• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

植物生物钟抵御生物胁迫研究进展

黄巍, 李静, 庄艺, 陈丁豪

黄巍, 李静, 庄艺, 等. 植物生物钟抵御生物胁迫研究进展[J]. 华南农业大学学报, 2022, 43(6): 121-129. DOI: 10.7671/j.issn.1001-411X.202209008
引用本文: 黄巍, 李静, 庄艺, 等. 植物生物钟抵御生物胁迫研究进展[J]. 华南农业大学学报, 2022, 43(6): 121-129. DOI: 10.7671/j.issn.1001-411X.202209008
HUANG Wei, LI Jing, ZHUANG Yi, et al. Research advances in circadian clock of plant in response to biotic stress[J]. Journal of South China Agricultural University, 2022, 43(6): 121-129. DOI: 10.7671/j.issn.1001-411X.202209008
Citation: HUANG Wei, LI Jing, ZHUANG Yi, et al. Research advances in circadian clock of plant in response to biotic stress[J]. Journal of South China Agricultural University, 2022, 43(6): 121-129. DOI: 10.7671/j.issn.1001-411X.202209008

植物生物钟抵御生物胁迫研究进展

基金项目: 岭南现代农业科学与技术广东省实验室科研项目(NZ2021001)
详细信息
    作者简介:

    黄巍,教授,博士,主要从事生物节律调控植物环境适应性的研究,E-mail: weihuang@scau.edu.cn
    黄巍,2001年本科毕业于 兰州大学,2004年获硕士学位,2009年于中国科学院上海生命科学研究院植物生理生态研究所获得博士学位,师从林鸿宣院士。后在位于巴塞罗那的西班牙国家研究委员会农业基因组研究所从事博士后研究。2014年10月作为引进人才正式入职华南农业大学生命科学学院/亚热带农业生物资源保护与利用国家重点实验室。主要从事生物节律调控植物环境适应性的研究

  • 中图分类号: Q756;Q945.8

Research advances in circadian clock of plant in response to biotic stress

  • 摘要:

    生物钟是生物在适应环境中进化出的一种内源性计时机制,能帮助生物“预判”环境的周期性变化,提前调整生命活动,以增强其环境适应性。生物钟对植物生长发育和病虫害防御至关重要。在不同的时间,病原菌及昆虫对植物的侵害能力不同,生物钟能帮助植物“预测”病原菌和昆虫的攻击时间,提前激活定时防御,这种依赖时间的门控效应方式调节特定病原侵害可以减少不必要的能量消耗,增强防御能力。另一方面,植物在受到生物胁迫时,体内的激素、活性氧和离子稳态等水平的变化,能反馈调节并重塑生物钟。研究生物钟和免疫的关系有助于提高重要经济作物的抗病能力,减少农药使用并提高作物产量。本文主要阐述植物生物钟与植物免疫互作的分子机制。并对未来生物钟和免疫关系的研究在作物中的应用进行了展望。

    Abstract:

    The circadian clock is an endogenous and self-sustaining timing mechanism that evolved to track daily rhythms and allow plants to prepare for predictable and recurring environmental changes, ultimately enhancing fitness and adaptation. The circadian clock plays a vital role in plant growth and development as well as pest and pathogen resistance. Pathogen and pest have different attacking capacity at different time. The circadian clock enables plants to anticipate the time of pathogen and pest attacks and promote the defence responses at the most effective time of the day. The circadian gating responses can increase resistance without substantial energy consumption. On the other hand, the changes in the level of phytohormones, reactive oxygen species (ROS) and ion homeostasis caused by biotic stresses are involved in clock resetting. Studying the correlation between circadian clock and immunity will increase plant pathogen resistance and reduce pesticides usage which would have a great agronomic impact on future crop breeding. Here we review the recent research on the interaction between the circadian clock and plant immunity, and highlight new avenues for future research.

  • 世界上最早报道柑橘黄龙病(Citurs Huanglongbing, HLB)的地区为我国广东潮汕地区[1-2],该病现已广泛分布于亚洲、美洲和非洲的多个国家,对全球多个柑橘产区造成严重威胁[3]。该病由候选的韧皮部杆菌“Candidatus Liberibacter spp.”引起,我国发现的黄龙病病原菌为该菌的亚洲种“Ca. L. asiaticus”(CLas)[4]。黄龙病可为害包括橙类、橘类、柚类和香橼等柑橘属植物的所有栽培品种。鉴于尚未发现可行的黄龙病治疗手段,目前防控该病害的措施主要为植物检疫、培养无病苗木、及时挖除病株和控制媒介昆虫亚洲柑橘木虱Diaphorina citri[2-3]

    柑橘黄龙病可对柑橘的营养生长和果实品质造成严重影响,发病植株表现出复杂多样的症状,包括生长逐渐衰退、产量减少、病果畸形、果皮变软、果小味酸、经济寿命短、植株抗病性下降甚至死亡[5];不同生长季节的叶片表现出的病害症状存在差异,病害显症时表现为斑驳黄化、均匀黄化、缺素状黄化等症状[2]。随着发病程度加剧,病树容易早期落果,虽有部分果实仍可供采摘收获,但果实品质也发生了变化[6]。目前研究发现,多个柑橘品种感染黄龙病后,可溶性固形物及维生素C含量降低,外观和着色变差,可食用部分减少[7-10]。此外,黄龙病还可降低一些柑橘品种果实的甜味度、综合风味和果肉饱满度,并增加酸度、异味度,使得口感明显变差[7, 10]

    抗病柑橘品种选育一直都是黄龙病研究的重要领域。不同柑橘品种的抗性反应存在差异,多项研究表明柚类植物具有一定的黄龙病抗性或耐性,很少感染黄龙病[11-12],但也有研究表明黄龙病可使柚类植物出现新叶发黄、老叶斑驳、果小味苦、产量减少等症状[13-15];Folimonova等[16]发现不同柑橘品种对黄龙病的反应存在差异,其中3种柚类植物同样可感染黄龙病,其感病性较其他敏感品种低,症状表现多样且易变。目前关于柑橘黄龙病对柚类植物生长和果实品质影响的评价指标仍然不够丰富,难以做到客观判断,需系统性研究柑橘黄龙病对柚类植物的影响。

    本研究以沙田柚Citrus maxima和砂糖橘Citrus reticulata为材料,在分析病菌浓度与植株感染黄龙病后的叶片症状的关系基础上,分析黄龙病病菌浓度对沙田柚树势、产量、果实内外品质和感官品质的影响。研究结果将为评价黄龙病对沙田柚生长以及果实品质的影响提供科学依据,同时也为解析柚类植物的黄龙病耐性机理提供一定的理论支撑。

    称取0.1 g采自防虫网室或田间的柚树成熟叶片中脉并剪碎,采用植物DNA提取试剂盒(OMEGA)提取DNA,用去离子水将DNA调整到同一浓度,使用Li等[17]报道的CLas 16S rDNA的特异性引物和探针进行实时荧光定量PCR(qPCR)检测,统计各样品的扩增循环数(Cycle threshold,Ct),确定其带菌情况。

    鉴于柑橘植原体“Candidatus Phytoplasmaasteri”和柑橘衰退病病毒Citrus tristeza virus可能导致相似的黄化症状[12,18],会干扰沙田柚的黄龙病症状观察,本研究所使用和调查的植物材料(嫁接病原芽条、无病苗圃样品和田间调查样品)均通过qPCR确保不含有上述2种病原微生物。各阳性、阴性样品和后续嫁接试验所用黄龙病接穗均来源于华南农业大学柑橘黄龙病研究室网室(23.09°N,113.21°E)。

    所用沙田柚和砂糖橘盆栽苗来源于华南农业大学园艺学院苗圃场(23.16°N,113.36°E),均为2年生无病苗,隔离种植于防虫网室中。选择对应的柑橘品种,通过qPCR检测后,分别将黄龙病菌浓度较一致(Ct=25±0.5)的接穗嫁接到健康沙田柚和砂糖橘上,每个品种嫁接10株(10个重复),嫁接苗隔离种植于防虫网室中,每隔30 d记载各植株嫁接后1年内的症状表现,并对其带菌情况进行检测。

    选取广东省梅州市梅县石扇镇较高树龄(15年)和较低树龄(6年)沙田柚果园各1个进行调查。果园栽培管理条件较一致,均为平地种植,调查时间为果实成熟期。为了确定果园黄龙病发病情况,每个果园根据5点取样法(东西南北中)采集75个带有柚果的枝条上的叶片,进行编号和检测。分别从2个果园中选取健康(Ct>35)、低黄龙病菌浓度(28<Ct<32)和高黄龙病菌浓度(Ct<26)植株各10株(共60株),记录这些植株的树势、产量,鉴定田间叶片和果实症状。植株树势指标包括株高(cm)、树冠直径(cm)和树冠表面积(m2)。产量测定包括单株柚果总产量(kg)、总结果数和落果数,最后计算经济果产量(kg)。

    每个果园分别选取健康、低菌浓度和高菌浓度枝条上的果实各10个,使用电子天平称量单果质量(g)和果皮质量(g),量尺测定每个柚果的纵径(cm)和横径(cm),游标卡尺测定果皮厚度(cm);计算果形指数和果皮率(%);评估果实着色指数(%);将种子剥离后,对种子计数(粒),称量种子质量(g),计算种子率(%)。

    $${\text{果形指数}} = {\text{纵径}}/{\text{横径}}{\text{,}}$$
    $${\text{果皮率}} = {\text{果皮质量}}/{\text{果实质量}}\times100{\text{%}}{\text{,}}$$
    $$ {\text{果实着色指数}} = {\text{成熟果实黄色面积}}/{\text{果实总面积}}\times100{\text{%}}{\text{,}} $$
    $${\text{种子率}} = {\text{种子质量}}/{\text{果实质量}}\times100{\text{%}}{\text{。}}$$

    用手动榨汁机分别对已测完外在品质的果实榨取汁液,4层纱布过滤后,称量果汁质量(g),

    $${\text{出汁率}} = {\text{果汁质量}} / {\text{单果质量}}\times100{\text{%}}{\text{,}} $$
    $$\begin{array}{c}{\text{可食率}} =\left( {\text{果实质量}}- {\text{果皮质量}}-{\text{种子质量}} \right)/\\{\text{果实质量}}\times100{\text{%}}{\text{。}} \end{array}$$

    用改良后的2,6−二氯酚靛酚钠滴定法测定汁液的维生素C含量[7, 19],用PAL-BX/ACID糖酸折射仪(日本ATAGO Co.,Ltd)测定可溶性固形物含量(%)和可滴定酸(以柠檬酸质量浓度计,g/L)。

    采用改良后的Obenland法进行果实风味感官品质评价[20],由10名经过专业培训的人员对2个果园健康、低菌浓度和高菌浓度植株果实进行感官品质打分,健康、低菌和高菌浓度植株果实各取10个。打分标准包括甜味度(浓甜9分,中甜5分,无甜味1分)、酸味度(浓酸9分,中度酸5分,无酸味1分)、果肉饱满度(饱满9分,一般5分,干瘪1分)、异味度(较重9分,一般5分,无异味1分)和综合风味(极好9分,一般5分,极差1分)。

    基于数据重复数量和预测的数据分布模式,两样本间的显著性差异比较采用非参数分析Wilcoxon Mann–Whitney检验(P<0.05),多组数据结合Tukey’s studentized range test多重比较和非参数分析Kruskal–Wallis秩和检验(P<0.05)进行验证。统计分析通过SAS 9.0软件完成,图形由Origin v.9.0制作。

    健康沙田柚植株嫁接带黄龙病接穗150 d后,没有发病(图1),经PCR检测没有发现黄龙病菌的存在(图2),植株正常生长,叶片青绿;嫁接180 d后有20%可检测到低浓度黄龙病菌(Ct=31.44),植株仍无明显症状(图1);嫁接病毒330和360 d后,所有柚苗均可检测到黄龙病菌,但病菌浓度保持在较低水平(Ct>28)(图2),老叶轻微斑驳黄化,新叶轻微均匀黄化,且抽梢正常。

    图  1  沙田柚和砂糖橘盆栽苗嫁接黄龙病接穗后的发病率
    Figure  1.  Incidences of citrus Huanglongbing in Citrus maxima and Citrus reticulata after grafting HLB-infected scions
    图  2  沙田柚和砂糖橘盆栽苗嫁接黄龙病接穗后的阳性植株带菌量
    Ct指黄龙病菌16SrDNA的实时荧光扩增循环数;同折线不同字母表示差异显著(P<0.05,Tukey’s studentized range检验),相同时间“*”和“**”分别表示不同植物差异显著(P<0.05)和极显著(P<0.01)(Wilcoxon Mann–Whitney检验)
    Figure  2.  Concentration of HLB pathogens in disease positive Citrus maxima and Citrus reticulata after grafting HLB-infected scions
    Ct refers to qPCR cycle threshold for 16S rDNA of HLB pathogen; Different letters in the same line indicate significant difference (Tukey’s studentized range test, P<0.05); “*” and “**” at the same time indicate the difference between two plant species reaches 0.05 and 0.01 significance levels, respectively (Wilcoxon Mann-Whitney test)

    砂糖橘嫁接病毒90 d后,有30%的植株可检测到低浓度黄龙病菌(Ct=29.49)(图2),这些植株新长出的叶片开始出现轻微黄化;嫁接150 d后,所有接种植株均可检测到病原菌(图1),且病菌浓度显著提高(Ct=26.56)(图2),整株叶片明显黄化,新叶细小;嫁接病毒180~210 d,病菌浓度进一步升高,老叶出现轻微斑驳黄化症状,有落叶现象,此时仍能正常抽发新叶;嫁接病毒240 d以后,菌浓度达到最高且保持在比较稳定的水平(Ct<25),老叶典型斑驳黄化,落叶明显,新叶转绿不正常,出现缺素型花叶。

    通过对比2个柑橘品种的显症进程和病菌浓度变化,沙田柚的发病速度较慢,程度较轻(图1),当2种柑橘都能检测到黄龙病菌时(接种后180~360 d),带病沙田柚的带菌量显著低于砂糖橘(图2)。此外,相同条件下种植的健康未接种病原的沙田柚和砂糖橘苗在调查期间均检测不到黄龙病菌,叶片始终保持青绿状态。

    2个沙田柚果园中,病菌浓度较低(28<Ct<32)的病树,6年生和15年生果园叶片均没有明显的黄龙病典型黄化症状或只表现轻微的均匀黄化,果实外观或纵切面(果实大小、着色情况和厚度等)均与健康的果实相似(图3a3b),低浓度病树分别占6年生和15年生果园的13.33%(10/75)和16%(12/75);植株病菌浓度较高时(Ct<26),2个果园叶片均表现出典型的黄龙病斑驳黄化症状,叶片基部症状最明显,果实变小变轻,果皮着色不均匀,严重的情况下果实畸形、果皮增厚(图3c),高浓度病树分别占6年生和15年生果园的14.67%和13.33%。

    图  3  健康和感染柑橘黄龙病沙田柚的叶片和果实图示
    a、b、c分别表示健康树(Ct>35)、低菌浓度病树(28<Ct<32)和高菌浓度病树(Ct<26)样品
    Figure  3.  Leaves and fruits from healthy and HLB-infected Citrus maxima
    a, b and c indicate the samples collected from healthy trees (Ct>35), trees with low pathogen concentration (28<Ct<32), and trees with high pathogen concentration (Ct<26)

    黄龙病菌浓度对沙田柚的树势和产量的影响情况见表1。黄龙病菌浓度对相同树龄沙田柚的树势各指标(株高、树冠直径和表面积)并没有显著影响;树势主要受树龄因素调控:15年生沙田柚植株株高、树冠直径和表面积显著高于6年生植株。

    表  1  柑橘黄龙病菌浓度对沙田柚树势和产量的影响1)
    Table  1.  Effects of different concentrations of HLB pathogen on tree vigor and yield of Citrus maxima
    测定指标
    Measured index
    健康树(Ct>35)
    Healthy trees
    低菌浓度病树(28<Ct<32)
    Trees with low pathogen concentration
    高菌浓度病树(Ct<26)
    Trees with high pathogen concentration
    6年生果园
    6-year old orchard
    15年生果园
    15-year old orchard
    6年生果园
    6-year old orchard
    15年生果园
    15-year old orchard
    6年生果园
    6-year old orchard
    15年生果园
    15-year old orchard
    株高/cm
    Plant height
    263.90±9.91b 440.60±14.58a 253.00±15.13b 436.00±11.98a 249.90±11.65b 432.50±13.52a
    树冠直径/cm
    Crown diameter
    309.60±11.34b 503.70±11.24a 307.80±7.63b 511.00±9.10a 278.50±16.90b 498.75±11.82a
    树冠表面积/m2
    Crown superficial area
    26.09±1.70b 70.35±3.30a 24.78±1.48b 70.52±2.84a 22.34±2.12b 68.39±3.15a
    单株总产量/kg
    Total yield per plant
    43.11±2.11b 136.22±9.79a 42.79±1.73b 125.17±6.28a 25.44±3.52b 44.14±7.87b
    总结果数/个
    Total fruit number
    31.90±1.43bc 93.50±4.48a 28.80±2.69c 90.40±4.86a 22.80±2.86c 52.30±7.71b
    落果数量/个
    Number of drop fruit
    1.30±0.37b 2.70±0.99b 1.40±0.51b 1.60±0.81b 12.80±2.12b 40.60±7.13a
    经济果总产量/kg
    Total yield of economic fruit
    39.22±1.76b 129.73±7.97a 41.18±2.11b 121.30±5.71a 16.00±1.26cd 10.95±1.78d
     1)同行数据后具有不同字母者表示差异显著(P<0.05,HSD法)
     1)Different letters in the same row indicate significant difference(P<0.05, HSD test)
    下载: 导出CSV 
    | 显示表格

    沙田柚产量指标(单株柚果总产量、单株总结果数、落果数和经济果总产量)同时受到树龄和黄龙病菌浓度的影响,15年生柚树的单株柚果总产量和总结果数显著高于6年生柚树。与健康植株相比,携带低浓度(28<Ct<32)黄龙病菌对相同树龄沙田柚产量各指标没有显著影响。相比同树龄健康树和低菌浓度病树,15年生高菌浓度(Ct<26)病树的产量显著降低,落果数最多,经济果总产量最低,仅为对应健康植株的8.44%;6年生柚树可能由于总产量相对较低,高菌浓度病树单株总产量和结果数没有显著性变化,但因较高的落果数量,亦造成经济果总产量显著减少,为对应健康植株的40.80%。

    表2表明,与健康果实相比,染病后低病菌浓度(28<Ct<32)病树的果实外在品质均无显著性差异;高病菌浓度(Ct<26)病树单果质量、果实纵径、横径、着色指数、果皮质量和种子数量显著降低,果皮率显著提高,果形指数、果皮厚度和种子数无显著性差异。此外,关于相同染病情况2个不同树龄的柚果,除了6年生高菌浓度柚果着色指数(65.50%)显著高于15年生(44.00%)高菌浓度柚果,其他各指标间均无显著性差异。

    表  2  柑橘黄龙病菌浓度对沙田柚果实外在品质的影响1)
    Table  2.  Effects of different concentrations of HLB pathogen on external qualities of Citrus maxima
    测定指标
    Measured index
    健康树(Ct>35)
    Healthy trees
    低菌浓度病树(28<Ct<32)
    Trees with low pathogen concentration
    高菌浓度病树(Ct<26)
    Trees with high pathogen concentration
    6年生果园
    6-year old orchard
    15年生果园
    15-year old orchard
    6年生果园
    6-year old orchard
    15年生果园
    15-year old orchard
    6年生果园
    6-year old orchard
    15年生果园
    15-year old orchard
    单果质量/g
    Fruit mass
    1 446.00±46.31a 1 455.60±49.14a 1 390.80±13.07a 1 409.20±13.77a 802.10±44.69b 906.60±32.11b
    果实纵径/cm
    Fruit vertical diameter
    18.58±0.42a 19.13±0.42a 18.44±0.25ab 19.17±0.27a 15.77±0.29c 16.79±0.33bc
    果实横径/cm
    Fruit transverse diameter
    15.14±0.27a 15.58±0.27a 14.87±0.28a 15.04±0.10a 12.96±0.24b 12.40±0.17b
    果形指数
    Fruit shape index
    1.27±0.03a 1.23±0.03a 1.24±0.02a 1.27±0.02a 1.33±0.02a 1.34±0.04a
    果皮厚度/cm
    Pericarp thickness
    1.93±0.05a 2.10±0.09a 1.98±0.04a 2.14±0.10a 2.01±0.07a 2.06±0.10a
    果皮质量/g
    Pericarp mass
    461.00±11.10ab 504.90±13.17a 453.00±16.38ab 491.20±8.77a 398.00±7.12bc 3 365.00±19.68c
    果皮率/%
    Rate of pericarp
    31.25±1.22b 36.02±0.90ab 31.28±1.17b 33.73±2.16b 43.00±2.38a 43.66±1.83a
    着色指数/%
    Color index
    90.50±1.38a 86.00±2.87ab 89.00±1.87ab 91.00±1.87a 65.50±5.70b 444.00±8.49c
    种子数/粒
    Seed number
    33.70±0.88a 39.30±1.74a 34.40±1.96a 36.00±1.61a 35.30±1.17a 35.10±1.97a
    种子率/%
    Seed rate
    0.97±0.05ab 1.23±0.07a 1.08±0.11ab 1.09±0.04ab 0.79±0.07b 0.78±0.12b
     1)同行数据后具有不同字母者表示差异显著(P<0.05,HSD法)
     1) Different letters in the same row indicate significant difference(P<0.05, HSD test)
    下载: 导出CSV 
    | 显示表格

    表3所示,树龄对沙田柚果实各内在品质均无显著性影响。与健康树果实相比,低菌浓度(28<Ct<32)病树果实各内在品质指标无显著性变化,而高菌浓度(Ct<26)病树果实的可食率、出汁率、可溶性固形物含量和维生素C含量均显著降低,可滴定酸含量显著升高。

    表  3  柑橘黄龙病菌浓度对沙田柚果实内在品质的影响1)
    Table  3.  Effects of different concentrations of HLB pathogen on internal qualities of Citrus maxima
    测定指标
    Measured index
    健康树(Ct>35)
    Healthy trees
    低菌浓度病树(28<Ct<32)
    Trees with low pathogen concentration
    高菌浓度病树(Ct<26)
    Trees with high pathogen concentration
    6年生果园
    6-year old orchard
    15年生果园
    15-year old orchard
    6年生果园
    6-year old orchard
    15年生果园
    15-year old orchard
    6年生果园
    6-year old orchard
    15年生果园
    15-year old orchard
    可食率/%
    Percentage of edible fruit
    66.95±1.04a 63.94±0.80ab 66.32±1.30a 64.05±0.63ab 47.13±4.68c 55.57±2.27bc
    出汁率/%
    Juice extraction rate
    39.40±1.29a 39.82±1.04a 38.31±1.16ab 39.06±0.98ab 26.43±1.39c 31.99±2.32bc
    可溶性固形物/%
    Soluble solid content
    11.86±0.34ab 12.78±0.31a 11.62±0.27ab 11.86±0.21a 9.17±0.61c 10.23±0.32bc
    ρ(可滴定酸)/(g·L−1)
    Titratable acid content
    7.16±0.37c 8.08±0.50bc 7.46±0.38c 7.66±0.66bc 11.47±0.49ab 11.67±1.40a
    w(维生素C)/(mg·kg−1)
    Vitamin C content
    70.63±3.41ab 68.10±4.62ab 74.29±4.16a 71.22±2.47ab 58.42±2.95c 56.33±2.56c
     1)同行数据后具有不同字母者表示差异显著(P<0.05,HSD法)
     1) Different letters in the same row indicate significant difference (P<0.05, HSD test)
    下载: 导出CSV 
    | 显示表格

    表4所示,在带病情况一致的条件下,不同树龄沙田柚果实风味的人为感官品质评价的各项指标均没有显著性差异。相同树龄条件下,低菌浓度病树(28<Ct<32)与健康树果实感官品质各项指标无显著性差异;高菌浓度(Ct<26)病树的柚果甜味度、饱满度和综合风味均显著降低,而酸味度和异味度均显著提高。

    表  4  柑橘黄龙病菌浓度对沙田柚果实风味感官品质的影响1)
    Table  4.  Effects of different concentrations of HLB pathogen on sensory qualities of Citrus maxima
    测定指标
    Measured index
    健康树(Ct>35)
    Healthy trees
    低菌浓度病树(28<Ct<32)
    Trees with low pathogen concentration
    高菌浓度病树(Ct<26)
    Trees with high pathogen concentration
    6年生果园
    6-year old orchard
    15年生果园
    15-year old orchard
    6年生果园
    6-year old orchard
    15年生果园
    15-year old orchard
    6年生果园
    6-year old orchard
    15年生果园
    15-year old orchard
    甜味度
    Sweetness
    7.06±0.20a 6.79±0.20a 6.75±0.19a 6.65±0.22a 2.53±0.36b 3.18±0.57b
    酸味度
    Acidity
    2.89±0.17c 3.01±0.18c 3.09±0.14bc 3.07±0.18c 4.31±0.30a 4.01±0.31ab
    饱满度
    Plumpness
    7.01±0.30a 6.81±0.20a 6.28±0.23a 6.91±0.26a 4.16±0.14b 4.96±0.22b
    异味度
    Odor degree
    2.20±0.14b 2.38±0.13b 2.43±0.14b 2.91±0.19b 5.39±0.26a 4.61±0.39a
    综合风味Overall flavor 6.74±0.16a 6.52±0.23a 6.51±0.19a 6.12±0.17a 2.85±0.21b 3.76±0.44b
     1)同行数据后具有不同字母者表示差异显著(P<0.05,HSD法)
     1) Different letters in the same row indicate significant difference (P<0.05, HSD test)
    下载: 导出CSV 
    | 显示表格

    关于柚类品种耐黄龙病的相关研究很多,刘新华等[11]根据田间症状调查发现,同区域内沙田柚的田间发病率(2.6%)远低于柑橙类(21.5%);后续通过嫁接和分子试验证明,相比感病的椪柑Citrus reticulata Blanco cv. Ponkan,琯溪蜜柚Citrus maxima的症状表现和病菌侵染速度明显更慢[12]。在本研究中,相比同等种植条件下的砂糖橘,嫁接1年内的沙田柚叶片无明显黄龙病症状,抽梢正常,病原菌仍保持在较低水平,且低菌浓度对果实产量、果实内外观品质和风味人为感官品质均无明显影响,这可能与沙田柚自身特有的黄龙病抗性相关。植物叶片黄化主要是由于细胞叶绿体内淀粉颗粒异常膨大,挤压破坏类囊体基粒和片层造成[21-23],说明黄龙病引起的黄化症状可能与淀粉积累相关。戴泽翰等[24]通过显微观察发现发病沙田柚的维管形成层比感病品种具有更旺盛的分化能力,可形成更多的次生韧皮部细胞,且光合细胞合成和容纳淀粉的能力更强。更发达的韧皮部可缓解淀粉的局部累积,这可能就是柚类植物较耐黄龙病的原因之一。

    本研究发现沙田柚同样具有较高的黄龙病菌感染率,在嫁接病穗330 d后全部植株均染病,且高浓度黄龙病菌可影响沙田柚叶片症状、果实产量、内外品质和感官品质,使叶片斑驳黄化、果实变小变轻、严重时果实畸形、果轴歪斜,这些表现与前期关于沙田柚的田间调查结果相一致[25-26];产量、品质、出汁率、可溶性固形物和维生素C含量显著下降,酸含量升高,该现象同样发生在砂糖橘、纽荷尔脐橙Citrus sinensis Osbeck cv. Newhall、哈姆林甜橙Citrus sinensis Osbeck cv. Hamlin、瓦伦西亚橙Citrus sinensis Osbeck cv. Valencia、瓯柑Citrus reticulata Blanco cv. Suavissima等其他柑橘品种中[6, 8, 10, 27-28]。其中,可溶性固形物含量在沙田柚果实感官和品质鉴定中起关键作用,直接影响甜度和苦味,间接影响果汁含量[29]。本研究发现果实出汁率及感官和品质确实与可溶性固形物含量存在相关性,随着可溶性固形物含量的降低,果实出汁率、甜味度、饱满度及综合风味明显下降,酸味度和异味度加强,食用感官明显变差。此外,不同柑橘品种对黄龙病的反应存在差异,可能与不同品种的果实品质和栽培环境存在差异有关,因此需明确黄龙病对柚类植物树势、产量、果实内外品质、感官品质的系统性影响,从而深入研究柚类植物的耐性机制。

    因柚类植物存在一定的黄龙病耐病性,种植者往往对其发病情况关注较少,也忽略了对传病媒介柑橘木虱的防治。虽然症状不明显的病树仍有一定的经济价值,但这些带病植株有病原菌的侵染和分布,可作为田间黄龙病菌的来源,通过人为嫁接或虫媒自然传播感染其他健康植株,并且随着发病程度的进一步加剧,柚类植物的经济价值会受到严重影响,甚至颗粒无收,造成无法挽回的损失。因此,在柚园管理的过程中,应及时发现病株,对其进行铲除或隔离,并注意防控柑橘木虱,以免病害扩散蔓延。

    致谢:感谢嘉应学院生命科学学院师生在部分植物材料收集上给予的支持与帮助!

  • 图  1   拟南芥生物钟调控网络

    CCA1:CCA1CIRCADIAN CLOCK-ASSOCIATED 1;CHE:CCA1 hiking expedition;ELF3:EARLYFLOWERING 3;ELF4:EARLYFLOWERING 4;GI:GIGANTEA;LHY:LATE ELONGATED HYPOCOTYL;LNKs:NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATEDs;LUX:LUX ARRYTHMO;LWDs:LIGHT-REGULATED WDs;NOX:BROTHER OF LUX ARRHYTHMO,BOA; PRR5:PSEUDO-RESPONSE REGULATOR 5;PRR7:PSEUDO-RESPONSE REGULATOR 7;PRR9:PSEUDO-RESPONSE REGULATOR 9;RVE8:REVEILLE8;TCP20:TEOSINTE BRANCHED1-CYCLOIDEA-PCF 20;TCP22:TEOSINTE BRANCHED1-CYCLOIDEA-PCF 22;TOC1:TIMING OF CAB EXPRESSION 1

    Figure  1.   The circadian clock regulatory network in Arabidopsis thaliana

    图  2   生物钟以不同方式抵抗生物胁迫示例图

    LHY/CCA1调控植物抵御丁香假单胞菌、葡萄孢菌等病原体侵染的能力,在烟草中NaLHY/NaCC1A调控叶片挥发物(GLV)以抵御烟草天蛾;RVE4/8影响次生代谢类黄酮的合成,而黄酮类化合物除了响应非生物胁迫外也抵御病虫害; TOC1响应丁香假单胞菌、拟南芥霜霉病菌、葡萄孢菌等病原体侵染,NaTOC1在烟草中调控尼古丁合成,防御烟草天蛾;CHE维持ICS1的转录和SA的昼夜振荡,促使丁香假单胞菌引起的SAR、SAR诱导的SA积累; LUX调控对丁香假单胞菌和粉纹夜蛾的防御;ELF3、ELF4抗丁香假单胞菌、葡萄孢菌等病原体侵染;ZTL防御拟南芥霜霉病菌侵染;TIC抵御丁香假单胞菌侵染,维持气孔依赖型防御

    Figure  2.   The diagram of the circadian clock regulating plant resistance to biotic stresses in different ways

    LHY/CCA1 controls the plant’s ability to resist the infection of pathogens such as Pseudomonas syringae and Staphylococcus, NaLHY/NaCC1A regulates green leaf volatiles (GLV) to resist Manduca sexta in tobacco; RVE4/8 affects the synthesis of flavonoids, which enables plant to resist diseases, pests and abiotic stresses; TOC1 responds to invasion of pathogens such as P. syringae, Hyaloperonospora arabidopsidis, and Staphylococcus, NaTOC1 regulates nicotine synthesis in tobacco to defend against M. sexta; CHE regulates the transcription of ICS1 and maintains the circadian oscillations of SA content, which promotes the accumulation of SAR and SAR-induced SA caused by P. syringae; LUX regulates defenses against P. syringae; ELF3 and ELF4 confer resistance to P. syringae, Staphylococcus and other pathogens; ZTL contributes to prevent H. arabidopsidis infection in Arabidopsis; TIC confers resistance to P. syringae infection, maintaining a stomatal dependent defense

  • [1]

    ZHANG E E, KAY S A. Clocks not winding down: Unravelling circadian networks[J]. Nature Reviews Molecular Cell Biology, 2010, 11(11): 764-776. doi: 10.1038/nrm2995

    [2]

    LU S X, WEBB C J, KNOWLES S M, et al. CCA1 and ELF3 interact in the control of hypocotyl length and flowering time in Arabidopsis[J]. Plant Physiology, 2012, 158(2): 1079-1088. doi: 10.1104/pp.111.189670

    [3] 徐小冬, 谢启光. 植物生物钟研究的历史回顾与最新进展[J]. 自然杂志, 2013, 35(2): 118-126.
    [4]

    DE LEONE M J, HERNANDO C E, MORA-GARCíA S, et al. It’s a matter of time: The role of transcriptional regulation in the circadian clock-pathogen crosstalk in plants[J]. Transcription, 2020, 11(3/4): 1-17.

    [5]

    KARASOV T L, CHAE E, HERMAN J J, et al. Mechanisms to mitigate the trade-off between growth and defense[J]. The Plant Cell, 2017, 29(4): 666-680. doi: 10.1105/tpc.16.00931

    [6]

    MELDAU S, ERB M, BALDWIN I T. Defence on demand: Mechanisms behind optimal defence patterns[J]. Annals of botany, 2012, 110(8): 1503-1514. doi: 10.1093/aob/mcs212

    [7]

    HUOT B, YAO J, MONTGOMERY B L, et al. Growth-defense tradeoffs in plants: A balancing act to optimize fitness[J]. Molecular Plant, 2014, 7(8): 1267-1287. doi: 10.1093/mp/ssu049

    [8]

    NAGEL D H, KAY S A. Complexity in the wiring and regulation of plant circadian networks[J]. Current Biology, 2012, 22(16): R648-R657. doi: 10.1016/j.cub.2012.07.025

    [9]

    MICHAEL T P, SALOMÉ P A, YU H J, et al. Enhanced fitness conferred by naturally occurring variation in the circadian clock[J]. Science, 2003, 302(5647): 1049-1053. doi: 10.1126/science.1082971

    [10]

    GREENHAM K, MCCLUNG C R. Integrating circadian dynamics with physiological processes in plants[J]. Nature Reviews Genetics, 2015, 16(10): 598-610. doi: 10.1038/nrg3976

    [11]

    KOHSAKA A, BASS J. Clock genes and metabolic regulation[M]// SQUIRE L R. Encyclopedia of Neuroscience. Amsterdam: Elsevier, 2009: 1023-1029.

    [12]

    MCCLUNG C R. Plant circadian rhythms[J]. The Plant Cell, 2006, 18(4): 792-803. doi: 10.1105/tpc.106.040980

    [13]

    HSU P Y, HARMER S L. Wheels within wheels: The plant circadian system[J]. Trends in Plant Science, 2014, 19(4): 240-249. doi: 10.1016/j.tplants.2013.11.007

    [14]

    WENDEN B, KOZMA-BOGNÁR L, EDWARDS K D. Light inputs shape the Arabidopsis circadian system[J]. The Plant Journal, 2011, 66(3): 480-491. doi: 10.1111/j.1365-313X.2011.04505.x

    [15]

    KI Y, RI H, LEE H, et al. Warming up your tick-tock: Temperature-dependent regulation of circadian clocks[J]. The Neuroscientist:A Review Journal Bringing Neurobiology, Neurology And Psychiatry, 2015, 21(5): 503-518.

    [16]

    MWIMBA M, KARAPETYAN S, LIU L, et al. Daily humidity oscillation regulates the circadian clock to influence plant physiology[J]. Nature Communications, 2018, 9(1): 4290. doi: 10.1038/s41467-018-06692-2.

    [17]

    MICHAEL T P, MOCKLER T C, BRETON G, et al. Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules[J]. PLoS Genetics, 2008, 4(2): e14. doi: 10.1371/journal.pgen.0040014.

    [18]

    SHALIT-KANEH A, KUMIMOTO R W, FILKOV V, et al. Multiple feedback loops of the Arabidopsis circadian clock provide rhythmic robustness across environmental conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(27): 7147-7152. doi: 10.1073/pnas.1805524115

    [19]

    BELL-PEDERSEN D, CASSONE V M, EARNEST D J, et al. Circadian rhythms from multiple oscillators: Lessons from diverse organisms[J]. Nature Reviews Genetics, 2005, 6(7): 544-556. doi: 10.1038/nrg1633

    [20]

    CREUX N, HARMER S. Circadian rhythms in plants[J]. Cold Spring Harbor Perspectives in Biology, 2019, 11(9): a034611. doi: 10.1101/cshperspect.a034611.

    [21]

    DIXON L E, KNOX K, KOZMA-BOGNAR L, et al. Temporal repression of core circadian genes is mediated through EARLY FLOWERING 3 in Arabidopsis[J]. Current Biology, 2011, 21(2): 120-125. doi: 10.1016/j.cub.2010.12.013

    [22]

    FARRÉ E M, LIU T. The PRR family of transcriptional regulators reflects the complexity and evolution of plant circadian clocks[J]. Current Opinion in Plant Biology, 2013, 16(5): 621-629. doi: 10.1016/j.pbi.2013.06.015

    [23]

    WANG Z Y, TOBIN E M. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression[J]. Cell, 1998, 93(7): 1207-1217. doi: 10.1016/S0092-8674(00)81464-6

    [24]

    EZER D, JUNG J H, LAN H, et al. The evening complex coordinates environmental and endogenous signals in Arabidopsis[J]. Nature Plants, 2017, 3: 17087. doi: 10.1038/nplants.2017.87.

    [25]

    DE LEONE M J, HERNANDO C E, ROMANOWSKI A, et al. The LNK gene family: At the crossroad between light signaling and the circadian clock[J]. Genes, 2018, 10(1): 2. doi: 10.3390/genes10010002.

    [26]

    ALABADÍ D, OYAMA T, YANOVSKY M J, et al. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock[J]. Science, 2001, 293(5531): 880-883. doi: 10.1126/science.1061320

    [27]

    MALAPEIRA J, KHAITOVA L C, MAS P. Ordered changes in histone modifications at the core of the Arabidopsis circadian clock[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(52): 21540-21545. doi: 10.1073/pnas.1217022110

    [28]

    STAIGER D, GREEN R. RNA-based regulation in the plant circadian clock[J]. Trends in Plant Science, 2011, 16(10): 517-523. doi: 10.1016/j.tplants.2011.06.002

    [29]

    FILICHKIN S A, MOCKLER T C. Unproductive alternative splicing and nonsense mRNAs: A widespread phenomenon among plant circadian clock genes[J]. Biology Direct, 2012, 7: 20. doi: 10.1186/1745-6150-7-20.

    [30]

    BENDIX C, MARSHALL C M, HARMON F G. Circadian clock genes universally control key agricultural traits[J]. Molecular Plant, 2015, 8(8): 1135-1152. doi: 10.1016/j.molp.2015.03.003

    [31]

    DANGL J L, HORVATH D M, STASKAWICZ B J. Pivoting the plant immune system from dissection to deployment[J]. Science, 2013, 341(6147): 746-751. doi: 10.1126/science.1236011

    [32]

    NANDETY R S, CAPLAN J L, CAVANAUGH K, et al. The role of TIR-NBS and TIR-X proteins in plant basal defense responses[J]. Plant Physiology, 2013, 162(3): 1459-1472. doi: 10.1104/pp.113.219162

    [33]

    LI B, MENG X Z, SHAN L B, et al. Transcriptional regulation of pattern-triggered immunity in plants[J]. Cell Host & Microbe, 2016, 19(5): 641-650.

    [34]

    JONES J D G, DANGL J L. The plant immune system[J]. Nature, 2006, 444(7117): 323-329. doi: 10.1038/nature05286

    [35]

    CUI H T, TSUDA K, PARKER J E. Effector-triggered immunity: From pathogen perception to robust defense[J]. Annual Review of Plant Biology, 2015, 66: 487-511. doi: 10.1146/annurev-arplant-050213-040012

    [36]

    GREENBERG J T, YAO N. The role and regulation of programmed cell death in plant-pathogen interactions[J]. Cellular Microbiology, 2004, 6(3): 201-211. doi: 10.1111/j.1462-5822.2004.00361.x

    [37]

    LU H, MCCLUNG C R, ZHANG C. Tick tock: Circadian regulation of plant innate immunity[J]. Annual Review of Phytopathology, 2017, 55: 287-311. doi: 10.1146/annurev-phyto-080516-035451

    [38]

    INGLE R A, STOKER C, STONE W, et al. Jasmonate signalling drives time-of-day differences in susceptibility of Arabidopsis to the fungal pathogen Botrytis cinerea[J]. The Plant Journal, 2015, 84(5): 937-948. doi: 10.1111/tpj.13050

    [39]

    HUA J. Modulation of plant immunity by light circadian rhythm and temperature[J]. Current Opinion in Plant Biology, 2013, 16(4): 406-413. doi: 10.1016/j.pbi.2013.06.017

    [40]

    VALIM H, DALTON H, JOO Y, et al. TOC1 in Nicotiana attenuata regulates efficient allocation of nitrogen to defense metabolites under herbivory stress[J]. The New Phytologist, 2020, 228(4): 1227-1242. doi: 10.1111/nph.16784

    [41]

    JOO Y, SCHUMAN M C, GOLDBERG J K, et al. Herbivory elicits changes in green leaf volatile production via jasmonate signaling and the circadian clock[J]. Plant, Cell & Environment, 2019, 42(3): 972-982.

    [42]

    PÉREZ-GARCÍA P, MA Y, YANOVSKY M J, et al. Time-dependent sequestration of RVE8 by LNK proteins shapes the diurnal oscillation of anthocyanin biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(16): 5249-5253. doi: 10.1073/pnas.1420792112

    [43]

    WANG W, BARNABY J Y, TADA Y, et al. Timing of plant immune responses by a central circadian regulator[J]. Nature, 2011, 470(7332): 110-114. doi: 10.1038/nature09766

    [44]

    ZHANG C, XIE Q G, ANDERSON R G, et al. Crosstalk between the circadian clock and innate immunity in Arabidopsis[J]. PLoS Pathogens, 2013, 9(6): e1003370. doi: 10.1371/journal.ppat.1003370.

    [45]

    YANG L, LIU P T, WANG X C, et al. A central circadian oscillator confers defense heterosis in hybrids without growth vigor costs[J]. Nature Communications, 2021, 12(1): 2317. doi: 10.1038/s41467-021-22268-z.

    [46]

    NICAISE V, JOE A, JEONG B R, et al. Pseudomonas HopU1 modulates plant immune receptor levels by blocking the interaction of their mRNAs with GRP7[J]. The EMBO Journal, 2013, 32(5): 701-712. doi: 10.1038/emboj.2013.15

    [47]

    ZHANG C, GAO M, SEITZ N C, et al. LUX ARRHYTHMO mediates crosstalk between the circadian clock and defense in Arabidopsis[J]. Nature Communications, 2019, 10(1): 2543. doi: 10.1038/s41467-019-10485-6.

    [48]

    BÜRGER M, CHORY J. Stressed out about hormones: How plants orchestrate immunity[J]. Cell Host & Microbe, 2019, 26(2): 163-172.

    [49]

    ZHOU M, WANG W, KARAPETYAN S, et al. Redox rhythm reinforces the circadian clock to gate immune response[J]. Nature, 2015, 523(7561): 472-476. doi: 10.1038/nature14449

    [50]

    CAMPOS M L, KANG J H, HOWE G A. Jasmonate-triggered plant immunity[J]. Journal of Chemical Ecology, 2014, 40(7): 657-675. doi: 10.1007/s10886-014-0468-3

    [51]

    ROBERT-SEILANIANTZ A, GRANT M, JONES J D G. Hormone crosstalk in plant disease and defense: More than just jasmonate-salicylate antagonism[J]. Annual Review of Phytopathology, 2011, 49: 317-343. doi: 10.1146/annurev-phyto-073009-114447

    [52]

    CHINI A, FONSECA S, FERNÁNDEZ G, et al. The JAZ family of repressors is the missing link in jasmonate signalling[J]. Nature, 2007, 448(7154): 666-671. doi: 10.1038/nature06006

    [53]

    THINES B, KATSIR L, MELOTTO M, et al. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling[J]. Nature, 2007, 448(7154): 661-665. doi: 10.1038/nature05960

    [54]

    LI R, LLORCA L C, SCHUMAN M C, et al. ZEITLUPE in the roots of wild tobacco regulates jasmonate-mediated nicotine biosynthesis and resistance to a generalist herbivore[J]. Plant Physiology, 2018, 177(2): 833-846. doi: 10.1104/pp.18.00315

    [55]

    HEVIA M A, CANESSA P, MÜLLER-ESPARZA H, et al. A circadian oscillator in the fungus Botrytis cinerea regulates virulence when infecting Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(28): 8744-8749. doi: 10.1073/pnas.1508432112

    [56]

    WINDRAM O, MADHOU P, MCHATTIE S, et al. Arabidopsis defense against Botrytis cinerea: Chronology and regulation deciphered by high-resolution temporal transcriptomic analysis[J]. The Plant Cell, 2012, 24(9): 3530-3557. doi: 10.1105/tpc.112.102046

    [57]

    GAPPER C, DOLAN L. Control of plant development by reactive oxygen species[J]. Plant Physiology, 2006, 141(2): 341-345. doi: 10.1104/pp.106.079079

    [58]

    SPOEL S H, VAN OOIJEN G. Circadian redox signaling in plant immunity and abiotic stress[J]. Antioxidants & Redox Signaling, 2014, 20(18): 3024-3039.

    [59]

    HARMER S L, HOGENESCH J B, STRAUME M, et al. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock[J]. Science, 2000, 290(5499): 2110-2113. doi: 10.1126/science.290.5499.2110

    [60]

    LAI A G, DOHERTY C J, MUELLER-ROEBER B, et al. CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress responses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(42): 17129-17134. doi: 10.1073/pnas.1209148109

    [61]

    KUREPA J, SMALLE J, VAN MONTAGU M, et al. Oxidative stress tolerance and longevity in Arabidopsis: The late-flowering mutant gigantea is tolerant to paraquat[J]. The Plant Journal, 1998, 14(6): 759-764. doi: 10.1046/j.1365-313x.1998.00168.x

    [62]

    ALMAGRO L, GÓMEZ ROS L V, BELCHI-NAVARRO S, et al. Class III peroxidases in plant defence reactions[J]. Journal of Experimental Botany, 2009, 60(2): 377-390. doi: 10.1093/jxb/ern277

    [63]

    TORRES M A, DANGL J L, JONES J D G. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(1): 517-522. doi: 10.1073/pnas.012452499

    [64]

    TORRES M A, JONES J D G, DANGL J L. Pathogen-induced NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana[J]. Nature Genetics, 2005, 37(10): 1130-1134. doi: 10.1038/ng1639

图(2)
计量
  • 文章访问数:  244
  • HTML全文浏览量:  19
  • PDF下载量:  459
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-31
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2022-11-09

目录

/

返回文章
返回