
    图  2  菌株YZ14-3对Lasiodiplodia theobromae菌丝形态的影响
    A:膨大、畸形的L.theobromae菌丝; B:正常的L.theobromae菌丝。
    Figure  2.  Effect of YZ14-3 on mycelium morphology of Lasiodiplodia theobromae

    采用载玻片孢子萌发法测定了YZ14-3培养液对L. theobromae分生孢子萌发的影响,培养20 h后,在显微镜下观察孢子的萌发情况。每个视野随机观测500个孢子,观察3个视野,共1 500个孢子。观察发现,L. theobromae分生孢子在YZ14-3的培养液中不能萌发且YZ14-3的培养液能降解L. theobromae分生孢子的细胞壁,使分生孢子解体。

    菌株YZ14-3在NA培养基的主要培养特征(图 3A)如下:菌落乳白色,边缘不整齐,表面有皱褶,隆起不透明,菌落干爽无光泽;液体静止培养时形成乳白色菌膜。显微镜下观察发现,YZ14-3革兰氏染色阳性,呈紫色(图 3B),菌体短杆状,直或略弯,菌体单个或呈短链状排列,芽孢顶生或生于菌体中部(图 3C)。根据形态特征,初步鉴定YZ14-3为芽孢杆菌Bacillus sp.。

    图 3 YZ14-3的形态特征
    图  3  YZ14-3的形态特征
    A:菌落形态;B:革兰染色;C:芽孢染色。
    Figure  3.  Morphological characteristics of YZ14-3

    本研究测定了YZ14-3的部分生理生化特征(表 1)。将本文测定结果与已发表的B. amyloliquefaciens相关菌株生理生化特征测定结果[-]相比较,并参考《常见细菌系统鉴定手册》[],YZ14-3被初步鉴定为解淀粉芽孢杆菌Bacillus amyloliquefaciens

    表  1  菌株YZ14-3的生理生化特性1)
    Table  1.  Physiological and biochemical characteristics of YZ14-3
    下载: 导出CSV 
    | 显示表格

    菌株YZ14-3的gyrA基因扩增后,获得1个长度为1 013 bp的片段。PCR产物纯化、测序后,将该基因序列在NCBI上进行BLAST相似性分析,比对结果表明,YZ14-3的gyrA序列与GenBank中的B. amyloliquefaciensgyrA序列相似性均高于98%。从GenBank中下载与YZ14-3的gyrA序列相似性较高的B. amyloliquefaciens gyrA序列11个、B. subtilis序列8个、B. licheniformis序列6个,以大肠埃希菌Escherichia coli菌株的gyrA序列(登录号:DQ447131)为外群构建系统发育树(图 4A)。由系统发育树可知,YZ14-3与11株B. amyloliquefaciens聚在一群,并与其他菌株分离,表明YZ14-3与B. amyloliquefaciens具有很高的遗传相似性。

    图 4 基于gyrA和gyrB基因序列的YZ14-3系统发育树
    图  4  基于gyrAgyrB基因序列的YZ14-3系统发育树
    Figure  4.  Phylogenetic tree of YZ14-3 based on gyrA and gyrB gene sequencs

    菌株YZ14-3的gyrB基因扩增后,获得1个长度为1 243 bp的片段。PCR产物纯化、测序后,将该基因序列在NCBI上进行BLAST相似性分析,结果发现,YZ14-3的gyrB序列与GenBank中的B. amyloliquefaciensgyrB序列相似性均高于99%。下载GenBank中与YZ14-3的gyrB序列相似性较高的7个B. amyloliquefaciens菌株序列、7个B. subtilis序列、3个B. licheniformis序列、3个B. thuringiensis序列,以E.coli菌株的gyrB序列(登录号:AB083949)为外群构建系统发育树(图 4B)。由系统发育树可知,YZ14-3与7株B. amyloliquefaciens聚在一群,并与7株B. subtilis分离,表明YZ14-3与B. amyloliquefaciens的遗传相似性很高。

    gyrAgyrB序列构建的系统发育树可鉴定菌株YZ14-3为B. amyloliquefaciens

    施用YZ14-3培养液前后各调查1次桑树病死情况,施用YZ14-3培养液用药前和用药后桑树病死率分别为14.44%和18.89%,用药后的桑树病死率显著地低于对照的(29.44%)。生防菌剂处理的校正病死率约为4.45%,显著高于对照的校正病死率13.88%。由生防菌剂处理和对照的校正病死率得YZ14-3的田间防治效果为67.94%。

    B. amyloliquefaciensB. subtilis亲缘性很高,能分泌一系列抑制真菌、细菌、病毒和支原体生长发育的抗菌脂肽[]。王奕文等[]从甜瓜果实表面分离到1株B. amyloliquefaciens,该菌株对灰葡萄孢Botrytis cinerea、链格孢Alternaria sp.、尖孢镰刀菌Fusarium. oxysporum等病原真菌的拮抗作用显著。陈妍等[]从土壤中分离出1株对棉花黄萎病菌Verticillium dahliae有良好拮抗作用的B. amyloliquefaciens菌株。陈成等[]从土壤中分离到1株B. amyloliquefaciens,其对黑曲霉Aspergillus niger、稻瘟病菌Magnaporthe oryzae和水稻纹枯病菌Rhizoctonia solani等植物病原真菌有很强的抑制作用。B. amyloliquefaciens菌株DFE16及其发酵液不仅能抑制病菌生长,而且能诱导油菜对黑胫病产生抗性[]B. amyloliquefaciens的发酵液对油茶炭疽病具有很强的抑制作用,进一步研究发现发酵液中的抑菌物质为脂肽,该物质能使病菌菌丝畸形[]B. amyloliquefaciens分泌的胞外非蛋白类物质能有效抑制鱼腥藻的生长[]。枯草芽孢杆菌不同种群在植物病害的生物防治中有广泛的应用,其作用机制主要有竞争、抗生、溶菌等[]。本研究从健康桑树的根际土壤中分离出1株B. amyloliquefaciens YZ14-3,其对桑根腐病菌L. theobromae的抑制效果显著,YZ14-3的无菌培养液能完全抑制病菌分生孢子的萌发,降解分生孢子的细胞壁,从而使孢子解体,说明YZ14-3的培养液中含有溶菌物质。溶菌作用是B. amyloliquefaciens菌株YZ14-3抑制病原菌生长的一种机制。田间防治试验结果表明,YZ14-3的生防效果较显著达67.94%,具有一定的应用前景。本研究结果为菌株YZ14-3在桑根腐病生物防治中的应用奠定了基础。

    16S rDNA/RNA基因序列被广泛应用于细菌鉴定或研究细菌的系统进化关系,但由于16S rDNA/RNA基因序列过于保守,在亲缘关系很近的分类类群间,由于序列间的相似度太高而无法区分近缘种[]。Wang等[]研究认为16S rDNA/RNA基因序列不能有效区分枯草芽孢杆菌的菌株,而gyrAgyrB基因序列可以用于枯草芽孢杆菌的鉴定。gyrAgyrB基因的分子进化速率比16S rDNA/RNA基因大,可以弥补16S rDNA/RNA基因的不足[-]。菌株SWB16的16S rRNA序列与B. subtilisB. amyloliquefaciensB. licheniformis和贝莱斯芽孢杆菌B. velezensis有99%的相似性,但利用gyrA序列构建的系统发育树显示SWB16与B. amyloliquefaciens聚为一群[]。本文利用gyrAgyrB基因序列构建了系统发育树,2株系统发育树均能将B. amyloliquefaciensB. subtilis及其他芽孢杆菌近缘种区分开。目前,gyrAgyrB基因已经应用到许多细菌近缘种的鉴别中,如枯草芽孢杆菌组(B. subtilis group)[, -]、假单孢菌属Pseudomonas[]、气单孢菌属Aeromonas[]、分枝杆菌属Mycobacterium[]等。

  • 图  1   Col-0和clf-29基因型鉴定

    LP:左侧基因组引物,RP:右侧基因组引物;BP:T-DNA边界引物

    Figure  1.   Genotype identification of Col-0 and clf-29

    LP: Left genomic primer, RP: Right genomic primer, BP: T-DNA border primer

    图  2   Col-0和clf-29植株(a、b)和叶片(c、d)表型展示

    Figure  2.   Phenotypic display of plant (a, b) and leaf (c, d) for Col-0 and clf-29

    图  3   Col-0和clf-29在不同温度条件的表型统计

    图a统计的叶片数量为3片,图b、c统计的植株数量为25株;“*”和“***”分别表示Col-0和clf-29P < 0.05和P < 0.001水平差异显著(t检验)

    Figure  3.   Phenotypic statistics of Col-0 and clf-29 at different temperatures

    The number of leaves counted in figure a is 3, the number of plants counted in figure b, c is 25; “*” and “***” indicate significant differences at P < 0.05 and P < 0.001 levels between Col-0 and clf-29 respectively (t test)

    图  4   RNA-seq数据的准确性(a)和相关性分析(b)

    Figure  4.   Accuracy (a) and correlation analyses (b) of RNA-seq data

    图  5   不同温度条件下Col-0和clf-29的差异表达基因

    Figure  5.   Differentially expressed genes of Col-0 and clf-29 at different temperatures

    图  6   相比于22 ℃,16 ℃条件下Col-0和clf-29的差异上调(a)和差异下调(b)基因的交集

    Figure  6.   Intersection of differentially up-regulated (a) and down-regualted (b) genes at 16 ℃ compared to 22 ℃

    图  7   相比于22 ℃,16 ℃条件下Col-0和clf-29差异表达基因的相关性

    Figure  7.   Correlation of differentially expressed genes between Col-0 and clf-29 at 16 ℃ compared to 22 ℃

    图  8   相比于22 ℃,16 ℃条件下Col-0和clf-29各自差异表达基因的GO分析

    Figure  8.   GO analyses of differentially expressed genes in Col-0 and clf-29 respectively at 16 ℃ compared to 22 ℃

    图  9   相比于22 ℃,16 ℃条件下Col-0和clf-29各自温度响应基因的热图

    Figure  9.   Heatmap of temperature-responsive genes in Col-0 and clf-29 respectively at 16 ℃ compared to 22 ℃

    图  10   特定温度响应基因的RT-qPCR验证

    Figure  10.   RT-qPCR verifiction of specific temperature-responsive genes

    表  1   本研究用到的引物

    Table  1   Primers used in this study

    用途
    Usage
    名称
    Name
    序列
    Sequence
    基因分型
    Genotyping
    clf-29-BP 5′-ATTTTGCCGATTTCGGAAC-3′
    clf-29-LP 5′-AAGAAACTTGCTAGTTCCGCC-3′
    clf-29-RP 5′-GAGGCATTGACTTTGATTTGC-3′
    RT-qPCR SUS1-F 5′-GGCTAGGCTTGATCGTGTCA-3′
    SUS1-R 5′-GATCCACCTGAACTGACCGT-3′
    LHCA1-F 5′-CAGTCCCGTGGGGTACTTTG-3′
    LHCA1-R 5′-GCCGCCCGTTCTTGATCTC-3′
    B1L-F 5′-AATCTCCGATGGACCGTTTGA-3′
    B1L-R 5′-AGAGCTTTCTTAGCTCGCCG-3′
    DIN10-F 5′-CGCTTTCTGATCTTGGAAATCGC-3′
    DIN10-R 5′-ACACCGGTTAGAATCGTCCG-3′
    ACTIN 2-F 5′-AGTGTTAGCTGCTGCCGCTGT-3′
    ACTIN 2-R 5′-ACCAGCAAAACCAGCCTTCACCA-3′
    下载: 导出CSV

    表  2   RNA-seq数据统计1)

    Table  2   Statistical analyses of RNA-seq data

    θ/ ℃样品
    Sample
    NrawNtrimηtrim/%Nmapηmap/%Nfilterηfilter/%
    22Col-0-137 244 77837 224 20499.9436 546 72398.1832 101 10487.84
    Col-0-222 235 62422 206 54699.8721 582 54297.1919 117 94388.58
    Col-0-333 187 89233 167 45099.9432 477 56797.9222 820 84970.27
    clf-29-13495652834 928 74499.9234 052 03397.4930 609 31289.89
    clf-29-232 170 57032 138 51299.9031 122 93596.8427 113 26287.12
    clf-29-333 342 87433 311 22299.9132 488 43597.5329 058 94789.44
    16Col-0-122 773 10622 750 52499.9022 163 56097.4220 064 34390.53
    Col-0-228 556 57628 521 01299.8827 642 56596.9224 617 36689.06
    Col-0-329 554 42629 506 42499.8428 694 99797.2526 892 27493.72
    clf-29-131 924 45631 886 89699.8830 662 43996.1628 160 28191.84
    clf-29-234 539 69634 510 88699.9233 692 97897.6329 642 35387.98
    clf-29-330 517 27830 473 50499.8629 717 76197.5225 571 99886.05
     1) Nraw:原始测序的reads数目;Ntrimηtrim:除去低质量碱基后的reads数目和对应的比例;Nmapηmap:比对到拟南芥基因组的reads数目和对应的比例;Nfilterηfilter:比对到拟南芥染色质上且高比对质量的reads数目和对应的比例
     1) Nraw: The number of raw reads; Ntrim, ηtrim: The number and corresponding proportion of reads after removing the low quality bases; Nmap, ηmap: The number and corresponding proportion of reads that aligned on Arabidopsi genome; Nfilter, ηfilter: The number and corresponding proportion of reads that aligned on Arabidopsi with high quality
    下载: 导出CSV
  • [1]

    CHANG Y N, ZHU C, JIANG J, et al. Epigenetic regulation in plant abiotic stress responses[J]. Journal of Integrative Plant Biology, 2020, 62(5): 563-580. doi: 10.1111/jipb.12901

    [2]

    LAMERS J, VAN DER MEER T, TESTERINK C. How plants sense and respond to stressful environments[J]. Plant Physiology, 2020, 182(4): 1624-1635. doi: 10.1104/pp.19.01464

    [3]

    ASHAPKIN V V, KUTUEVA L I, ALEKSANDRUSHKINA N I, et al. Epigenetic mechanisms of plant adaptation to biotic and abiotic stresses[J]. International Journal of Molecular Sciences, 2020, 21(20): 7457. doi: 10.3390/ijms21207457.

    [4]

    GALLUSCI P, DAI Z, GENARD M, et al. Epigenetics for plant improvement: Current knowledge and modeling avenues[J]. Trends in Plant Science, 2017, 22(7): 610-623. doi: 10.1016/j.tplants.2017.04.009

    [5]

    KASSIS J A, KENNISON J A, TAMKUN J W. Polycomb and trithorax group genes in Drosophila[J]. Genetics, 2017, 206(4): 1699-1725. doi: 10.1534/genetics.115.185116

    [6]

    LEWIS E B. A gene complex controlling segmentation in Drosophila[J]. Nature, 1978, 276(5688): 565-570. doi: 10.1038/276565a0

    [7]

    SCHUETTENGRUBER B, GANAPATHI M, LEBLANC B, et al. Functional anatomy of Polycomb and trithorax chromatin landscapes in Drosophila embryos[J]. PLoS Biology, 2009, 7(1): 146-163.

    [8]

    SPARMANN A, VAN LOHUIZEN M. Polycomb silencers control cell fate, development and cancer[J]. Nature Reviews Cancer, 2006, 6(11): 846-856. doi: 10.1038/nrc1991

    [9]

    PIEN S, GROSSNIKLAUS U. Polycomb group and trithorax group proteins in Arabidopsis[J]. Biochimica et Biophysica Acta: Gene Structure and Expression, 2007, 1769(5/6): 375-382.

    [10]

    GOODRICH J, PUANGSOMLEE P, MARTIN M, et al. A Polycomb-group gene regulates homeotic gene expression in Arabidopsis[J]. Nature, 1997, 386(6620): 44-51. doi: 10.1038/386044a0

    [11]

    GROSSNIKLAUS U, VIELLE-CALZADA J P, HOEPPNER M A, et al. Maternal control of embryogenesis by MEDEA, a Polycomb group gene in Arabidopsis[J]. Science, 1998, 280(5362): 446-450. doi: 10.1126/science.280.5362.446

    [12]

    CHANVIVATTANA Y, BISHOPP A, SCHUBERT D, et al. Interaction of Polycomb-group proteins controlling flowering in Arabidopsis[J]. Development, 2004, 131(21): 5263-5276. doi: 10.1242/dev.01400

    [13]

    XIAO J, WAGNER D. Polycomb repression in the regulation of growth and development in Arabidopsis[J]. Current Opinion in Plant Biology, 2015, 23: 15-24. doi: 10.1016/j.pbi.2014.10.003

    [14]

    SHU J, CHEN C, THAPA R K, et al. Genome-wide occupancy of histone H3K27 methyltransferases CURLY LEAF and SWINGER in Arabidopsis seedlings[J]. Plant Direct, 2019, 3(1): 100. doi: 10.1002/pld3.100.

    [15]

    KIM G T, TSUKAYA H, UCHIMIYA H. The CURLY LEAF gene controls both division and elongation of cells during the expansion of the leaf blade in Arabidopsis thaliana[J]. Planta, 1998, 206(2): 175-183. doi: 10.1007/s004250050389

    [16]

    LAFOS M, KROLL P, HOHENSTATT M L, et al. Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation[J]. PLoS Genetics, 2011, 7(4): e1002040. doi: 10.1371/journal.pgen.1002040

    [17]

    LIU J, DENG S, WANG H, et al. CURLY LEAF regulates gene sets coordinating seed size and lipid biosynthesis[J]. Plant Physiology, 2016, 171(1): 424-436. doi: 10.1104/pp.15.01335

    [18]

    GU X, XU T, HE Y. A histone H3 lysine-27 methyltransferase complex represses lateral root formation in Arabidopsis thaliana[J]. Molecular Plant, 2014, 7(6): 977-988. doi: 10.1093/mp/ssu035

    [19]

    DING Y, SHI Y, YANG S. Molecular regulation of plant responses to environmental temperatures[J]. Molecular Plant, 2020, 13(4): 544-564. doi: 10.1016/j.molp.2020.02.004

    [20]

    KUMAR S V, WIGGE P A. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis[J]. Cell, 2010, 140(1): 136-147. doi: 10.1016/j.cell.2009.11.006

    [21]

    GIL K E, PARK C M. Thermal adaptation and plasticity of the plant circadian clock[J]. New Phytologist, 2019, 221(3): 1215-1229. doi: 10.1111/nph.15518

    [22]

    QUINT M, DELKER C, FRANKLIN K A, et al. Molecular and genetic control of plant thermomorphogenesis[J]. Nature Plants, 2016, 2(1): 15190. doi: 10.1038/NPLANTS.2015.190.

    [23]

    BLAZQUEZ M A, AHN J H, WEIGEL D. A thermosensory pathway controlling flowering time in Arabidopsis thaliana[J]. Nature Genetics, 2003, 33(2): 168-171. doi: 10.1038/ng1085

    [24]

    MARTIN M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. EMBnet Journal, 2011, 17(1): 10-12. doi: 10.14806/ej.17.1.200

    [25]

    KIM D, LANGMEAD B, SALZBERG S L. HISAT: A fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4): 357-360. doi: 10.1038/nmeth.3317

    [26]

    LI H, HANDSAKER B, WYSOKER A, et al. The sequence alignment/map format and SAMtools[J]. Bioinformatics, 2009, 25(16): 2078-2079. doi: 10.1093/bioinformatics/btp352

    [27]

    LIAO Y, SMYTH G K, SHI W. FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features[J]. Bioinformatics, 2014, 30(7): 923-930. doi: 10.1093/bioinformatics/btt656

    [28]

    LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550. doi: 10.1186/s13059-014-0550-8.

    [29]

    RAMIREZ F, RYAN D P, GRUNING B, et al. DeepTools2: A next generation web server for deep-sequencing data analysis[J]. Nucleic Acids Research, 2016, 44(W1): W160-W165. doi: 10.1093/nar/gkw257

    [30]

    THORVALDSDOTTIR H, ROBINSON J T, MESIROV J P. Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration[J]. Briefings in Bioinformatics, 2013, 14(2): 178-192. doi: 10.1093/bib/bbs017

    [31]

    YU G, WANG L G, HAN Y, et al. ClusterProfiler: An R package for comparing biological themes among gene clusters[J]. OMICS: A Journal of Integrative Biology, 2012, 16(5): 284-287. doi: 10.1089/omi.2011.0118

    [32]

    JUNG C G, HWANG S G, PARK Y C, et al. Molecular characterization of the cold- and heat-induced Arabidopsis PXL1 gene and its potential role in transduction pathways under temperature fluctuations[J]. Journal of Plant Physiology, 2015, 176: 138-146. doi: 10.1016/j.jplph.2015.01.001

    [33]

    CHEN T, CHEN J H, ZHANG W, et al. BYPASS1-LIKE, a DUF793 family protein, participates in freezing tolerance via the CBF pathway in Arabidopsis[J]. Frontiers in Plant Science, 2019, 10: 807. doi: 10.3389/fpls.2019.00807.

    [34]

    BOUREAU L, HOW-KIT A, TEYSSIER E, et al. A CURLY LEAF homologue controls both vegetative and reproductive development of tomato plants[J]. Plant Molecular Biology, 2016, 90(4/5): 485-501.

    [35]

    LUO M, PLATTEN D, CHAUDHURY A, et al. Expression, imprinting, and evolution of rice homologs of the polycomb group genes[J]. Molecular Plant, 2009, 2(4): 711-723. doi: 10.1093/mp/ssp036

    [36]

    KWON C S, LEE D, CHOI G, et al. Histone occupancy-dependent and -independent removal of H3K27 trimethylation at cold-responsive genes in Arabidopsis[J]. Plant Journal, 2009, 60(1): 112-121. doi: 10.1111/j.1365-313X.2009.03938.x

    [37]

    RAMAKRISHNAN M, ZHANG Z, MULLASSERI S, et al. Epigenetic stress memory: A new approach to study cold and heat stress responses in plants[J]. Frontiers in Plant Science, 2022, 13: 1075279. doi: 10.3389/fpls.2022.1075279.

    [38]

    TIAN Y, ZHENG H, ZHANG F, et al. PRC2 recruitment and H3K27me3 deposition at FLC require FCA binding of COOLAIR[J]. Science Advances, 2019, 5(4): eaau7246. doi: 10.1126/sciadv.aau7246

    [39]

    YANG H, BERRY S, OLSSON T S G, et al. Distinct phases of Polycomb silencing to hold epigenetic memory of cold in Arabidopsis[J]. Science, 2017, 357(6356): 1142-1145. doi: 10.1126/science.aan1121

图(10)  /  表(2)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  21
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-29
  • 网络出版日期:  2023-11-12
  • 发布日期:  2023-08-10
  • 刊出日期:  2023-09-09

目录

Corresponding author: YU Yu, yuy@fudan.edu.cn

  1. On this Site
  2. On Google Scholar
  3. On PubMed

/

返回文章
返回