Simulation of ecotoxicological effects of perchlorate and hexavalent chromium combined pollution in the aquatic ecosystem
-
摘要:目的
探究ClO4−和Cr6+在复合污染条件下对水生生态系统的生态毒理效应。
方法构建水生生态系统,分别放入生长状况一致的水葫芦Eichhornia crassipes、隆线溞Daphnia carinata和福寿螺Pomacea canaliculata,使其暴露于不同质量浓度ClO4−和Cr6+及其复合污染的水体中,研究ClO4−和Cr6+在单一和复合条件下对水葫芦、隆线溞和福寿螺的生态毒理效应。
结果随着暴露时间增加,隆线溞的种群增长呈先上升后下降的趋势。0.02 mg·L−1 的Cr6+可促进隆线溞生长,200 mg·L−1的ClO4−和0.20 mg·L−1的Cr6+及复合污染处理均对隆线溞生长起抑制作用。0.02 mg·L−1的Cr6+对福寿螺的生长无明显影响,但单一的ClO4− (20和200 mg·L−1)和0.20 mg·L−1的Cr6+及复合污染处理均对福寿螺的生长具有明显的抑制作用。随着水中污染物质量浓度的增加,水葫芦各器官中的ClO4−和Cr6+含量相应增加;相同浓度水平下,水葫芦各器官中ClO4−的含量高低顺序为:叶 > 茎 > 根,Cr6+含量的顺序为:根 > 茎 > 叶。与水葫芦相比,隆线溞和福寿螺体内的ClO4−含量较低。
结论ClO4−与Cr6+的单一和复合污染均对水生生态系统中的生物造成了毒害作用。水葫芦对ClO4−和Cr6+均有较强的吸收能力,富集ClO4−的主要器官是叶片、富集Cr6+的主要器官是根部,隆线溞和福寿螺对ClO4−也有一定的吸收,但吸收能力弱于水葫芦。
Abstract:ObjectiveTo investigate the ecotoxicological effects of ClO4− and Cr6+on the aquatic ecosystem under combined pollution conditions.
MethodThe aquatic ecosystem was constructed, Eichhornia crassipes, Daphnia carinata and Pomacea canaliculata with the same growth conditions were added, respectively, and exposed to water with different concentrations of ClO4− and Cr6+ and their combined pollution. The ecotoxicological effects of ClO4− and Cr6+ on E. crassipes, D. carinata and P. canaliculata under single and compound conditions were studied.
ResultWith the increase of exposure time, the population of D. carinata increased first and then decreased. The 0.02 mg·L−1 Cr6+ promoted the growth of D. carinata, while 200 mg·L−1 ClO4−, 0.20 mg·L−1 Cr6+ and their combined pollution inhibited the growth of D. carinata. The 0.02 mg·L−1 Cr6+ had little effect on the growth of P. canaliculata; Howerver, single ClO4− (20 and 200 mg·L−1) and 0.20 mg·L−1 Cr6+ as well as their combined pollution treatment groups had significant inhibitory effects. The contents of ClO4− and Cr6+ in each organ of E. crassipes increased with the increase of pollutant concentration in water. Under the same concentration of pollutant, the order of ClO4− content in all organs was leaf > stem > root, the order of Cr6+ content was root > stem > leaf. The contents of ClO4− in D. carinata and P. canaliculata were lower than that in E. crassipes.
ConclusionBoth single and combined pollution of ClO4− and Cr6+ cause toxic effects on organisms in aquatic ecosystems. E. crassipes has strong absorption ability to ClO4− and Cr6+, with ClO4− mainly concentrated in leaf, and Cr6+ in root. The absorbing abilities of D. carinata and P. canaliculata to ClO4− were weaker than that of E. crassipes.
-
-
表 1 不同处理下水葫芦各部位的ClO4−、Cr6+含量1)
Table 1 The contents of ClO4− and Cr6+ in various parts of Eichhornia crassipes under different treatments
处理
Treatment用量/(mg·L−1)
Dosagew(ClO4−)/(mg·kg−1)
Perchlorate contentw(Cr6+)/(mg·kg−1)
Hexavalent chromium contentClO4− Cr6+ 根
Root茎
Stem叶
Leaf根
Root茎
Stem叶
LeafCK 0 0 6.48±0.33b 0.79±0.05d 1.05±0.08d P20 20 0 15.91±0.91b 54.14±5.47c 247.68±38.66c P200 200 0 98.30±13.93a 660.87±14.20b 2 518.35±425.76ab Cr0.02 0 0.02 10.40±0.70b 1.81±0.46d 1.57±0.13cd Cr0.2 0 0.20 28.35±1.62a 7.12±0.70b 2.99±0.60b P20+Cr0.02 20 0.02 2.77±0.10b 37.08±1.49c 291.59±107.96c 10.39±0.70b 1.54±0.05d 1.57±0.05cd P20+Cr0.2 20 0.20 12.60±1.92b 145.21±31.61c 451.97±54.30c 30.27±3.19a 4.78±0.95c 2.68±0.07bc P200+Cr0.02 200 0.02 64.19±18.25a 564.02±128.78b 2 005.92±424.64b 10.40±0.50b 1.12±0.22d 2.20±0.58bc P200+Cr0.2 200 0.20 91.43±25.99a 995.17±109.84a 3 212.55±127.32a 31.69±2.09a 9.91±0.08a 5.14±0.29a 1)同列数据后的不同小写字母表示处理间差异显著(P<0.05,Duncan’s法)
1)Different lowercase letters in the same column indicate significant differences among different treatments(P<0.05, Duncan’s method)表 2 不同处理下水葫芦各部位的ClO4−、Cr6+富集系数(BCF)1)
Table 2 The bio-concentration factor (BCF) of ClO4− and Cr6+ in various parts of Eichhornia crassipes under different treatments
处理
Treatment用量/(mg·L−1) BCF/(L·kg−1) Dosage ClO4− Cr6+ ClO4− Cr6+ 根
Root茎
Stem叶
Leaf根
Root茎
Stem叶
LeafP20 20 0 0.80a 2.71bc 12.39ab P200 200 0 0.49bc 3.31bc 12.59ab Cr0.02 0 0.02 520.00a 90.25a 78.60a Cr0.2 0 0.20 141.75b 35.61c 14.97b P20+Cr0.02 20 0.02 0.14d 1.85c 14.58ab 519.50a 76.85ab 78.60a P20+Cr0.2 20 0.20 0.63ab 7.26a 22.60a 151.35b 23.96c 13.39b P200+Cr0.02 200 0.02 0.32cd 2.82bc 10.03b 520.00a 55.85abc 109.95a P200+Cr0.2 200 0.20 0.46bc 4.98ab 16.06ab 158.45b 49.53bc 25.68b 1)同列数据后的不同小写字母表示处理间差异显著(P<0.05,Duncan’s法)
1) Different lowercase letters in the same column indicate significant differences among different treatments(P<0.05, Duncan’s method)表 3 第14天不同处理对隆线溞生长的影响及ClO4−、Cr6+的交互作用类型
Table 3 Effects of different treatments on the growth of Daphnia carinata on the 14th day and the interaction types of ClO4− and Cr6+
处理
Treatment密度1)/(个·L−1)
Density抑制率(Ri)/%
Inhibition
ratio交互作用类型2)
Type of
interactionCK 104.5±4.70bc P20 115.5±7.71b –10.53 P200 87.0±3.00d 16.75 Cr0.02 139.5±4.80a –33.49 Cr0.2 82.5±5.06d 21.05 P20+Cr0.02 133.8±6.00a –27.99 S P20+Cr0.2 84.0±6.56d 19.62 S P200+Cr0.02 90.0±5.42cd 13.88 S P200+Cr0.2 77.0±6.42d 26.32 A 1)该列数据后的不同小写字母表示处理间差异显著(P<0.05,Duncan’,s法);2) S:协同,A:拮抗
1)Different lowercase letters in this column indicate significant differences among different treatments (P<0.05, Duncan’s test);2) S: Synergism, A: Antagonism表 4 不同处理下隆线溞体内ClO4−的含量以及富集系数(BCF)1)
Table 4 The content and bio-concentration factor (BCF) of ClO4− in Daphnia carinata under different treatments
处理
Treatmentw(ClO4−)/(mg·kg−1)
Perchlorate contentBCF/(×10−3 L·kg−1) P20 0.035±0.002c 1.75a P200 0.316±0.034a 1.58a P20+Cr0.02 0.028±0.004c 1.40ab P20+Cr0.2 0.021±0.002c 1.05b P200+Cr0.02 0.251±0.024b 1.26ab P200+Cr0.2 0.259±0.024b 1.30ab 1)同列数据后的不同小写字母表示处理间差异显著(P<0.05,Duncan’s法)
1)Different lowercase letters in the same column indicate significant differences among different treatments(P<0.05, Duncan’s test)表 5 ClO4−和Cr6+复合污染对福寿螺生长的交互作用类型
Table 5 Interaction types of ClO4− and Cr6+ combined pollution on the growth of Pomacea canaliculata
处理
Treatment抑制率(Ri)/%
Inhibition ratio交互作用类型1)
Type of interaction螺高
Snail
height体质量
Body
weight螺高
Snail
height体质量
Body
weightP20 0.32 0.07 P200 0.92 0.78 Cr0.02 −0.01 −0.03 Cr0.2 0.22 0.32 P20+Cr0.02 0.44 0.38 S S P20+Cr0.2 0.25 0.20 A A P200+Cr0.02 0.51 0.63 A A P200+Cr0.2 0.58 0.64 A A 1) S:协同,A:拮抗
1) S: Synergism, A: Antagonism表 6 不同处理下福寿螺各部位的ClO4−、Cr6+含量及对应富集系数(BCFs)1)
Table 6 Contents and relative bio-concentration factors (BCFs) of ClO4− and Cr6+ in different parts of Pomacea canaliculata under different treatments
处理
Treatment用量/(mg·L−1)
Dosage螺壳 Snail shell 螺肉 Snail body w/(mg·kg−1) BCF/(L·kg−1) w(Cr6+)/
(mg·kg−1)BCFCr6+/
(L·kg−1)ClO4− Cr6+ ClO4− Cr6+ ClO4− Cr6+ CK 0 0 0 0.122±0.058c 0.414±0.169c P20 20 0 0.925±0.323b 46.25b P200 200 0 11.154±0.554a 55.77b Cr0.02 0 0.02 0.181±0.034c 9.05abc 1.269±0.025b 63.45a Cr0.2 0 0.20 0.931±0.108b 4.66d 5.626±0.330a 28.13b P20+Cr0.02 20 0.02 1.200±0.178b 0.159±0.035c 60.00b 7.95bcd 1.059±0.034b 52.95a P20+Cr0.2 20 0.20 2.929±0.896b 1.058±0.102b 146.45a 5.29cd 6.750±0.464a 33.75b P200+Cr0.02 200 0.02 14.192±3.576a 0.266±0.017c 70.96ab 13.30a 1.274±0.052b 63.70a P200+Cr0.2 200 0.20 14.906±2.919a 1.957±0.291a 74.53ab 9.79ab 7.297±1.358a 36.49b 1)同列数据后的不同小写字母表示处理间差异显著(P<0.05,Duncan’s法)
1)Different lowercase letters in the same column indicate significant differences among different treatments(P<0.05, Duncan’s test) -
[1] URBANSKY E T. Perchlorate chemistry: Implications for analysis and remediation[J]. Bioremediation Journal, 1998, 2(2): 81-95. doi: 10.1080/10889869891214231
[2] STETSON S J, WANTY R B, HELSEL D R, et al. Stability of low levels of perchlorate in drinking water and natural water samples[J]. Analytica Chimica Acta, 2006, 567(1): 108-113. doi: 10.1016/j.aca.2006.03.030
[3] LUIS S J, MIESNER E A, ENSLIN C L, et al. Review of perchlorate occurrence in large public drinking water systems in the United States of America[J]. Water Supply, 2019, 19(3): 681-694. doi: 10.2166/ws.2018.135
[4] JIANG S, COLE-DAI J, AN C, et al. Spatial variability of perchlorate in East Antarctic surface snow: Implications for atmospheric production[J]. Atmospheric Environment, 2020, 238: 117743. doi: 10.1016/j.atmosenv.2020.117743.
[5] PLEUS R C, COREY L M. Environmental exposure to perchlorate: A review of toxicology and human health[J]. Toxicology and Applied Pharmacology, 2018, 358: 102-109. doi: 10.1016/j.taap.2018.09.001
[6] 陈桂葵, 杨杰峰, 黎华寿, 等. 高氯酸盐和铬复合污染对水稻生理特性的影响[J]. 生态学报, 2010, 30(15): 4144-4153. [7] YU J, DONG H, SHI L, et al. Reproductive toxicity of perchlorate in rats[J]. Food and Chemical Toxicology, 2019, 128: 212-222. doi: 10.1016/j.fct.2019.04.014
[8] URBANSKY E T, BROWN S K. Perchlorate retention and mobility in soils[J]. Journal of Environmental Monitoring, 2003, 5(3): 455-462. doi: 10.1039/B301125A
[9] COATES J D, ACHENBACH L A. Microbial perchlorate reduction: Rocket-fuelled metabolism[J]. Nature Reviews Microbiology, 2004, 2(7): 569-580. doi: 10.1038/nrmicro926
[10] 史亚利, 高健民, 李鑫, 等. 浏阳河水、底泥和土壤中高氯酸盐的污染[J]. 环境化学, 2010, 29(3): 388-391. [11] WU Q, ZHANG T, SUN H W, et al. Perchlorate in tap water, groundwater, surface waters, and bottled water from China and its association with other inorganic anions and with disinfection byproducts[J]. Archives of Environmental Contamination and Toxicology, 2010, 58(3): 543-550. doi: 10.1007/s00244-010-9485-6
[12] 姜东生, 石小荣, 崔益斌, 等. 3种典型污染物对水生生物的急性毒性效应及其水质基准比较[J]. 环境科学, 2014, 35(1): 279-285. [13] 黄辉, 高峡, 王娟. 六价铬对玉米幼苗生长及抗氧化系统的影响[J]. 农业环境科学学报, 2011, 30(4): 633-638. [14] 彭叶棉, 杨阳, 侯素霞, 等. 外源六价铬在土壤中的有效性及其小麦毒性效应[J]. 生态环境学报, 2020, 29(2): 369-377. [15] SVECEVIČ IUS G. Acute toxicity of hexavalent chromium to european freshwater fish[J]. Bulletin of Environmental Contamination and Toxicology, 2006, 77(5): 741-747. doi: 10.1007/s00128-006-1126-4
[16] 王爱云, 黄姗姗, 钟国锋, 等. 铬胁迫对3种草本植物生长及铬积累的影响[J]. 环境科学, 2012, 33(6): 2028-2037. [17] KOTA J, STASICKA Z. Chromium occurrence in the environment and methods of its speciation[J]. Environmental Pollution, 2000, 107(3): 263-283. doi: 10.1016/S0269-7491(99)00168-2
[18] ZHOU J, DU N, LI D Q, et al. Combined effects of perchlorate and hexavalent chromium on the survival, growth and reproduction of Daphnia carinata[J]. Science of the Total Environment, 2021, 769: 144676. doi: 10.1016/j.scitotenv.2020.144676.
[19] 张茹, 陈桂葵, 黎华寿, 等. 高氯酸盐与铅复合污染对8种空心菜幼苗生长的影响[J]. 农业环境科学学报, 2015, 34(3): 415-423. [20] BLISS C I. The toxicity of poisons applied jointly[J]. Annals of Applied Biology, 1939, 26(3): 585-615. doi: 10.1111/j.1744-7348.1939.tb06990.x
[21] 杨杰峰, 陈桂葵, 黎华寿. 高氯酸盐与铬复合污染对水稻幼苗生长的影响[J]. 农业环境科学学报, 2010, 29(2): 223-228. [22] SMITH P N, YU L, MCMURRY S T, et al. Perchlorate in water, soil, vegetation, and rodents collected from the Las Vegas Wash, Nevada, USA[J]. Environmental Pollution, 2004, 132(1): 121-127. doi: 10.1016/j.envpol.2004.03.017
[23] 方齐乐, 陈宝梁. 高氯酸盐污染土壤及地下水的植物–微生物修复研究进展[J]. 环境科学学报, 2011, 31(8): 1569-1579. [24] HE H Z, GAO H S, CHEN G K, et al. Effects of perchlorate on growth of four wetland plants and its accumulation in plant tissues[J]. Environmental Science and Pollution Research, 2013, 20(10): 7301-7308. doi: 10.1007/s11356-013-1744-4
[25] GRANTZ D A, BURKEY K O, JACKSON W A, et al. Perchlorate content of plant foliage reflects a wide range of species-dependent accumulation but not ozone-induced biosynthesis[J]. Environmental Pollution, 2014, 184: 690-696. doi: 10.1016/j.envpol.2013.03.048
[26] 陈倩, 陶功胜, 谢寅峰, 等. 高氯酸钾胁迫对水稻幼苗光合作用及保护酶活性的影响[J]. 江苏农业学报, 2013, 29(4): 715-721. [27] VIJAYA NADARAJA A, PUSHPANGADHAN SARASWATHY D, CHERUVATHERY RAVINDRAN S, et al. Spatio-temporal distribution of perchlorate and its toxicity in Hydrilla verticillata[J]. Ecotoxicology and Environmental Safety, 2017, 144: 490-497. doi: 10.1016/j.ecoenv.2017.06.053
[28] THEODORAKIS C W, RINCHARD J, CARR J A, et al. Thyroid endocrine disruption in stonerollers and cricket frogs from perchlorate-contaminated streams in east-central texas[J]. Ecotoxicology, 2006, 15(1): 31-50. doi: 10.1007/s10646-005-0040-6
[29] CAMPBELL D E K, MONTGOMERIE R D, LANGLOIS V S. Lifecycle exposure to perchlorate differentially alters morphology, biochemistry, and transcription as well as sperm motility in Silurana tropicalis frogs[J]. Environmental Pollution, 2018, 237: 196-204. doi: 10.1016/j.envpol.2018.02.038
[30] 谭敏卿, 赵雪松, 尤宏, 等. 高氯酸钠对斑马鱼胚胎的毒性效应[J]. 环境科学与管理, 2011, 36(9): 45-48. doi: 10.3969/j.issn.1673-1212.2011.09.010 [31] PARK J, RINCHARD J, LIU F, et al. The thyroid endocrine disruptor perchlorate affects reproduction, growth, and survival of mosquitofish[J]. Ecotoxicology and Environmental Safety, 2006, 63(3): 343-352. doi: 10.1016/j.ecoenv.2005.04.002
[32] 金伟. 盐和铬对单细胞藻生理生化的影响[J]. 河北大学学报(自然科学版), 2002, 22(1): 44-50. [33] 李玲, 李森, 樊华, 等. 水葫芦对重金属镉和铬的长期富集效应[J]. 安徽农业科学, 2016, 44(24): 34-37. [34] BAKSHI A, PANIGRAHI A K. A comprehensive review on chromium induced alterations in fresh water fishes[J]. Toxicology Reports, 2018, 5: 440-447. doi: 10.1016/j.toxrep.2018.03.007
[35] PONTI B, BETTINETTI R, DOSSI C, et al. How reliable are data for the ecotoxicity of trivalent chromium to Daphnia Magna?[J]. Environmental Toxicology and Chemistry, 2014, 33(10): 2280-2287. doi: 10.1002/etc.2672
[36] 任新, 赵雪松, 段小月, 等. 四溴二苯醚与高氯酸盐联合暴露对成年斑马鱼肝脏抗氧化系统的影响[J]. 唐山学院学报, 2018, 31(3): 29-34. [37] MUKHI S, TORRES L, PATIÑO R. Effects of larval-juvenile treatment with perchlorate and co-treatment with thyroxine on zebrafish sex ratios[J]. General and Comparative Endocrinology, 2007, 150(3): 486-494. doi: 10.1016/j.ygcen.2006.11.013
[38] CHEN H, GUO Z, ZHOU Y, et al. Accumulation, depuration dynamics and effects of dissolved hexavalent chromium in juvenile Japanese medaka (Oryzias latipes)[J]. Ecotoxicology and Environmental Safety, 2018, 148: 254-260. doi: 10.1016/j.ecoenv.2017.10.037