• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

狂犬病病毒强、弱毒株糖蛋白调节I型干扰素作用的差异分析

肖宇, 吴凡, 张宝石, 徐孟磊, 龙家慧, 罗均, 郭霄峰, 罗永文

肖宇, 吴凡, 张宝石, 等. 狂犬病病毒强、弱毒株糖蛋白调节I型干扰素作用的差异分析[J]. 华南农业大学学报, 2024, 45(2): 190-198. DOI: 10.7671/j.issn.1001-411X.202211015
引用本文: 肖宇, 吴凡, 张宝石, 等. 狂犬病病毒强、弱毒株糖蛋白调节I型干扰素作用的差异分析[J]. 华南农业大学学报, 2024, 45(2): 190-198. DOI: 10.7671/j.issn.1001-411X.202211015
XIAO Yu, WU Fan, ZHANG Baoshi, et al. The different regulatory effect of glycoproteins from virulent and attenuated strain of rabies virus on type I interferon signaling pathway[J]. Journal of South China Agricultural University, 2024, 45(2): 190-198. DOI: 10.7671/j.issn.1001-411X.202211015
Citation: XIAO Yu, WU Fan, ZHANG Baoshi, et al. The different regulatory effect of glycoproteins from virulent and attenuated strain of rabies virus on type I interferon signaling pathway[J]. Journal of South China Agricultural University, 2024, 45(2): 190-198. DOI: 10.7671/j.issn.1001-411X.202211015

狂犬病病毒强、弱毒株糖蛋白调节I型干扰素作用的差异分析

基金项目: 广东省基础与应用基础研究基金(2018A030313163)
详细信息
    作者简介:

    肖 宇,硕士研究生,主要从事动物病毒学研究,E-mail: xiaomou1022@163.com

    通讯作者:

    罗永文,副教授,博士,主要从事预防兽医学研究,E-mail: ywluo@scau.edu.cn

  • 中图分类号: S852.655

The different regulatory effect of glycoproteins from virulent and attenuated strain of rabies virus on type I interferon signaling pathway

  • 摘要:
    目的 

    狂犬病(Rabies)是由狂犬病病毒(Rabies virus,RABV)引起的一种高致死性人兽共患传染病。I型干扰素(IFN-I)通路在抵抗RABV感染中发挥重要作用。RABV可通过磷蛋白及核蛋白的功能逃逸IFN-I的抗病毒作用,本研究旨在探讨对RABV的致病性有重要影响的糖蛋白(Glycoprotein,G)在调节IFN-I通路方面扮演怎样的角色。

    方法 

    将RABV弱毒株Hep-Flury的G基因替换成致病株CVS-11的G基因,拯救得到重组病毒HepG,分析Hep-Flury、CVS-11和HepG这3种毒株在体内和体外感染对IFN-I通路激活和调控的差别,比较它们在神经细胞中对抗IFN-I抗病毒作用的差异性。

    结果 

    替换了CVS-11的G基因后,重组病毒HepG致病力增强,能够100%致死小鼠,在鼠脑中的增殖水平显著高于亲本株Hep-Flury。在感染鼠脑早期及体外神经细胞时,弱毒株Hep-Flury能够较快地激活IFN-I通路相关基因的表达,重组病毒HepG的激活能力介于Hep-Flury和CVS-11之间。利用Poly(I:C)激活神经细胞的IFN-I通路后,Hep-Flury的增殖被显著抑制,CVS-11和HepG的复制几乎不受影响,表现出一定的抵抗能力。

    结论 

    RABV的G蛋白在调节和抵抗IFN-I通路方面发挥重要功能,为进一步探究RABV致病毒株的G蛋白如何协助病毒在中枢神经系统中逃逸IFN-I提供了线索和依据。

    Abstract:
    Objective 

    Rabies is a highly lethal zoonotic infectious disease caused by rabies virus (RABV). Type I interferon (IFN-I) pathway plays an important role in resisting RABV infection. RABV can escape the antiviral effect of IFN-I through the function of its phosphoprotein and nucleoprotein. The aim of the study was to investigate the role of glycoprotein (G), which has an important impact on the pathogenicity of RABV, in regulating IFN-I pathway needs more comprehensive exploration.

    Method 

    This study replaced the G gene of the RABV attenuated strain Hep-Flury with the G gene of the pathogenic strain CVS-11 to rescue and acquire the recombinant virus HepG. We analyzed the differences in the activation and regulation of IFN-I pathway in vivo and in vitro infected with Hep-Flury, CVS-11 and HepG, and compared the differences of these virus strains in fighting against antiviral effect of IFN-I in nerve cells.

    Result 

    After replacing G gene, the recombinant virus HepG had enhanced pathogenicity, was able to kill 100% of mice and the proliferation level in the mouse brain was significantly higher than that of the parental strain Hep-Flury. While infecting mouse brain early and in vitro neuronal cells, the attenuated strain Hep-Flury was able to activate the expression of IFN-I pathway-related genes faster, and the activation ability of HepG was between that of Hep-Flury and CVS-11. After activation of the IFN-I pathway in neuronal cells using Poly(I:C), the proliferation of Hep-Flury was significantly inhibited, and the replication of CVS-11 and HepG was almost unaffected, showing some resistance.

    Conclusion 

    G protein of RABV plays an important role in regulating and resisting the IFN-I pathway, providing the clue and evidence for further exploring how the G protein of RABV pathogenic strains helps the virus escape IFN-I pathway in the central nervous system.

  • 图  1   RABV重组毒株HepG构建示意图

    Figure  1.   Construction diagram of RABV recombinant strain HepG

    图  2   构建重组病毒HepG的扩增片段

    M:DNA marker DL10000;1、2:C区段基因;3、4:L片段基因;5、6:CVS-11 G基因

    Figure  2.   Amplified fragments for construction of recombinant virus HepG

    M: DNA marker DL10000; 1, 2: C-segment gene; 3, 4: L-segment gene; 5, 6: CVS-11 G gene

    图  3   重组病毒HepG的免疫荧光检测

    Figure  3.   Immunofluorescence detection of recombinant virus HepG

    图  4   3种RABV毒株感染的KM小鼠的体质量变化

    Figure  4.   Body weight changes of KM mice infected with three RABV strains

    图  5   RABV感染鼠脑后病毒载量和病毒基因转录水平变化

    “*”“**”“***”分别表示在 P<0.05、 P<0.01、 P<0.001水平差异显著(t检验)

    Figure  5.   Changes of viral load and viral gene transcription in the brains of mice infected with RABV

    “*”, “**” and “***” indicate significant differences at P <0.05, P <0.01 and P <0.001 levels, respectively (t test)

    图  6   RABV感染鼠脑后IFN-I通路相关基因表达分析

    “*”“**”“***”分别表示在 P<0.05、 P<0.01、 P<0.001水平差异显著(t检验)

    Figure  6.   Expression analysis of IFN-I pathway related genes in the brains of mice infected with RABV

    “*”, “**” and “***” indicate significant differences at P <0.05, P <0.01 and P <0.001 levels, respectively (t test)

    图  7   RABV感染鼠脑后不同IFN基因表达分析

    “*”“**”“***”分别表示在 P<0.05、 P<0.01、 P<0.001水平差异显著(t检验)

    Figure  7.   Expression analysis of IFN genes in the brains of mice infected with RABV

    “*”, “**” and “***” indicate significant differences at P <0.05, P <0.01 and P <0.001 levels, respectively (t test)

    图  8   不同RABV毒株感染Neuro-2a细胞的一步生长曲线

    “*”“**”分别表示CVS-11/HepG与Hep-Flury在P<0.05和P<0.01水平差异显著(t检验)

    Figure  8.   One-step growth curve of different RABVs in Neuro-2a

    “*” and “**” indicate significant differences between CVS-11/HepG and Hep-Flury at P<0.05 and P<0.01 levels, respectively (t test)

    图  9   RABV感染Neuro-2a细胞对IFN-I通路上游基因表达的影响

    “*”“**”“***”分别表示在 P<0.05、 P<0.01、 P<0.001水平差异显著(t检验)

    Figure  9.   Effect of RABV infection on expression of upstream genes of IFN-I pathway in Neuro-2a cells

    “*”, “**” and “***” indicate significant differences at P <0.05, P <0.01 and P <0.001 levels, respectively (t test)

    图  10   RABV感染Neuro-2a细胞对IFN-I通路下游基因表达的影响

    “*”“**”“***”分别表示在 P<0.05、 P<0.01、 P<0.001水平差异显著(t检验)

    Figure  10.   Effect of RABV infection on expression of downstream genes of IFN-I pathway in Neuro-2a cells

    “*”, “**” and “***” indicate significant differences at P <0.05, P <0.01 and P <0.001 levels, respectively (t test)

    图  11   Poly(I:C)处理体外神经细胞对RABV复制的影响

    “*”表示相同RABV毒株感染Poly(I:C)处理和未处理细胞在P<0.05水平差异显著(t检验)

    Figure  11.   Effect of Poly(I:C) treatment on the replication of RABV for in vitro nerve cells

    “*” indicates significant differences between Poly(I:C) treated and untreated cells infected with the same RABV strain at P<0.05 level (t test)

    表  1   HepG构建的引物序列

    Table  1   Primer sequences for construction of HepG

    基因片段
    Gene segment
    引物序列(5′→3′)
    Primer sequence
    HEP-L F: AGGCCGGTCATCCTTTTGACACCTCAAGTCCAGA
    R: ATTTTAGCATGTACAGGCTTTCATTAATGTCCGGC
    HEP-C F: GCCTGTACATGCTAAAATTCTTGTAYGATGCATCTTG
    R: CTTTCCTTAAGTCTTTTGAGGGATGTTAATAGTTTT
    CVS-G F: CAAAAGACTTAAGGAAAGATGGTTCCTCAGGTTCTT
    R: CAAAAGGATGACCGGCCTTCACAGTCTGATCTCACCT
    下载: 导出CSV

    表  2   RT-qPCR检测引物

    Table  2   Primers used for RT-qPCR

    基因
    Gene
    上游引物序列(5′→3′)
    Forward primer sequence
    下游引物序列(5′→3′)
    Reverse primer sequence
    RABV genome GACAGCGTCAATTGCAAAGCAAAAAT GGGTACTTGTACTCATATTGATCCACGAT
    N GCACTGGCAGATGACGGAAC TCGGCGAATGAGTTTGGACG
    Leader RNA TGTAGGGGTGTTACATTTTT ACGCTTAACAACAAAACC
    Cxcl10 TCCATATCGATGACGGGCCA CAACACGTGGGCAGGATAGG
    Dhx58 CCAGAGCACACACATGACCC CCATAGCGCACCACCACATT
    IFN-α4 AGCCTGTGTGATGCAGGAACC CAGCAAGTTGGTTGAGGAAGAG
    IFN-κ TGGAGTTGGGCAAGTATTTCTTC GGACTTGGAAAATATAATGAAACATCTTC
    IFN-β ACCTACAGGGCGGACTTCAA ACACTGTCTGCTGGTGGAGT
    IFN-γ TCAGCAACAGCAAGGCGAAA ATTGAATGCTTGGCGCTGGA
    IL6 TGCCTTCTTGGGACTGATGC GACAGGTCTGTTGGGAGTGGT
    IRF3 TCAGGATCCCGTGGAAGCAT TGACACGTCCGGCTTATCCT
    IRF7 ACTGGCTATTGGGGAGGTC ACGACCGAAATGCTTCCAGG
    ISG15 GACGCAGACTGTAGACACGC TTAGGCCATACTCCCCCAGC
    MDA5 GAGCACCTACGCACTTTCCC CCACCGTCGTAGCGATAAGC
    MyD88 TCATGTTCTCCATACCCTTGGT AAACTGCGAGTGGGGTCAG
    RIG-I CCTTGATTGCCCTGATGTTG ATTTCTCCCTGTCCCTCCAA
    RNF125 GGCGCACATAAGGACCTGTG TCATCCAGTTCCCGCTGACA
    TLR3 GTGAGATACAACGTAGCTGACTG TCCTGCATCCAAGATAGCAAGT
    TLR7 TCTTTGGGTTTCGATGGTTTCC GCAGTCCACGATCACATGGG
    TLR9 ATGGTTCTCCGTCGAAGGACT GAGGCTTCAGCTCACAGGG
    GAPDH AGAGTGTTTCCTCGTCCCGT CTGTGCCGTTGAATTTGCCG
    下载: 导出CSV
  • [1]

    SCOTT T P, NEL L H. Lyssaviruses and the fatal encephalitic disease rabies[J]. Frontiers in Immunology, 2021, 12: 786953. doi: 10.3389/fimmu.2021.786953.

    [2]

    FOOKS A R, BANYARD A C, HORTON D L, et al. Current status of rabies and prospects for elimination[J]. Lancet, 2014, 384(9951): 1389-1399. doi: 10.1016/S0140-6736(13)62707-5

    [3] 扈荣良, 张守峰, 刘晔. 我国狂犬病预防和控制建议[J]. 中国人兽共患病学报, 2012, 28(5): 487-491. doi: 10.3969/j.issn.1002-2694.2012.05.020
    [4]

    FAUL E J, WANJALLA C N, SUTHAR M S, et al. Rabies virus infection induces type I interferon production in an IPS-1 dependent manner while dendritic cell activation relies on IFNAR signaling[J]. PLoS Pathogens, 2010, 6(7): e1001016. doi: 10.1371/journal.ppat.1001016

    [5]

    LI J, FABER M, DIETZSCHOLD B, et al. The role of toll-like receptors in the induction of immune responses during rabies virus infection[J]. Advances in Virus Research: Research Advances in Rabies, 2011, 79: 115-126.

    [6]

    LUO Z, LV L, LI Y, et al. Dual role of toll-like receptor 7 in the pathogenesis of rabies virus in a mouse model[J]. Journal of Virology, 2020, 94(9): e00111-20.

    [7] 王林栋, 张守峰, 刘晔, 等. 基于RIG-I的狂犬病病毒免疫逃逸机制[J]. 中国生物制品学杂志, 2013, 26(10): 1517-1521. doi: 10.13200/j.cnki.cjb.001924
    [8]

    BRZOZKA K, FINKE S, CONZELMANN K K. Identification of the rabies virus alpha/beta interferon antagonist: Phosphoprotein P interferes with phosphorylation of interferon regulatory factor 3[J]. Journal of Virology, 2005, 79(12): 7673-7681. doi: 10.1128/JVI.79.12.7673-7681.2005

    [9]

    VIDY A, CHELBI-ALIX M, BLONDEL D. Rabies virus P protein interacts with STAT1 and inhibits interferon signal transduction pathways[J]. Journal of Virology, 2005, 79(22): 14411-14420. doi: 10.1128/JVI.79.22.14411-14420.2005

    [10]

    MASATANI T, ITO N, SHIMIZU K, et al. Rabies virus nucleoprotein functions to evade activation of the RIG-I-mediated antiviral response[J]. Journal of Virology, 2010, 84(8): 4002-4012. doi: 10.1128/JVI.02220-09

    [11] 郭霄峰, 富振芳. 狂犬病毒糖蛋白基因的重排及病毒的拯救[J]. 华南农业大学学报, 2006, 27(1): 104-106. doi: 10.3969/j.issn.1001-411X.2006.01.027
    [12]

    ZHANG D, HE F, BI S, et al. Genome-wide transcriptional profiling reveals two distinct outcomes in central nervous system infections of rabies virus[J]. Frontiers in Microbiology, 2016, 7: 751. doi: 10.3389/fmicb.2016.00751.

    [13]

    HORNUNG V, ELLEGAST J, KIM S, et al. 5'-Triphosphate RNA is the ligand for RIG-I[J]. Science, 2006, 314(5801): 994-997. doi: 10.1126/science.1132505

    [14]

    YANG Y, HUANG Y, GNANADURAI C W, et al. The inability of wild-type rabies virus to activate dendritic cells is dependent on the glycoprotein and correlates with its low level of the de novo-synthesized leader RNA[J]. Journal of Virology, 2015, 89(4): 2157-2169. doi: 10.1128/JVI.02092-14

    [15]

    ZHANG H, HUANG J, SONG Y, et al. Regulation of innate immune responses by rabies virus[J]. Animal Models and Experimental Medicine, 2022, 5(5): 418-429. doi: 10.1002/ame2.12273

图(11)  /  表(2)
计量
  • 文章访问数:  700
  • HTML全文浏览量:  60
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-05
  • 网络出版日期:  2024-01-05
  • 发布日期:  2022-11-29
  • 刊出日期:  2024-03-09

目录

    Corresponding author: LUO Yongwen, ywluo@scau.edu.cn

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回