花生氮敏感品种及评价指标的筛选

    Screening and evaluation indicators for peanut nitrogen-sensitive cultivars

    • 摘要:
      目的 明确不同花生品种对氮素响应的特点。
      方法 本试验以来自全国各地的81份花生种质资源为材料,设置正常施氮与低氮胁迫2种大田试验处理,测定81份花生品种苗期的叶绿素含量及收获期的产量、干物质积累及农艺性状等19项指标。以测定的19项指标的氮响应系数为基础进行主成分分析,筛选出6个新的独立的综合指标,通过计算其隶属函数值与各综合指标权重得出花生氮敏感综合评价D值,通过聚类分析对花生品种进行分类。进一步分析不同类型花生品种的氮响应系数及指标间的相关性。
      结果 81份花生品种分为氮敏感型品种(13)、中间型品种(33)及氮不敏感型品种(35)。正常施氮处理下,氮不敏感型花生品种农艺性状的响应差异不显著,但氮敏感型和中间型花生品种产量及干物质积累的上升幅度显著高于氮不敏感型品种。不同性状的相关性分析表明,施氮主要通过影响花生干物质积累与分配及株型结构进而影响花生产量的形成。
      结论 花生苗期叶绿素含量、单株生产力与收获期干物质积累可作为花生氮敏感品种的筛选指标,研究结果可为花生氮高效品种的筛选与培育提供依据。

       

      Abstract:
      Objective To characterize the response of different peanut cultivars to nitrogen.
      Method A total of 81 peanut cultivars from all over China were used as materials, and two field treatments of normal nitrogen application and low nitrogen application were set up. Nineteen indexes, including chlorophyll content at the seedling stage as well as yield, dry matter accumulation and agronomic traits at the harvest stage, were measured in 81 peanut cultivars. The nitrogen response coefficients of the measured 19 indicators were used as the basis for principal component analysis, six new independent composite indicators were screened out, and the D values for comprehensive evaluation of peanut nitrogen sensitivity were obtained by calculating their affiliation function values and the weights of each composite indicator. The peanut cultivars were classified by cluster analysis. The correlations between nitrogen response coefficients and indicators of different types of peanut cultivars were further analyzed.
      Result The 81 peanut cultivars were divided into nitrogen-sensitive (13), intermediate (33) and nitrogen-insensitive (35) cultivars. Under normal nitrogen application treatments, the response of nitrogen-insensitive peanut cultivars did not differ significantly in agronomic traits, but the increase in yield and dry matter accumulation of nitrogen-sensitive and intermediate peanut cultivars were significantly higher than those of nitrogen-insensitive cultivars. Correlation analysis of different traits showed that nitrogen application mainly affected peanut yield formation by influencing peanut dry matter accumulation and distribution and plant structure.
      Conclusion Chlorophyll content at seedling stage, single plant productivity and dry matter accumulation at harvest stage can be used as screening indicators for peanut nitrogen-sensitive cultivars, and the results of the study can provide a basis for screening and breeding of nitrogen-efficient cultivars of peanut.

       

    /

    返回文章
    返回