Cloning and functional verification of circadian clock gene MtTOC1a in Medicago truncatula
-
摘要:目的
分析蒺藜苜蓿Medicago truncatula生物钟基因MtTOC1a的蛋白结构,探究MtTOC1a在生物钟系统中的生物学功能,比较其与拟南芥Arabidopsis thaliana的AtTOC1功能相似性和差异性。
方法通过生物信息学分析,在全基因组范围内鉴定了TOC1在蒺藜苜蓿中的同源基因。构建MtTOC1a基因的表达载体,利用农杆菌介导法引入到拟南芥野生型Col、及相应的功能丧失突变体toc1-2中,进行遗传互补分析。
结果MtTOC1a和MtTOC1b均具有保守的功能结构域和三维结构。遗传分析表明,在早期光形态建成中,外源转化的MtTOC1a完全恢复了toc1-2的下胚轴伸长表型,但对toc1-2的提前开花表型没有显著影响。在引入CAB::LUC报告基因的株系中,外源转化MtTOC1a在连续光照下使短周期突变体toc1-2的近日节律周期延长,但仍不能完全恢复至野生型水平。
结论MtTOC1a和拟南芥AtTOC1的功能存在相似性,但在不同的下游调控途径中所扮演的角色存在差异。本研究结果为进一步探索MtTOC1a基因的功能,利用MtTOC1a基因改造苜蓿的重要性状提供了理论依据。
Abstract:ObjectiveThe goal of this study is to analyze the protein structure of Medicago truncatula MtTOC1a, explore the biological function of MtTOC1a in the circadian clock system, and compare its similarities and differences in function with its ortholog AtTOC1 in Arabidopsis thaliana.
MethodThe orthologous genes of TOC1 in Medicago were identified through bioinformatics analysis, the expression vector of MtTOC1a gene was constructed and introduced into Arabidopsis wild-type Col and the corresponding loss-of-function mutant toc1-2 by Agrobacterium mediated method for genetic complementation analysis. Both MtTOC1a and MtTOC1b have conserved functional domains and protein structures. The genetic analysis indicated that during early photomorphogenesis, exogenously transformed MtTOC1a fully restored the hypocotyl elongation phenotype of toc1-2, but had no significant effect on the premature flowering phenotype of toc1-2. In the CAB::LUC reporter lines, MtTOC1a lengthened the period of the short period mutant toc1-2 under continuous light conditions, yet the mutant could not fully recover to the wild-type level.
ConclusionMtTOC1a and AtTOC1 have similar functions, but their roles in drownstream pathways are still different. The results provide a theoretical basis for further exploring the function of MtTOC1a gene and using MtTOC1a gene to modify the important traits in Medicago.
-
Keywords:
- Medicago truncatula /
- Arabidopsis thaliana /
- MtTOC1a /
- Circadian clock /
- Circadian rhythm /
- Agronomic trait
-
草地贪夜蛾Spodoptera frugiperda为鳞翅目夜蛾科灰翅夜蛾属,该虫源自北美,2019年1月入侵我国云南省,并迅速扩展到全国26个省份[1-3]。作为联合国粮农组织全球预警的跨国界迁飞性重大害虫,草地贪夜蛾具有寄主范围宽、适生区域广、增殖能力强、扩散速度快、突发危害重等特点[4-5]。
与其他鳞翅目昆虫一样,草地贪夜蛾主要在幼虫时期为害。目前草地贪夜蛾雌、雄幼虫为害行为性别差异的研究较少,因为缺乏幼虫性别鉴定的快速简便的手段。与许多鳞翅目昆虫一样,草地贪夜蛾在蛹和成虫时期不再取食,因此幼虫时期的取食量对其化蛹、羽化、产卵、迁飞等行为具有重要影响,不同性别的幼虫取食量存在差异。林玉英等[5]对椰子织蛾Opisina arenosella 1龄幼虫取食量的研究表明,雌虫取食量显著大于雄虫,结合幼虫取食量可作为其龄期的判断依据之一,从而为制定椰子织蛾防控措施奠定基础;同时,大量研究表明,昆虫幼虫在抵抗高温、抗核型多角体病毒等方面有性别差异[6-8],成虫在感光、触角结构等方面也存在显著的性别差异[9],昆虫在取食、感光、抗病等行为上的性别差异研究,可为农业害虫的精准防控提供理论支持。因此,性别鉴定可以作为研究昆虫雌、雄行为差异的一种便捷有效的工具,有助于制定更加精准高效的农业害虫防控治理策略。
目前,草地贪夜蛾的性别主要是通过蛹期和成虫时期的外露生殖器及翅上的斑纹差异进行区分[10-11]。草地贪夜蛾入侵中国后,性信息素诱捕、高空灯诱捕在虫情预测预报中发挥了非常重要的作用。由于缺乏对幼虫形态学有效的判断标准,而田间捕捉的草地贪夜蛾成虫非常活跃,鳞羽容易掉落,给性别鉴定造成了困难,影响了测报结果的准确性。对于鳞羽掉落的草地贪夜蛾样本和未经过性别鉴定的DNA样本,也缺乏有效的性别鉴定手段。因此,根据雌、雄虫性信息素结合蛋白(Pheromone-binding protein, PBP)基因的序列差异,开发简便、准确的功能性分子标记,对鉴定幼虫期乃至成虫期的草地贪夜蛾的性别具有理论和实际应用意义。
1. 材料与方法
1.1 供试材料
草地贪夜蛾为实验室饲养种群,饲养条件参考王世英等[12]方法,温度为(26.0±0.5) ℃;相对湿度为 65%±5%;光周期为16 h光∶8 h暗。
1.2 试验方法
1.2.1 草地贪夜蛾雌、雄虫分子标记引物的设计
通过在线网站( https://pfam.xfam.org)寻找并下载PBP隐马尔科夫模型,使用Bio-Linux软件进行生物信息学分析得到草地贪夜蛾PBP基因家族的氨基酸序列,通过在线网站( http://www.omicsclass.com/article/681)手动确认每个蛋白的结构域,总共筛选得到21个PBP,使用Bio-Linux软件进行生物信息学分析获得对应蛋白的CDS序列等相关信息,所得序列与NCBI上已发表的PBP基因序列进行比对,比对结果为本研究的PBP基因的CDS序列与已发表的4个PBP基因(SfruPBP1、SfruPBP2、SfruPBP3、SfruPBP4)[13]的CDS序列不存在相似性(结果未显示)。对获得的各基因片段进行PCR测序,结果发现Sf-10911基因序列在雌、雄个体中存在较大差异。通过多个已知雌、雄样本检测后,确认该基因为性别差异基因,针对草地贪夜蛾雌、雄虫Sf-10911基因的差异区段设计了3对引物(表1),开发雌、雄性别鉴定的特异标记,引物设计见图1。利用设计合成的引物,对鉴别过已知性别的草地贪夜蛾虫蛹样本进行PCR扩增,筛选得到分子标记。
表 1 引物序列表Table 1. List of primer sequence引物名称1) Primer name 引物序列(5′→3′) Primer sequence Sf-F TAGCCGTGAGTTTGAATAGGGT Sf-female-R-1 CCTGCCAGTGCCTTATTAATTAA Sf-male-R-1 TTTTGGCAGTGCCTTATTGATTA Sf-female-R-2 CTCAGAGGTTTTTGATATGGTTT Sf-male-R-2 TGTATTCTTCTCAGTGCGAAGAC Sf-female-R-3 TTAACAACGCTCCATAATAACCT Sf-male-R-3 TAAGAACCAGTTCTTATAAACAC 1) F、R分别表示正、反向引物
1) F and R respectively represents forward and reverse primers图 1 草地贪夜蛾性别鉴定引物设计深蓝色表示相同的核苷酸序列,浅蓝色表示差异位点,黑点表示缺失位点;Sf-male-R:雄虫基因差异区段;Sf-female-R:雌虫基因差异区段;Sf-F:正向引物;Sf-R:反向引物Figure 1. Primers design for sexual identification of Spodoptera frugiperdaDark blue represents the same nucleotide sequence, light blue represents the differencial sites and black dots represent the missing sites; SF-male-R: Differential gene segment of male; Sf-female-R: Differential gene segment of female; Sf-F: Forward primer; Sf-R: Reverse primer1.2.2 草地贪夜蛾蛹期DNA提取及PCR扩增
根据草地贪夜蛾蛹期雌、雄虫形态差异区分出雌、雄后(图2),利用微量样品基因组DNA 提取试剂盒进行DNA的提取。采用雌、雄特异性引物对提取的DNA样本进行PCR扩增。扩增产物用琼脂糖凝胶电泳检测,筛选分子标记。PCR 扩增的体系为:PrimerSTAR Max 6.25 μL,上游和下游引物(10 μmol/L)各0.5 μL,模板0.5 μL,加 ddH2O至15 μL。PCR 扩增的反应程序为:98 ℃ 预变性2 min;98 ℃变性 10 s,58 ℃退火 30 s,72 ℃延伸 30 s,35 个循环;72 ℃延伸5 min。
图 2 草地贪夜蛾蛹期雌、雄虫腹部末端差异对比a:臀刺;b:肛门;c:第10腹节;d:第9腹节e:半圆形瘤状突起;f:第8腹节;g:产卵孔;h:生殖孔Figure 2. Distinction between abdomen ends of male and female of Spodoptera frugiperda at pupal stagea: Buttocks stab; b: Anus; c: The 10th abdominal segment; d: The 9th abdominal segment; e: Semicircular tumor-like protrusion; f: The 8th abdominal segment; g: Spawning hole; h: Genital hole2. 结果与分析
2.1 草地贪夜蛾性别鉴定引物的开发及筛选
针对草地贪夜蛾雌、雄虫Sf-10911基因的性别差异区段设计了3对引物,开发性别鉴定的特异标记。利用设计合成的3对引物,对已知性别的草地贪夜蛾样本进行PCR扩增,筛选得到分子标记,该分子标记可以扩增出450 bp左右的条带。之后,利用筛选出的分子标记对经过形态鉴定的雌、雄虫样本再次进行PCR扩增。
首先,利用3对标记引物扩增草地贪夜蛾的雌、雄虫DNA样本,所用样本为经过测序鉴定的雌、雄虫DNA样本;图3表明,引物Sf-female-R-1、Sf-male-R-3搭配Sf-F均不能扩增出特异条带;搭配引物Sf-F扩增时,其中雄性样本可以用雄性特异性引物Sf-male-R-2扩增得到特异条带,而雌性样本只有雌性特异性引物Sf-female-R-2可以扩增得到特异条带,与测序结果一致。因此,选择Sf-female-R-2和Sf-male-R-2作为草地贪夜蛾雌、雄虫特异性引物。
2.2 性别分子标记引物对草地贪夜蛾的鉴定
为进一步验证筛选出的标记引物的准确性,对经过形态鉴定的雌、雄虫蛹进行PCR检测(图4)。从图4可以看出,利用雌虫标记引物Sf-female-R-2扩增雌、雄虫DNA样本时,只有雌虫才能扩增出450 bp左右的特异性条带;用雄虫标记引物Sf-male-R-2扩增雌、雄虫DNA样本时,只有雄虫才能扩增出450 bp左右的特异性条带。检测结果与形态鉴定结果一致,说明筛选出的引物适用于草地贪夜蛾的性别鉴定。
图 4 基于PCR扩增对草地贪夜蛾雌、雄虫蛹性别鉴定F1~F5:雌虫蛹DNA;M1~M5:雄虫蛹DNA;a、c:雌虫标记引物对 Sf-F/Sf-female-R-2;b、d:雄虫标记引物对Sf- F/Sf-male-R-2Figure 4. Sex identification of male and female pupae of Spodoptera frugiperdabased on PCR amplificationF1−F5: DNA of female pupae; M1−M5: DNA of male pupae; a and c: Pair of female marker primers of Sf-F/Sf-female-R-2; b and d: Pair of male marker primers of Sf-F/Sf-male-R-23. 讨论与结论
农业害虫的性别鉴定对于害虫的有效防治和农业生产具有重要意义。不同性别的昆虫在虫体形态上往往存在差异,甜菜夜蛾Spodoptera exigua Hübner、桉袋蛾Acanthopsyche subferalbata Hampson以及凤凰木夜蛾Pericyma cruegri在其蛹及成虫时期的形态存在明显的性别差异[14-16],利用这种形态上的差异,研究人员可以快速简便地鉴定雌、雄虫,及时为田间种群动态的监测和预测预报提供数据。
利用雌、雄虫形态差异鉴定性别的方法虽然简单快捷,但却无法对一些不存在性别形态差异或是生长发育早期无形态差异的昆虫进行鉴定。牛宝龙等[17]以棉铃虫Helicoverpa armigera雌、雄虫基因组DNA为模板,筛选了1条雌特异随机扩增多态性DNA(Random amplified polymorphic DNA,RAPD),根据该特异性分子标记的核苷酸序列设计雌性特异引物,并对棉铃虫基因组DNA进行PCR扩增,雌性棉铃虫可以扩增出目的条带,可将此标记用于棉铃虫幼虫乃至胚胎的性别鉴定;王慧超等[18]也早在2004年运用RADP技术对家蚕Bombyx mori Linnaeus上得到的雌特异性片段设计引物并进行了PCR验证。此外,张利娜[19]从外部形态学、血清生化指标建立了鳗鲡Anguilla japonica的性别判定函数,用SRAP分子标记获得F5R2雌性特异DNA序列,根据测序结果设计序列特定扩增区域(Sequence characterized amplified regions,SCAR)特异引物并进行性别鉴定;Masaru等[20]用日本青鳉Oryzias latipes的雄性Y特异性DM结构域基因开发引物鉴定了弓背青鳉Oryzias curvinotus的遗传性别;中国大鲵Andrias davidianus、双须骨舌鱼Osteoglossum bicirrhosum的性别鉴定也利用雌、雄虫基因差异序列开发分子标记引物并进行了有效的验证[21-22]。
PBP在草地贪夜蛾的信息素识别过程中发挥着重要作用,雄虫通过触角感受雌虫性腺释放的性信息素,寻找合适的交配对象。PBP的功能特征决定了其基因序列以及表达模式在雌、雄虫之间必然存在差异,具有明显的性二型性[23]。牛小慧[24]对甜菜夜蛾的不同PBP进行RT-PCR检测发现,PBP在雌、雄虫之间的表达量存在显著差异;刘苏等[13]通过对草地贪夜蛾4个PBP基因的克隆及表达模式分析发现,定位于成虫触角上的SfruPBP1和SfruPBP2蛋白在雄虫中具有更高的表达量。本研究发现草地贪夜蛾雌、雄虫中的PBP基因Sf-10911存在核苷酸序列差异,进而根据该差异设计了针对雌、雄虫扩增的引物对,通过琼脂糖凝胶电泳检测出450 bp左右的特异条带,作为其性别鉴定的分子标记,以期为研究草地贪夜蛾某些性状可能存在的性别差异提供快速有效的手段。
-
图 2 AlphaFold项目所预测的MtTOC1a、MtTOC1b和AtTOC1的蛋白三维结构
PR结构域与置信得分(pLDDT)≥90的深蓝色区域重合,呈多股α螺旋和β折叠构成的桶状结构;CCT结构域与90> pLDDT≥50的浅蓝色/黄色区域重合,由两条α螺旋构成类似剪刀状的结构
Figure 2. 3D protein structures of MtTOC1a, MtTOC1b and AtTOC1 predicted by the AlphaFold project
The PR domain overlaps with the dark blue region with a confidence score of (pLDDT) ≥90, showing a barrel-like structure composed of multiple strands of α helices and β folds; The CCT domain overlaps with the light blue/yellow region with 90> pLDDT≥50, forming a scissor-like structure with two α helices
图 3 MtTOC1a表达载体的构建
A:MtTOC1a互补表达载体的T-DNA区域示意图;B:苜蓿MtTOC1a基因的克隆;C:MtTOC1a载体的菌落PCR结果,“*”表示阳性菌落
Figure 3. Construction of MtTOC1a expression vector
A: Schematic diagram of the T-DNA region of MtTOC1a expression vector; B: Cloning of MtTOC1a gene in Medicago; C: Colony PCR results of MtTOC1a expression vector, “*” indicates positive colony
图 5 MtTOC1a相关转基因植株的表型量化分析
A:苗龄7 d的下胚轴长度,n≥30;B:在短日照条件下植株抽薹时莲座叶的数量, n≥15;柱子上方的不同小写字母表示差异显著(P<0.05,LSD法)
Figure 5. Quantification analysis of the phenotypes of transgenic plants with MtTOC1a
A: The hypocotyl lengths of 7-day-old seedlings, n≥30; B: The number of rosette leaves during bolting of plants under short-day conditions, n≥15; Different lowercase letters on bars indicate significant differences (P<0.05, LSD test)
图 6 MtTOC1a相关转基因植株的近日节律周期分析
A:持续光照条件下的MtTOC1a相关转基因拟南芥植株生物发光节律,n≥16,图中所有植株均带有CAB::LUC荧光素酶报告基因,括号内表示相应植株的近日节律周期,浅灰色表示主观黑夜; B: A图中植株的近日节律周期和相对振幅误差的量化,相对振幅误差数值越小表示植株的节律性越强
Figure 6. Circadian rhythm analysis of transgenic plants with MtTOC1a
A: The bioluminescence rhythm of transgenic Arabidopsis plants with MtTOC1a under continuous light condition, n≥16, all plants in the figure carried a CAB:: LUC reporter gene, the daily rhythm cycle of corresponding plants was indicated in parentheses, light gray represents subjective night; B: Quantification of the circadian rhythm period and relative amplitude error of plants in A, and the smaller the relative amplitude error value, the stronger the rhythmicity of the plant
表 1 克隆载体的构建引物序列
Table 1 The primers used for cloning vector construction
基因
Gene引物名称
Primer name引物序列 (5′→3′)
Primer sequenceMtTOC1a MtTOC1a-F CTGATCATGGAGAGTGAAGGGTTTGATTTG MtTOC1a-R TTGCTCACCATAGCATCCCTCGGAGAGTAATCTC AtTOC1 AtTOC1pro-F CTCGGTACCCGGGGATCCGAGATCGCTCGGCTCAACAA AtTOC1pro-R TTCACTCTCCATGATCAGATTAACAACTAAACCCACACA -
[1] HARMER S L. The circadian system in higher plants[J]. Annual Review of Plant Biology, 2009, 60: 357-377. doi: 10.1146/annurev.arplant.043008.092054
[2] XU X, YUAN L, YANG X, et al. Circadian clock in plants: Linking timing to fitness[J]. Journal of Integrative Plant Biology, 2022, 64(4): 792-811. doi: 10.1111/jipb.13230
[3] MILLAR A J, CARRÉ I A, STRAYER C A, et al. Circadian clock mutants in Arabidopsis identified by luciferase imaging[J]. Science, 1995, 267(5201): 1161-1163. doi: 10.1126/science.7855595
[4] ALABADÍ D, OYAMA T, YANOVSKY M J, et al. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock[J]. Science, 2001, 293(5531): 880-883. doi: 10.1126/science.1061320
[5] GENDRON J M, PRUNEDA-PAZ J L, DOHERTY C J, et al. Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(8): 3167-3172. doi: 10.1073/pnas.1200355109
[6] HUANG W, PÉREZ-GARCÍA P, POKHILKO A, et al. Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator[J]. Science, 2012, 336(6077): 75-79. doi: 10.1126/science.1219075
[7] LI N, ZHANG Y, HE Y, et al. Pseudo response regulators regulate photoperiodic hypocotyl growth by repressing PIF4/5 transcription[J]. Plant Physiology, 2020, 183(2): 686-699. doi: 10.1104/pp.19.01599
[8] DING Z, DOYLE M R, AMASINO R M, et al. A complex genetic interaction between Arabidopsis thaliana TOC1 and CCA1/LHY in driving the circadian clock and in output regulation[J]. Genetics, 2007, 176(3): 1501-1510. doi: 10.1534/genetics.107.072769
[9] LEGNAIOLI T, CUEVAS J, MAS P. TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought[J]. The EMBO Journal, 2009, 28(23): 3745-3757. doi: 10.1038/emboj.2009.297
[10] VALIM H, DALTON H, JOO Y, et al. TOC1 in Nicotiana attenuata regulates efficient allocation of nitrogen to defense metabolites under herbivory stress[J]. New Phytologist, 2020, 228(4): 1227-1242. doi: 10.1111/nph.16784
[11] FUNG-UCEDA J, LEE K, SEO P J, et al. The circadian clock sets the time of DNA replication licensing to regulate growth in Arabidopsis[J]. Developmental Cell, 2018, 45(1): 101-113. doi: 10.1016/j.devcel.2018.02.022
[12] PECRIX Y, STATON S E, SALLET E, et al. Whole-genome landscape of Medicago truncatula symbiotic genes[J]. Nature Plants, 2018, 4(12): 1017-1025. doi: 10.1038/s41477-018-0286-7
[13] FARRÉ E M, LIU T. The PRR family of transcriptional regulators reflects the complexity and evolution of plant circadian clocks[J]. Current Opinion in Plant Biology, 2013, 16(5): 621-629. doi: 10.1016/j.pbi.2013.06.015
[14] CORELLOU F, SCHWARTZ C, MOTTA J P, et al. Clocks in the green lineage: Comparative functional analysis of the circadian architecture of the Picoeukaryote ostreococcus[J]. The Plant Cell, 2009, 21(11): 3436-3449. doi: 10.1105/tpc.109.068825
[15] PETERSEN J, RREDHI A, SZYTTENHOLM J, et al. Evolution of circadian clocks along the green lineage[J]. Plant Physiology, 2022, 190(2): 924-937. doi: 10.1093/plphys/kiac141
[16] VALIM H F, MCGALE E, YON F, et al. The clock gene TOC1 in shoots, not roots, determines fitness of Nicotiana attenuata under drought[J]. Plant Physiology, 2019, 181(1): 305-318. doi: 10.1104/pp.19.00286
[17] BENDIX C, MARSHALL C M, HARMON F G. Circadian clock genes universally control key agricultural traits[J]. Molecular Plant, 2015, 8(8): 1135-1152. doi: 10.1016/j.molp.2015.03.003
[18] KONG Y, HAN L, LIU X, et al. The nodulation and nyctinastic leaf movement is orchestrated by clock gene LHY in Medicago truncatula[J]. Journal of Integrative Plant Biology, 2020, 62(12): 1880-1895. doi: 10.1111/jipb.12999
[19] WANG L, ZHOU A, WANG L, et al. Core clock component MtLUX controls shoot architecture through repression of MtTB1/MtTCP1A in Medicago truncatula[J]. The Crop Journal, 2023, 11(3): 723-732. doi: 10.1016/j.cj.2022.11.002
[20] KONG Y, ZHANG Y, LIU X, et al. The conserved and specific roles of the LUX ARRHYTHMO in circadian clock and nodulation[J]. International Journal of Molecular Sciences, 2022, 23(7): 3473. doi: 10.3390/ijms23073473
-
期刊类型引用(21)
1. 贺青,张静月,顾臻,汪建谊,赵文荣. 基于改进蚁群算法的变电站巡检机器人路径规划. 机械设计与研究. 2025(01): 282-287+292 . 百度学术
2. 孙柱,吕宪勇,孙凯信,李佩霏,齐琪琪. 基于Dubins曲线的轮式机旋耕作业CCPP算法. 农业装备与车辆工程. 2024(05): 9-13 . 百度学术
3. 孟浩德,吴征天,吴闻笛,施坤. 基于记忆模拟退火算法的扫地机器人遍历路径规划. 计算机与数字工程. 2024(03): 821-826+857 . 百度学术
4. 李文峰,徐蕾,杨琳琳,刘文荣,潘坤,李超. 基于改进蚁群算法的农业机器人多田块路径规划方法与试验. 南京农业大学学报. 2024(04): 823-834 . 百度学术
5. 王新彦,盛冠杰,张凯,易政洋. 基于改进A~*算法和DFS算法的割草机器人遍历路径规划. 中国农机化学报. 2023(02): 142-147 . 百度学术
6. 潘富强,曾成,马国红,刘继忠. 一种融合改进A*算法与改进动态窗口法的AGV路径规划. 传感技术学报. 2023(01): 68-77 . 百度学术
7. 沈跃,刘子涵,刘慧,杜伟. 基于多约束条件的果园喷雾机器人路径规划方法. 农业机械学报. 2023(07): 56-67 . 百度学术
8. 董雅文,杨静雯,刘文慧,张宝锋. 基于改进A~*算法的机器人全覆盖衔接路径规划. 传感器与微系统. 2023(09): 125-128 . 百度学术
9. 贺平,张德晖,侯志涛,洪夏明,李盼春,虞洋. 智能割草机路径规划研究现状. 福建农机. 2023(03): 36-40 . 百度学术
10. 周龙港,刘婷,卢劲竹. 基于Floyd和改进遗传算法的丘陵地区农田遍历路径规划. 智慧农业(中英文). 2023(04): 45-57 . 百度学术
11. 姜光,姜久超,李爱宁,李岩,常硕. 基于PLC的农业机器人电气控制系统设计. 农机化研究. 2022(02): 219-223 . 百度学术
12. 田茹,曹茂永,马凤英,纪鹏. 基于改进A*算法的农用无人机路径规划. 现代电子技术. 2022(04): 182-186 . 百度学术
13. 龙洋,苏义鑫,廉城,张丹红. 混合细菌觅食算法求解无人艇路径规划问题. 华中科技大学学报(自然科学版). 2022(03): 68-73 . 百度学术
14. 陈凯,解印山,李彦明,刘成良,莫锦秋. 多约束情形下的农机全覆盖路径规划方法. 农业机械学报. 2022(05): 17-26+43 . 百度学术
15. 王宁,韩雨晓,王雅萱,王天海,张漫,李寒. 农业机器人全覆盖作业规划研究进展. 农业机械学报. 2022(S1): 1-19 . 百度学术
16. 刘胜,张豪,晏齐忠,张志鑫,申永鹏. 基于ACO-SA算法的变电站巡检机器人路径规划. 南方电网技术. 2022(09): 75-82 . 百度学术
17. 宫金良,王伟,张彦斐,兰玉彬. 基于农田环境的农业机器人群协同作业策略. 农业工程学报. 2021(02): 11-19 . 百度学术
18. 黄月琴,罗兵,邓辅秦,李伟科,杨勇. 智能扫地机器人的全覆盖路径规划. 五邑大学学报(自然科学版). 2021(02): 51-58 . 百度学术
19. 董雅文,杨静雯,刘文慧,张宝锋. 基于BSO-GA算法的机器人子区域覆盖路径规划. 轻工机械. 2021(06): 57-64 . 百度学术
20. 武义,欧明敏,段立伟. 基于改进A~*算法和动态窗口法的机器人路径规划研究. 工业控制计算机. 2020(10): 67-70 . 百度学术
21. 刘洋成,耿端阳,兰玉彬,谭德蕾,牟孝栋,孙延成. 基于自动导航的农业装备全覆盖路径规划研究进展. 中国农机化学报. 2020(11): 185-192 . 百度学术
其他类型引用(22)