Nutrient transfer and transformation mechanism of biochar-based infiltrated urea fertilizer from different raw materials
-
摘要:目的
研究对比不同原材料生物炭基渗融尿素肥(Biochar-based infiltrated urea fertilizer,BIUF)的成肥及养分释放特性,探讨渗融法制肥中生物质种类、热解温度、表面官能团含量对肥料颗粒释放机制的影响,为BIUF缓释性能的进一步优化提供理论指导。
方法以稻壳炭(Husk biochar,HB)、松子壳炭(Pine nut biochar,PNB)、油茶壳炭(Oil-tea biochar,OTB)、花生壳炭(Peanut biochar,PB)和尿素颗粒为原料,采用渗融法制备BIUF,利用万能压力试验机、扫描电子显微镜、热重分析仪和傅里叶红外光谱仪对其成型特性和养分迁移机制进行研究。
结果生物炭颗粒的表观形貌及孔壁厚度影响BIUF的物理性能,与易碎薄片化的生物炭颗粒相比,蜂窝状的生物炭颗粒结构更利于提高BIUF的物理机械性能,抗破碎性能提升1.7~2.3倍。生物炭表面的官能团含量影响BIUF的缓释性能,炭表面的—COOH、—C=O和—OH等官能团与尿素生成稳固的化学态尿素,而链式脂肪醇上的—OH与尿素发生醇解反应,造成BIUF肥力下降,释放周期缩短40%~50%。蜂窝状的稻壳炭孔隙结构复杂、含氧官能团丰富以及链式脂肪醇含量低,所制备的花生壳炭基渗融尿素肥具备优异的抗破碎性能,养分释放周期延长90%以上,具备良好的释放性能。
结论不同生物炭独特的理化性质具备良好的养分吸附性,通过提高热解温度、延长热解时间可提升生物质材料的炭化程度,所制备的BIUF具备优异的物理性能以及一定的缓释性能,对农业的可持续发展具有积极影响。
Abstract:ObjectiveTo study and compare the fertilizer formation and nutrient release characteristics of biochar-based infiltrated urea fertilizer (BIUF) from different raw materials, explore the effects of biomass type, pyrolysis temperature and surface functional group content on the release mechanism of fertilizer granules in fertilizer production by percolation method, and provide a theoretical guidance for further optimization of the slow release performance of BIUF.
MethodBIUF was prepared by the infiltration method using rice husk bichar (HB), pine nut biochar (PNB), oil-tea biochar (OTB), peanut biochar (PB) and urea pellets as raw materials, and its molding characteristics and nutrient migration mechanism were investigated using a universal pressure tester, scanning electron microscope, thermogravimetric analyzer and Fourier infrared spectrometer.
ResultThe apparent morphology and pore wall thickness of biochar particles influenced the physical properties of BIUF. Compared with fragile and flaky biochar particles, the structure of honeycomb-shaped biochar particles was more conducive to improve the physical and mechanical properties of BIUF, and the resistance to fragmentation increased by 1.7−2.3 times. The content of functional groups on the surface of the biochar affects the slow release performance of BIUF. Functional groups such as —COOH, —C=O and —OH on the charcoal surface produced a solid chemical state urea with urea, while —OH on chain fatty alcohols reacted in an alcoholysis reaction with urea, resulting in reduced fertility of BIUF and a 40% to 50% shorter release cycle. Due to the complex pore structure of the honeycomb husk biochar, the abundant oxygen-containing functional groups and the low content of chain fatty alcohols, the prepared peanut BIUF possessed excellent fragmentation resistance, while the nutrient release cycle was prolonged by more than 90%, with good release performance.
ConclusionThe unique physicochemical properties of different biochars have good nutrient adsorption properties. By increasing the pyrolysis temperature and extending the pyrolysis time, the charring degree of biomass materials can be enhanced, and the prepared BIUF has excellent physical properties and certain slow-release properties, which have a positive impact on the sustainable development of agriculture.
-
立地质量是影响林分生长的关键因素,准确评价立地质量是科学经营森林的前提和基础[1-2]。在“碳达峰碳中和”的战略背景下,科学的立地质量评价对提高林分生长收获预估准确性、优化抚育经营设计、提升森林碳汇经营水平以及森林生态系统应对气候变化能力具有极其重要的意义[3]。林分生产力的立地质量评价方法分为生物因子法和地理因子法2大类,其中,生物因子法的地位级和立地指数是立地质量评价最常用的指标。采用不同方法评价立地质量各有优缺点[4-5]。地理因子法易于分类,却缺乏立地条件影响林分生长的生物学解释。地位级法简便易行,但其精度和准确性低于立地指数的。立地指数的无偏估计要求准确的年龄测量值。相较基于年龄和树高的地位级和立地指数而言,已有研究者[6-8]提出了立地形(Site form)的方法,即用基准胸径时林分优势高表示立地质量,回避林分年龄,对混交异龄林具有较好的评价效果,但胸径和树高的关系也受林分的竞争程度影响[9-11]。
林业生产实践中树龄数据往往不准确或缺失,而林分胸径准确数据通过测量即可获取,理论上能修正由于树龄误差而导致的立地质量评价偏差。全国林分的情况复杂多样,天然林与人工林、混交林与纯林、异龄林与同龄林等差异会进一步影响立地质量评价方法的选择和评价结果的准确性[12],缺乏统一的评价模型也导致同一树种各区域间立地质量评价结果不具可比性。采用胸径与树高关系评价森林立地质量在一定程度上减少了其他评价方法的限制条件,同时在森林资源连续清查和森林资源规划设计调查中均有相应的因子调查要求,因此在实际生产管理中应用更便捷[13-15]。建立覆盖全国范围的主要针叶林分类型的胸径与树高模型,并编制指数模型表,不仅是森林经营管理的基础性工作[16],也能为建立大区域尺度的森林立地质量评价体系提供科学参考。
1. 材料与方法
1.1 数据来源及描述性统计
数据来源于全国森林资源连续清查第6次(1999—2003年)、第7次(2004—2008年)、第8次(2009—2013年)和第9次(2014—2018年)结果。根据全国主要针叶林分样地数量,划分为16个针叶树种组。每种树种中样本数量足够的单列,不够的合并为其他,优势树种组中的3种混交类型未纳入主要针叶林分立地形指数模型。主要针叶林分立地形指数模型研建数据描述性统计分析见表1。其中,数量最多的是马尾松林分样地,共
15430 块,数量最少的是铁杉林分样地,共182块。林分胸径均值为10.6~32.8 cm,林分树高均值为6.1~19.8 m,样地数量及规格均能满足建模和检验要求。表 1 立地形指数模型研建数据描述性统计Table 1. Descriptive statistics of model establishment data for site form index林分类型 Stand types 样地数量
Number of plots林分胸径/cm Stand DBH 林分树高/m Stand height 区间 Range 均值 Mean 标准差 SD 区间 Range 均值 Mean 标准差 SD 冷杉 Abies fabri 4363 6.5~77.1 32.8 11.05 2.8~43.7 19.8 5.95 云杉 Picea asperata 11869 5.0~60.0 27.2 10.61 1.7~41.5 17.0 6.11 铁杉 Tsuga chinensis 182 6.9~58.0 29.9 9.61 4.0~29.0 16.6 4.42 油杉 Keteleeria fortunei 217 6.9~27.1 13.0 4.18 2.8~18.3 7.2 2.97 落叶松 Larix gmelinii 9105 5.0~69.7 16.4 9.19 2.0~36.2 13.5 5.00 红松 Pinus koraiensis 290 5.0~58.9 17.5 10.52 1.5~29.2 12.1 5.83 樟子松 Pinus sylvestris 563 5.4~43.2 16.9 7.13 2.8~26.7 11.6 4.78 赤松 Pinus densiflora 296 5.3~23.1 10.6 3.55 1.8~16.7 6.1 3.06 黑松 Pinus thunbergii 346 5.3~20.0 10.8 3.13 2.2~16.0 6.3 2.46 油松 Pinus tabuliformis 4525 5.0~35.0 13.2 5.16 1.5~23.0 7.7 3.27 华山松 Pinus armandii 1029 5.0~34.3 13.9 5.60 1.5~25.0 9.3 3.83 马尾松 Pinus massoniana 15430 5.0~39.9 12.9 4.90 1.5~28.5 9.2 3.58 云南松 Pinus yunnanensis 3510 5.0~43.0 14.6 6.58 2.2~30.0 9.6 4.48 思茅松 Pinus kesiya var. langbianensis 478 5.7~33.4 16.5 5.14 2.9~27.2 12.4 4.13 高山松 Pinus densata 5125 5.3~40.0 27.9 6.53 2.0~28.0 17.8 4.41 其他松类1) Other pines 1350 5~27.4 12.8 4.44 2.5~18.7 8.1 3.06 1) 其他松类指样地数量较少的针叶林分类型。
1) Other pines indicate stand types with less sample plots.1.2 地位级指数模型构建及编表
1.2.1 导向曲线拟合
导向曲线的选择直接影响模型对立地质量评价的准确性,因此,导向曲线的形式既需要符合树高生长的生物学规律,又要能对数据进行最优化的拟合。良好的导向曲线应该呈平滑的“S”型,且具有上限渐近线。本文采用Richards、Logistic和Korf 3个胸径−树高生长模型拟合径阶中值和林分树高均值,如公式(1)~(3)所示。根据决定系数(Coefficient of determination,R2)、标准估计误差(Standard estimation error,SEE)和曲线形式等选择导向曲线模型。
$$ {H_{\mathrm{S}}} = 1.3 + a {\left( {1 - {{\text{e}}^{ - b {{\mathrm{DBH}}_{\mathrm{S}}}}}} \right)^c} \text{,} $$ (1) $$ {H_{\mathrm{S}}} = {{1.3 + a} \mathord{\left/ {\vphantom {{1.3 + a} {\left( {1 + b {{\text{e}}^{c {{\mathrm{DBH}}_{\mathrm{S}}}}}} \right)}}} \right. } {\left( {1 + b {{\text{e}}^{c {{\mathrm{DBH}}_{\mathrm{S}}}}}} \right)}} \text{,} $$ (2) $$ {H_{\mathrm{S}}} = 1.3 + a {{\text{e}}^{\frac{b}{{{\mathrm{DB}}{{\mathrm{H}}_{\mathrm{S}}}^c}}}} \text{,} $$ (3) $$ {R^2} = 1 - \sum {\frac{{{{\left( {{y_i} - {{\hat y}_i}} \right)}^2}}}{{{{\left( {{y_i} - {{\bar y}_i}} \right)}^2}}}} \text{,} $$ (4) $$ {{\mathrm{SEE}}} = \sqrt {\frac{{\displaystyle\sum {{{\left( {{y_i} - {{\hat y}_i}} \right)}^2}} }}{{ {n - p} }}} \text{,} $$ (5) 式中,HS为林分树高,DBHS为林分平均胸径,a、b、c为待求解参数,
$ {y_i} $ 为实际观测值,$ {\hat y_i} $ 为模型预估值,$ \bar y_i $ 为样本平均值,n为样本单元数,p为参数个数。1.2.2 基准胸径确定
基准胸径对立地形指数模型编表具有十分显著的影响,基准胸径选择不恰当会造成立地质量评价结果的偏差。在确定基准胸径时,本研究利用大量样地历史调查监测数据分析树高的生长过程,同时计算各径阶的树高变异系数及变化幅度,并绘制曲线图,根据曲线图中树高生长趋于平缓且能灵敏反映立地质量的原则确定基准胸径。
1.2.3 指数表编制
适宜的编表方法取决于树种、编表数据量等,编表方法不当会造成较大误差。本文利用林分树高生长及树高标准差曲线,依据 ± 2倍标准差原则确定立地形级的上、下限曲线,根据上、下限曲线所夹的面积及预定的5个指数级,采用相对系数法确定各指数级上、下限,编制全国主要针叶林分立地形表。该方法按照一定比例将胸径−树高生长曲线平移,在确定导向曲线模型后,将林分胸径代入模型,得到理论树高,将基准胸径代入模型得到树高理论值,调整系数和各指数级树高计算公式如下:
$$ {K_j} = \frac{{{H_{0j}}}}{{{H_{0k}}}} \times 100{\text{%}} \text{,} $$ (6) $$ {H_{ij}} = {K_j} \times {H_{ik}} \text{,} $$ (7) 式中,Kj为立地形曲线簇调整系数,H0j为基准胸径各指数级树高,H0k为基准胸径导向曲线树高,Hij为各指数级树高,Hik为导向曲线树高。
1.3 模型统计检验
为了检验立地形指数模型对全国针叶林分立地质量评价的准确性和适用性,对编制的立地形表进行落点检验和适用性检验。
1.3.1 落点检验
将林分平均胸径−树高数据作成散点图,并绘制到立地形曲线簇中,算出散点落在曲线簇内的概率,即立地形表能够解释林分平均树高生长的概率。一般认为,落点检验值大于90%时,新编的立地形表满足使用要求。否则,应进行必要的调整。
1.3.2 适用性检验
采用连续的调查监测数据对新编的立地形表进行适用性检验。根据林分平均胸径及树高由立地形指数表确定其立地形等级,然后,比较多期调查数据下林分立地形等级有无跳级的现象,并统计出跳级个数占总个数的百分比。一般认为,跳级个数小于5%时,新编的立地形表满足使用要求。
2. 结果与分析
2.1 立地形指数模型拟合结果
由表2可知,Richards模型拟合所有针叶树种决定系数均值为0.96,标准估计误差均值为0.98;Logistic模型拟合所有针叶树种决定系数均值为0.96,标准估计误差均值为1.10;Korf模型拟合所有针叶树种决定系数均值为0.96,标准估计误差均值为1.00。Richards模型的普遍适用性更强,但油杉和高山松2个优势树种林分的上限渐近线参数均超过45,与Richards模型参数所反映的林分生物学规律存在差异,即林分平均树高的上限水平应不超过45 m。油杉和高山松2个优势树种林分的Korf模型拟合参数也出现了偏离合理值的情况,因此这2个优势树种林分应选择Logistic模型作为导向曲线。
表 2 主要针叶林分胸径和树高模型参数Table 2. Model parameters of DBH and height for major coniferous stands林分
Stand typesRichards Logistic Korf a b c R2 SEE a b c R2 SEE a b c R2 SEE 冷杉 34.9304 0.0278 1.2032 0.94 2.08 29.7918 6.2168 − 0.0711 0.92 2.25 71.0181 − 8.2024 0.5228 0.94 2.07 云杉 35.0515 0.0292 1.2862 0.99 0.83 27.6166 7.9591 − 0.0872 0.98 1.12 104.1793 − 7.7122 0.4304 0.99 0.82 铁杉 42.7731 0.0100 0.7756 0.84 2.36 25.0287 4.3132 − 0.0612 0.81 2.52 228.4099 − 6.1365 0.2395 0.84 2.35 油杉 49.4001 0.0217 1.5328 0.96 0.94 17.6832 15.4880 − 0.1514 0.95 0.96 356.5069 − 9.6653 0.3327 0.96 0.94 落叶松 21.7763 0.0825 1.6565 0.92 1.54 21.4231 5.7592 − 0.1286 0.91 1.63 24.4672 − 16.0920 1.1943 0.91 1.63 红松 23.7699 0.0706 1.9944 0.95 1.54 22.4409 9.9858 − 0.1324 0.95 1.64 31.3234 − 15.3821 0.9800 0.95 1.60 樟子松 23.1622 0.0573 1.6375 0.97 1.07 19.8216 9.2197 − 0.1350 0.96 1.27 69.4325 − 7.1841 0.4718 0.97 1.06 赤松 11.2997 0.1945 5.7997 0.89 1.32 10.6562 48.3629 − 0.3444 0.92 1.14 15.2157 − 32.2581 1.4462 0.88 1.43 黑松 32.0888 0.0315 1.4875 0.97 0.60 13.1164 14.9074 − 0.2020 0.98 0.49 646.3492 − 8.9301 0.2569 0.97 0.62 油松 34.1642 0.0217 1.2051 0.99 0.28 17.6943 9.4751 − 0.1219 0.99 0.49 474.2441 − 8.0463 0.2431 0.99 0.26 华山松 23.2458 0.0527 1.5916 0.99 0.59 17.9922 10.4218 − 0.1496 0.98 0.68 69.1080 − 7.7007 0.4897 0.99 0.59 马尾松 20.7730 0.0585 1.4939 0.99 0.28 17.5935 8.1581 − 0.1427 0.99 0.55 41.5400 − 7.4772 0.5971 0.99 0.24 云南松 32.6336 0.0345 1.4617 0.99 0.38 22.9034 10.6239 − 0.1183 0.99 0.67 182.4129 − 7.9799 0.3567 0.99 0.38 思茅松 23.3830 0.0688 1.8721 0.97 0.87 19.5171 10.3107 − 0.1589 0.96 1.01 42.3634 − 10.2905 0.7343 0.98 0.84 高山松 47.8737 0.0196 1.2483 0.99 0.71 25.0354 10.2222 − 0.1076 0.98 0.89 378.0811 − 8.2583 0.2902 0.99 0.71 其他松类1) 15.6588 0.0804 1.7907 0.99 0.35 13.0084 10.8083 − 0.1960 0.99 0.28 36.7931 − 7.3685 0.5885 0.99 0.40 1) 其他松类指样地数量较少的针叶林分类型。
1) Other pines indicate stand types with less sample plots.导向曲线的选择不仅需要考虑模型的拟合决定系数和参数范围,同时也需要考虑导向曲线的良好形式,尤其是幼龄林阶段。拟合的导向曲线应能反映逻辑合理性,即林分胸径为0 cm,林分树高应为1.3 m,模型形式需要反映出此特征。大区域尺度的调查数据中,不同径阶段的样地数量呈现正态分布,导致小径阶林分的调查数据较少,也无法全面反映小径阶林分的生长情况,各针叶树种在小径阶的标准差范围也较小,如图1所示。其中,油杉、赤松、黑松、油松、华山松、马尾松、云南松、思茅松、高山松和其他松类胸径建模数据未超过60 cm,这也导致林分胸径−树高拟合曲线未出现明显的生长平缓阶段,这就意味着生产实践中应尽可能对中龄林、近熟林和成熟林进行评价,减少采用小径阶林分评价森林立地质量,从而避免出现跳级现象和评价结果的不确定。
2.2 立地形指数模型检验结果
根据主要针叶林分立地形指数模型曲线簇落点检验结果(图2)可知,冷杉林分落点检验值为95.67%、云杉林分落点检验值为97.42%、铁杉林分落点检验值为96.70%、油杉林分落点检验值为95.39%、落叶松林分落点检验值为97.90%、红松林分落点检验值为94.48%、樟子松林分落点检验值为96.80%、赤松林分落点检验值为92.23%、黑松林分落点检验值为97.69%、油松林分落点检验值为96.40%、华山松林分落点检验值为96.11%、马尾松林分落点检验值为99.16%、云南松林分落点检验值为97.55%、思茅松林分落点检验值为94.98%、高山松林分落点检验值为98.97%、其他松林分落点检验值为97.93%。落点检验值均大于90%,均值达96.59%,表明可以在实际生产中使用。此外,基于落点检验曲线簇分析可知,由于森林资源连续清查数据能获取准确的林分胸径数据,因而大区域尺度立地形指数模型相较于地位级指数模型具有更好的检验效果。
2.3 林分立地质量动态变化分析
根据主要针叶林分立地形等级占比动态分析结果(图3)可知,2003年16个针叶树种组立地形等级占比均值为Ⅰ级8.09%、Ⅱ级23.87%、Ⅲ级38.28%、Ⅳ级24.51%、Ⅴ级5.25%,2008年16个针叶树种组立地形等级占比均值为Ⅰ级8.51%、Ⅱ级24.56%、Ⅲ级36.70%、Ⅳ级25.19%、Ⅴ级5.04%,2013年16个针叶树种组立地形等级占比均值为Ⅰ级8.76%、Ⅱ级25.41%、Ⅲ级37.21%、Ⅳ级23.96%、Ⅴ级4.67%,2018年16个针叶树种组立地形等级占比均值为Ⅰ级9.64%、Ⅱ级29.91%、Ⅲ级34.79%、Ⅳ级21.55%、Ⅴ级4.12%。4次森林资源连续清查期间,针叶林分Ⅰ级和Ⅱ级占比均值合计增长了7.60个百分点,Ⅲ级均值合计减少了3.50个百分点,Ⅳ级和Ⅴ级均值合计减少了4.10个百分点。基于立地形等级的评价方法,20年间中国针叶林分立地质量表现为较好的改善趋势,比较典型的针叶林分包括冷杉林、云杉林、油杉林、落叶松林、油松林、华山松林、马尾松林、云南松林、高山松林和思茅松林,其中,马尾松林分有
15430 个样地,样本量大使得立地形等级变化趋势规律更加明显。铁杉林、油杉林、红松林、樟子松林、赤松林、黑松林和其他松类林则出现波动情况,以红松立地形Ⅲ级为例,2003、2008、2013和2018年的占比分别为60.00%、20.00%、40.00%和30.00%,出现了明显的跳跃,是因为小样本量分析导致的,20年间仅有10个样地未发生优势树种的变化,整体可用于立地形等级占比变化分析。3. 讨论与结论
3.1 讨论
不同区域间的气候差异导致林木生长速率差异,进而对林龄−树高关系产生影响,因此,采用林龄−树高关系评价立地质量主要受树种、气候、土壤肥力等主导因素的交互作用,无法建立统一的大尺度立地质量评价模型。相较于传统的立地指数和地位级法,胸径−树高关系在不同气候区域和林龄结构中具备一定的稳定性[17],常用于不同遗传种源林木的基因表观评估[18],受树种、土壤肥力和林分密度等主导因素的交互作用影响,这就为相同树种不同区域建立统一的立地质量评价模型提供了前提条件[19-20]。本文16个林分类型胸径−树高关系的拟合决定系数(均值0.96)大于林龄−树高关系的(均值0.94),以冷杉林为例,林龄−树高和胸径−树高关系的拟合决定系数分别为0.86和0.93。统一的胸径−树高立地质量评价模型使不同地区的相同林分评价结果具有可比性,但在实际应用过程中仍存在挑战,难以排除经营措施对林分密度等竞争指标的影响[21],导致胸径−树高关系评价立地质量偏差的不确定性增加,从而出现跳级现象,这也是后续研究中需要重点关注的环节。
在实际林业生产实践中,作为森林立地质量的关键因素,土壤类型、厚度、质地、养分的状况在无人为干扰的情况下,将在较长时间内维持在比较稳定的水平[1,22],因此,立地质量在一定周期内具有稳定性。与此同时,长期积累和分解的森林凋落物可以增加土壤中的速效磷、速效氮等养分含量,促进森林立地质量的改善;不合理的经营措施导致土壤有机物持续减少、土壤养分流失,也可能导致森林立地质量的恶化,因此,在一定周期内立地质量也具有波动性。胸径−树高关系评价森林立地质量的优势是简便和动态,劣势则是灵敏的动态变化可能是人为干扰(如采伐、补植)或气候变化(如降雨、有效积温增加)等综合因素导致,而非真实的立地质量改善[23-24],同时其也受建模评价样本量的影响,本文中样地数量小于500的铁杉林、油杉林、红松林、赤松林、黑松林和思茅松林均出现了不同程度的跳跃现象,即小样本分析导致的不确定性结果。因此,在林业生产实践中,应综合利用多种方法进行比较分析[7],全面、准确、客观和科学地反映森林立地质量及动态变化,这也是本文后续需要持续完善的地方。
3.2 结论
本研究中Richards、Logistic和Korf模型拟合导向曲线决定系数均值均大于0.95,结合模型形式和参数分析结果可用于建立全国主要针叶林分立地形指数模型,建立的立地形指数模型落点检验值均大于90%,均值达96.59%,可以在实际生产中使用。基于胸径−树高关系建立全国统一的立地质量评价模型具有可行性和合理性,通过减少气候差异导致基于树龄的生长速率对立地质量评价的影响偏差,使不同地区相同林分的评价结果具有可比性,在大尺度水平具有较好的适用性,但仍然需要警惕经营措施和小样本数据导致的评价结果不确定。
-
图 2 生物炭基渗融尿素肥(BIUF)与尿素的缓释性能
PNBF:松子壳炭基渗融尿素肥;PBF:花生壳炭基渗融尿素肥;OTBF:油茶壳炭基渗融尿素肥;Urea:纯尿素颗粒;HBF:稻壳炭基渗融尿素肥
Figure 2. The slow-release performances of biochar-based infiltrated urea fertilizer (BIUF) and urea
PNBF: Pine nut biochar-based infiltrated urea fertilizer; PBF: Peanut biochar-based infiltrated urea fertilizer; OTBF: Oil-tea biochar-based infiltrated urea fertilizer; Urea: Pure urea particles; HBF: Husk biochar-based infiltrated urea fertilizer
图 3 生物炭基渗融尿素肥(BIUF)的抗破碎性能
PBF:花生壳炭基渗融尿素肥;OTBF:油茶壳炭基渗融尿素肥;PNBF:松子壳炭基渗融尿素肥;HBF:稻壳炭基渗融尿素肥
Figure 3. Crushing resistance of biochar-based infiltrated urea fertilizer (BIUF)
PBF: Peanut biochar-based infiltrated urea fertilizer; OTBF: Oil-tea biochar-based infiltrated urea fertilizer; PNBF: Pine nut biochar-based infiltrated urea fertilizer; HBF: Husk biochar-based infiltrated urea fertilizer
图 4 生物炭和生物炭基渗融尿素肥的表观形貌
a:花生壳炭(PB);b:松子壳炭(PNB);c:油茶壳炭(OTB);d:稻壳炭(HB);e:花生壳炭基渗融尿素肥(PBF);f:松子壳炭基渗融尿素肥(PNBF);g:油茶壳炭基渗融尿素肥(OTBF);h:稻壳炭基渗融尿素肥(HBF)
Figure 4. The apparent morphology of biochar and biochar-based infiltrated urea fertilizer
a: Peanut biochar (PB); b: Pine nut biochar (PNB); c: Oil-tea biochar (OTB); d: Husk biochar (HB); e: Peanut biochar-based infiltrated urea fertilizer (PBF); f: Pine nut biochar-based infiltraed urea fertilizer (PNBF); g: Oil-tea biochar-based infiltrated urea fertilizer (OTBF); h: Husk biochar-based infiltrated urea fertilizer (HBF)
图 5 生物炭(a、c)和生物炭基渗融尿素肥(b、d)的热稳定性分析
图a、c中,HB:稻壳炭,PB:花生壳炭,PNB:松子壳炭,OTB:油茶壳炭;图b、d中,PNBF:松子壳炭基渗融尿素肥,HBF:稻壳炭基渗融尿素肥,OTBF:油茶壳炭基渗融尿素肥,PBF:花生壳炭基渗融尿素肥,Urea:纯尿素颗粒
Figure 5. The thermal stability analyses of biochar (a, c) and biochar-based infiltrated urea fertilizer (b, d)
In figure a and c, HB: Husk biochar, PB: Peanut biocharr, PNB: Pine nut biochar, OTB: Oil-tea biochar; In figure b and d, PNBF: Pine nut biochar-based infiltrated urea fertilizer, HBF: Husk biochar-based infiltrated urea fertilizer, OTBF: Oil-tea biochar-based infiltrated urea fertilizer, PBF: Peanut biochar-based infiltrated urea fertilizer; Urea: Pure urea particles
图 6 生物炭(a)和生物炭基渗融尿素肥(b)的红外分析
图a中,HB:稻壳炭,PNB:松子壳炭,OTB:油茶壳炭,PB:花生壳炭;图b中,Urea:纯尿素颗粒,HBF:稻壳炭基渗融尿素肥,PNBF:松子壳炭基渗融尿素肥,OTBF:油茶壳炭基渗融尿素肥,PBF:花生壳炭基渗融尿素肥
Figure 6. The FTIR analyses of biochar (a) and biochar-based infiltrated urea fertilizer (b)
In figure a, HB: Husk biochar, PNB: Pine nut biochar, OTB: Oil-tea biochar, PB: Peanut biocharr; In figure b, Urea: Pure urea particles, HBF: Husk biochar-based infiltrated urea fertilize, PNBF: Pine nut biochar-based infiltrated urea fertilizer, OTBF: Oil-tea biochar-based infiltrated urea fertilizer, PBF: Peanut biochar-based infiltrated urea fertilizer
-
[1] HEFFER P, PRUD'HOMME M, 茹铁军. 肥料展望2016—2020年(摘要报告)[J]. 磷肥与复肥, 2016, 31(10): 49-52. [2] LIU J L, YANG Y C, GAO B, et al. Bio-based elastic polyurethane for controlled-release urea fertilizer: Fabrication, properties, swelling and nitrogen release characteristics[J]. Journal of Cleaner Production, 2019, 209: 528-537. doi: 10.1016/j.jclepro.2018.10.263
[3] ZHENG J F, HAN J M, LIU Z W, et al. Biochar compound fertilizer increases nitrogen productivity and economic benefits but decreases carbon emission of maize production[J]. Agriculture Ecosystems and Environment, 2017, 241: 70-78. doi: 10.1016/j.agee.2017.02.034
[4] 李永华, 武雪萍, 何刚, 等. 我国麦田有机肥替代化学氮肥的产量及经济环境效应[J]. 中国农业科学, 2020, 53(23): 4879-4890. [5] WANG C Q, LUO D, ZHANG X, et al. Biochar-based slow-release of fertilizers for sustainable agriculture: A mini review[J]. Environmental Science and Ecotechnology, 2022, 10: 100167. doi: 10.1016/j.ese.2022.100167.
[6] GONZÁLEZ-CENCERRADO A, RANZ J P, TERESA LÓPEZ-FRANCO JIMÉNEZ M, et al. Assessing the environmental benefit of a new fertilizer based on activated biochar applied to cereal crops[J]. Science of the Total Environment, 2020, 711(4): 134668. doi: 10.1016/j.scitotenv.2019.134668.
[7] SAHA A, BASAK B B, GAJBHIYE N A, et al. Sustainable fertilization through co-application of biochar and chemical fertilizers improves yield, quality of Andrographis paniculata and soil health[J]. Industrial Crops and Products, 2019, 140: 111607. doi: 10.1016/j.indcrop.2019.111607.
[8] 王微, 王明峰, 姜洋, 等. 稻壳炭基肥的制备及其释放特性和机理探讨[J]. 可再生能源, 2020, 38(10): 1288-1294. [9] 王剑, 张砚铭, 邹洪涛, 等. 生物质炭包裹缓释肥料的制备及养分释放特性[J]. 土壤, 2013, 45(1): 186-189. doi: 10.3969/j.issn.0253-9829.2013.01.029 [10] 原鲁明, 赵立欣, 沈玉君, 等. 我国生物炭基肥生产工艺与设备研究进展[J]. 中国农业科技导报, 2015, 17(4): 107-113. [11] 曹兵, 黄志浩, 吴广利, 等. 控释掺混肥一次性减量施用对夏玉米产量、氮肥利用和叶片氮代谢酶活性的影响[J]. 中国土壤与肥料, 2021, 293(3): 127-133. doi: 10.11838/sfsc.1673-6257.20238 [12] 牛智有, 刘鸣, 牛文娟, 等. 炭肥比和膨润土粘结剂对炭基肥颗粒理化及缓释特性的影响[J]. 农业工程学报, 2020, 36(2): 219-227. doi: 10.11975/j.issn.1002-6819.2020.02.026 [13] 沈秀丽, 柳思远, 沈玉君, 等. 不同粒径生物炭包膜尿素缓释肥性能及缓释效果[J]. 农业工程学报, 2020, 36(15): 159-166. doi: 10.11975/j.issn.1002-6819.2020.15.020 [14] NOORDIN N, GHAZALI S, ADNAN N. Impact of sap-biochar incorporation on controlled release water retention fertilizer (CRWR) towards growth of okras (Abelmoschus esculentus)[J]. Materials Today: Proceedings, 2018, 5(10): 21911-21918. doi: 10.1016/j.matpr.2018.07.050
[15] LI H, XU H, ZHOU S, et al. Distribution and transformation of lead in rice plants grown in contaminated soil amended with biochar and lime[J]. Ecotoxicology and Environmental Safety, 2018, 165: 589-596. doi: 10.1016/j.ecoenv.2018.09.039
[16] XIANG A H, QI R Y, WANG M F, et al. Study on the infiltration mechanism of molten urea and biochar for a novel fertilizer preparation[J]. Industrial Crops and Products, 2020, 153: 112558. doi: 10.1016/j.indcrop.2020.112558.
[17] 蒋恩臣, 张伟, 秦丽元, 等. 粒状生物质炭基尿素肥料制备及其性能研究[J]. 东北农业大学学报, 2014, 45(11): 89-94. doi: 10.3969/j.issn.1005-9369.2014.11.014 [18] 钟旋. 稻壳炭基尿素肥的制备及其特性研究[D]. 广州: 华南农业大学, 2019. [19] 刘海林, 蔡隽, 杨红竹, 等. 成型压力对棒状复合肥料抗压性能及氮钾养分淋溶特性的影响[J]. 中国土壤与肥料, 2021(6): 276-281. doi: 10.11838/sfsc.1673-6257.20508 [20] WANG M F, XIANG A H, GAO Z N, et al. Study on the nitrogen-releasing characteristics and mechanism of biochar-based urea infiltration fertilizer[J]. Biomass Conversion and Biorefinery, 2021: 1-11. Doi: 10.1007/s13399-021-01848-5.
[21] 廖芬, 杨柳, 李强, 等. 不同生物质来源生物炭品质的因子分析与综合评价[J]. 华南农业大学学报, 2019, 40(3): 29-37. [22] WANG D H, DONG N, SHUI S E, et al. Analysis of urea pyrolysis in 132.5-190 ℃[J]. Fuel, 2019, 242: 62-67. doi: 10.1016/j.fuel.2019.01.011
[23] SHI W, JU Y Y, BIAN R J, et al. Biochar bound urea boosts plant growth and reduces nitrogen leaching[J]. Science of the Total Environment, 2020, 701: 134424. doi: 10.1016/j.scitotenv.2019.134424.
[24] LE CROY C, MASIELLO C A, RUDGERS J A, et al. Nitrogen, biochar, and mycorrhizae: Alteration of the symbiosis and oxidation of the char surface[J]. Soil Biology and Biochemistry, 2013, 58: 248-254. doi: 10.1016/j.soilbio.2012.11.023
[25] 安华良, 曲雅琪, 刘震, 等. 以1, 2–丙二醇为循环剂的尿素醇解合成碳酸二甲酯催化反应精馏研究[J]. 洁净煤技术, 2022, 28(1): 122-128. [26] BEDADE D K, SUTAR Y B, SINGHAL R S. Chitosan coated calcium alginate beads for covalent immobilization of acrylamidase: Process parameters and removal of acrylamide from coffee[J]. Food Chemistry, 2019, 275: 95-104. doi: 10.1016/j.foodchem.2018.09.090
[27] 钟旋, 蒋恩臣, 卢璐璎, 等. 稻壳炭的制备及其对尿素态氮的吸附特性[J]. 农业环境科学学报, 2021, 40(10): 2150-2158. doi: 10.11654/jaes.2021-0308 [28] CHEN Z, WANG M, JIANG E, et al. Pyrolysis of torrefied biomass[J]. Trends in Biotechnology, 2018, 36(12): 1287-1298. doi: 10.1016/j.tibtech.2018.07.005
[29] 于正国, 袁亮, 赵秉强, 等. 腐植酸与尿素结合工艺对尿素在潮土中转化的影响[J]. 中国土壤与肥料, 2022(1): 206-212. -
期刊类型引用(2)
1. 王殿伟,邵业韬,刘晓杰. AMF和DSE联合芦苇对4种重金属污染底泥的修复效应. 环境科学与技术. 2025(02): 40-49 . 百度学术
2. 封成玲,周永萍,田海燕,刘旭,张海娜. 棉种引发的研究进展. 农学学报. 2023(11): 17-22 . 百度学术
其他类型引用(1)