• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

减数分裂重组的分子遗传机制研究进展及在作物育种中的应用

黄霁月, 王聪, 王应祥

黄霁月, 王聪, 王应祥. 减数分裂重组的分子遗传机制研究进展及在作物育种中的应用[J]. 华南农业大学学报, 2022, 43(6): 17-35. DOI: 10.7671/j.issn.1001-411X.202208059
引用本文: 黄霁月, 王聪, 王应祥. 减数分裂重组的分子遗传机制研究进展及在作物育种中的应用[J]. 华南农业大学学报, 2022, 43(6): 17-35. DOI: 10.7671/j.issn.1001-411X.202208059
HUANG Jiyue, WANG Cong, WANG Yingxiang. Advances in molecular genetic mechanism of meiotic recombination and applications in crop breeding[J]. Journal of South China Agricultural University, 2022, 43(6): 17-35. DOI: 10.7671/j.issn.1001-411X.202208059
Citation: HUANG Jiyue, WANG Cong, WANG Yingxiang. Advances in molecular genetic mechanism of meiotic recombination and applications in crop breeding[J]. Journal of South China Agricultural University, 2022, 43(6): 17-35. DOI: 10.7671/j.issn.1001-411X.202208059

减数分裂重组的分子遗传机制研究进展及在作物育种中的应用

基金项目: 华南农业大学和岭南现代农业科学与技术广东省实验室启动资金
详细信息
    作者简介:

    黄霁月,教授,博士,主要从事减数分裂重组调控的机制研究与可控重组技术的开发, E-mail: jyhuang@scau.edu.cn

    通讯作者:

    王应祥,教授,博士,主要从事大豆适应热带亚热带的分子遗传基础和新种质创制与植物生殖发育的遗传和表观遗传调控机制研究,E-mail: yxwang@scau.edu.cn

  • 中图分类号: Q37; Q943; S336

Advances in molecular genetic mechanism of meiotic recombination and applications in crop breeding

  • 摘要:

    减数分裂是真核生物有性生殖产生染色体数目减半的单倍体配子所必需的生命过程。重组是减数分裂的核心事件之一,既增加了同源染色体间遗传信息的交换,又保证了其在减数分裂后期Ⅰ的正确分离。因此,减数分裂重组不仅增加了后代遗传多样性,还是作物遗传育种的基础。通过提高重组频率或改变其分布可以加速农作物育种进程,而降低或抑制重组可以固定杂种优势。近年来对植物减数分裂重组的分子遗传机制的研究取得了很大进展,包括重组的遗传和表观遗传调控机制,重组的遗传操控技术、固定杂交优势和染色体工程等方面。本文针对以上方面进行了全面的总结,这些内容不仅方便了读者对减数分裂重组的理论认知,还拓展了通过调控减数分裂重组操控生物育种的思路。

    Abstract:

    Meiosis is essential for producing haploid gametes during sexual reproduction in most eukaryotes. Homologous recombination is one of the critical events of meiosis prophase I. It not only leads to the reshuffle of genetic information between homologs, but also ensures their proper segregation at anaphase I. Therefore, meiotic recombination is important to facilitate the genetic diversity and evolution among progeny, and also provides the theoretical basis for crop breeding. As expectedly, increasing the frequency of recombination or changing its distribution can benefit crop breeding, while reducing or inhibiting recombination can sustain heterosis. Over the past decades, numerous achievements have been made in understanding and utilizing meiotic recombination in plants, including mechanisms on genetic and epigenetic regulation of meiotic recombination, manipulation technologies on recombination, fixation of heterosis and chromosome engineering. In this review, we summarize the latest findings and technologies for regulating meiotic recombination, which will enable the readers to have an easy access to understand meiotic recombination, and also expand the idea of manipulating breeding through meiotic recombination.

  • 植物和人类的生长和发育都需要矿质元素。土壤中的矿质元素被植物的根部吸收,并通过不同的转运蛋白运输到其他部位[1]。矿质营养不仅影响植物正常的生长发育,还以多种方式直接或间接参与抵抗生物和非生物胁迫。矿质元素通过调节氧化还原酶活性直接影响植物的健康,或通过改变根系分泌物、微生物种群动态、根际土壤养分含量、土壤pH、木质素沉积以及植物抗性化合物合成等间接影响植物的抗性[2]。水稻Oryza sativa是人类的主要粮食来源,也是单食性昆虫褐飞虱Nilaparvata lugens的主要食物来源。褐飞虱若虫、成虫通过刺吸水稻茎基韧皮部细胞汁液致使植株流失大量水分和矿质营养,导致水稻减产甚至绝收[3]。生产实践表明,褐飞虱的暴发与过度施肥有关[4],实际水稻生产中以产量为导向,田间管理多为“大水大肥”。研究表明褐飞虱侵害不同抗性水平的水稻品种,引起氮、磷、钾营养物质含量在体内的不同变化,根系对水培营养液营养元素氮、磷、钾的吸收响应也存在差异[5-6]。此外,氮、磷、钾元素的施加会交互影响水稻和褐飞虱体内氮、磷、钾的含量[7]。因此,探究不同氮磷钾浓度处理下水稻对褐飞虱的抗性响应,可为氮磷钾合理施用防控褐飞虱危害提供理论基础。总结前人研究发现,大量营养元素氮、磷和钾;中量营养元素钙、镁和硫以及微量营养元素硼、锰、铁、锌、铜和硅等在调控植物抗病性和生长发育方面具有重要意义[2]。Gupta等[8]研究发现,钙、镁、钾、磷、钠和氯元素喷雾处理番茄叶片后能有效降低灰霉病和细菌性斑点病的严重程度,并诱导免疫反应。Ballini等[9]研究发现,高氮供应会降低籼稻/粳稻亚种对稻瘟病的抗性,并称这种现象为氮诱导敏感性(Nitrogen-induced susceptibility)。研究不同钾水平处理下蓟马对苜蓿的危害,结果表明钾元素可通过提高苜蓿中碳氮比降低游离氨基酸的含量来提高苜蓿对蓟马的耐害性[10]。Wu等[11]研究指出,水稻中氮和硅存在相互作用影响褐飞虱的抗性,高浓度氮 (5.76 mmol/L)可减少水稻叶片中硅的积累,而外施硅时,高浓度氮条件下的叶片氮素积累会减少。He等[12]研究发现,水稻水培条件下,高质量浓度硅(240 mg/L,SiO2)会降低褐飞虱的存活率和寄主选择数。Yang等[13]通过水培试验发现,低质量浓度氮(4 mg/L的N,NH4NO3)或低质量浓度磷(1 mg/L的P,NaH2PO4·2H2O)处理的水稻植株也能降低褐飞虱的存活率、增质量率、蜜露排泄量以及寄主选择数,呈现出明显的抗生性和趋避性。此外,还发现硅元素在褐飞虱抗性方面有着积极作用,Lin等[14]研究发现施加硅可以提高水杨酸的含量从而激活植物对刺吸式昆虫的防御反应,并增强抗氧化酶系统的活性,使防御反应更迅速。施氮会增加水稻植株的可溶性蛋白含量并降低硅含量,导致褐飞虱取食量增加,植株相对含水量急剧下降,最终导致植株感虫,而磷的施加增加了植物的磷含量,但对氮、钾、硅、可溶性糖和可溶性蛋白的含量没有影响,对褐飞虱抗性的影响不明显[7]。已有研究表明,单独的氮、磷和硅营养元素处理会影响褐飞虱的存活率、增质量率和蜜露排泄量以及寄主选择性等抗性指标。在水稻生产过程中,降雨或灌溉之后,多种营养元素(复合肥)往往是一并施用的,极易造成“大水大肥”的现象。然而高浓度或低浓度的氮磷钾复合处理对水稻植株抗褐飞虱的响应却鲜有研究。此外,先前的单独营养元素处理研究多集中于氮、磷和硅元素,对钾营养的研究也相对较少。本研究以感褐飞虱水稻品系‘9311’和抗性品系‘BPHR96’为供试材料,观察有无水源/食物条件下褐飞虱的死亡率,测定并比较不同质量浓度氮磷钾处理和不同质量浓度钾处理下水稻幼苗的分蘖数、株高、根长、地上部鲜质量和根鲜质量等表型性状,并进一步探究不同营养条件下褐飞虱的存活数量、增质量率和蜜露排泄量等抗生性指标以及寄主选择数量趋避性指标的差异,以期为合理应用水肥管理综合防治褐飞虱提供理论依据。

    抗褐飞虱水稻品系是来源于野生稻Oryza rufipogon Griff的‘BPHR96’,其携带有Bph24(t)而对多种褐飞虱生物型具有高抗性[15];感虫水稻品系为籼稻‘9311’。褐飞虱虫源最初从广西南宁市水稻田收集,并在广西大学农科综合实验基地温室种植的‘9311’上饲养和繁殖,自然光照下设定平均温度26~30 ℃,相对湿度(w)75%,取2~3龄期的褐飞虱若虫用于后续试验。

    褐飞虱对水稻品系‘9311’和‘BPHR96’的抗性等级评价采用苗期集团法,具体方法:每个品系设3次重复,每次试验重复取25粒种子,浸种催芽后, 分别播种于装有8 cm水稻土的塑料杯(直径8 cm、高10 cm)。在温室条件下生长至三叶期,去除病弱苗后仅保留20株大小长势基本一致的幼苗。按每株8头的密度接入2~3龄的褐飞虱若虫,当‘9311’死苗率达到90%以上时(约接虫后15 d),参照Qiu等[16]采用的评价标准统计参试品系的褐飞虱平均抗性等级,分1~9级,级别越低,抗性越强。

    取塑料杯分别放入10头2龄褐飞虱若虫,设4个处理,处理一:塑料杯中每天更换新鲜的‘9311’茎段;处理二:每天更换新鲜的‘BPHR96’茎段;处理三:加入少许自来水,形成有水源的饥饿胁迫;处理四:不作任何操作,形成无水源的饥饿胁迫。塑料杯用尼龙细网封口后,放入同一个透光性良好的尼龙网箱中。观察接虫后2、5、12、24、48、72、96、120、168和216 h的褐飞虱死亡数目,设10次生物学重复,试验重复3次。

    水培试验于玻璃温室中进行,用去离子水制备试验营养液[12]。营养液pH 5.0~6.0,1周更换1次。对照组营养液质量浓度为40 mg/L的N,由NH4NO3提供;10 mg/L的P,由NaH2PO4·2H2O提供;40 mg/L 的K,由K2SO4提供。营养液还包含有40 mg/L的Ca,由CaCl2提供;40 mg/L的 Mg,由MgSO4·7H2O提供;120 mg/L的SiO2,由Na2SiO3·9H2O提供;0.5 mg/L的Mn,由MnCl2·4H2O提供;0.05 mg/L的Mo,由(NH4)6Mo7O24·4H2O提供;2.0 mg/L的Fe,由EDTA-Fe提供;0.2 mg/L的B,由H3BO3提供;0.01 mg/L的Zn,由ZnSO4·7H2O提供,以及0.01 mg/L的Cu,由CuSO4·5H2O提供。其中低质量浓度氮磷钾营养液为4 mg/L的N、1 mg/L的P和4 mg/L的K;高质量浓度氮磷钾营养液为100 mg/L的N、40 mg/L的P和100 mg/L的K;低质量浓度钾营养液为4 mg/L的K;高质量浓度钾营养液为100 mg/L的K,其余均一致。

    将在粗河沙中生长10 d、长势一致的幼苗分别移入有营养液的塑料箱(长58 cm、宽38 cm、高9 cm),每箱20株。不同营养液处理30 d后测定水稻植株分蘖数、株高、根长、地上部鲜质量和根鲜质量等5个幼苗表型性状,试验设10次重复。

    将生长10 d 的水稻幼苗分别移入装有不同营养液的塑料杯中,每杯1株水稻幼苗,每处理5次重复,自然条件培养10 d。然后罩上底部剪口的透明塑料杯,用吸虫器吸取10头2龄的褐飞虱若虫从剪口处接入植株,用脱脂棉封住剪口以防褐飞虱逃跑。接虫24 h内观察褐飞虱的虫数与状况,若有损伤死去的需及时补充并保持10头存活数,分别记录1、2、3、4、5、6、7、8和9 d植株上存活的褐飞虱。

    将生长10 d的水稻幼苗分别移栽于装有不同营养液的塑料桶(直径29 cm、高20 cm)中,每桶移栽4株水稻幼苗,每处理5次重复, 生长30 d后的幼苗用于测定褐飞虱的增质量率。将Parafilm封口膜裁剪成3.5 cm × 3.0 cm大小的长方形蜡袋,其一角边留1 cm长度的口径,用于接入褐飞虱并绑在水稻茎部。用精度为十万分之一的电子天平称量接虫褐飞虱前、后的质量,预称10头2~3龄褐飞虱若虫的体质量,接虫5 d后,再次称量存活褐飞虱的体质量,存活褐飞虱的虫体增质量率(M)计算公式[17]为:

    $$ M=(m_{{\rm{f}}}-m_{{\rm{o}}})/ m_{{\rm{o}}} \times 100{\text{%}}\text{,}$$ (1)

    式中,momf分别为每桶处理中存活褐飞虱的初始和最终平均质量。

    将生长10 d的单株幼苗用轻质塑料板固定在塑料杯中,不同浓度营养液处理10 d后,接入20头2~3龄褐飞虱若虫。接虫5 d后,可以看到褐飞虱排泄的蜜露附着在植株周围的塑料板上。根据蜜露在轻质塑料板上排出蜜露的半径大小[0, 0.1)、[0.1, 0.5)、[0.5, 1.0)、[1.0, 2.0)、[2.0, 3.0)、[3.0, 4.0)和[4.0, 5.0 )cm,分别给予0、0.5、1.0、2.0、3.0、4.0和5.0的分值。其中,分值0表示没有蜜露排出。分值越低,说明昆虫排出的蜜露越少。每个处理试验重复5次。

    为测定褐飞虱在不同营养液培养的寄主选择行为,将生长10 d的单株水稻幼苗固定在塑料杯中的轻质塑料板,不同质量浓度营养液处理10 d后,分别将低质量浓度、对照和高质量浓度营养液处理的1杯幼苗放入同一个尼龙网箱中,将45头2~3龄褐飞虱若虫投放入网箱内塑料杯上齐平的塑料板中,密封网箱防止褐飞虱外逃。接虫后12、24、48、96和120 h统计每株水稻植株上褐飞虱的附着数量,每个处理试验重复10次。

    多次苗期集团法抗虫鉴定结果(图1)表明,水稻品系‘BPHR96’对来源于广西南宁市水稻田的混合生物型褐飞虱群体表现出高抗性。水稻幼苗三叶期植株接虫15 d后进行抗性等级评级,水稻品系‘9311’和‘BPHR96’的平均抗虫等级为8.6和2.3 (图1A)。

    图  1  水稻品系抗褐飞虱评级(A)和不同水源和食物处理下褐飞虱的死亡率(B)
    “****”表示‘BPHR96’与‘9311’的褐飞虱抗性等级差异显著(P < 0.0001,t检验)
    Figure  1.  Resistance grade of rice lines to brown planthopper (A) and mortality rate of brown planthopper under different water and food treatments (B)
    “****” indicates significant difference in resistance grade between ‘BPHR96’ and ‘9311’ (P < 0.0001, t test)

    为探究水源和食物对褐飞虱死亡率的影响,在有‘9311’茎段、‘BPHR96’ 茎段、少许水源和无水源的塑料杯中分别接入10头2龄褐飞虱,记录接虫后褐飞虱的死亡率。结果(图1B)发现,饥饿处理的褐飞虱死亡率上升迅速,无水饥饿处理的褐飞虱在接虫48 h后完全死亡,与此同时,取食‘BPHR96’和‘9311’的褐飞虱死亡率仅为19.7%和20.7%。到接虫216 h时,有水饥饿处理的死亡率达到96.8%,取食‘BPHR96’的死亡率也达到85.0%,而取食‘9311’的褐飞虱死亡率始终维持在较低水平(44.3%)。上述结果表明,环境有无水源是影响褐飞虱死亡速率的重要因素,而食物的适口性也最终会影响褐飞虱的死亡速率。

    不同质量浓度氮磷钾营养可显著影响水稻品系‘9311’和‘BPHR96’的分蘖数、株高、根长、地上部鲜质量和根鲜质量。与低质量浓度氮磷钾处理相比,水稻品系‘9311’和‘BPHR96’在对照和高质量浓度氮磷钾处理的分蘖数分别增加41.7%~108.3%和107.7%~161.5%,株高分别增加53.2%~58.4%和31.0%~31.5%,根长分别增加80.7%~103.5%和75.7%~89.6%,地上部鲜质量分别增加259.3%~379.1%和217.3%~371.2%。而对照的根鲜质量则显著高于低和高质量浓度氮磷钾的,其中‘9311’分别增加109.6%和93.9%,‘BPHR96’分别增加79.8%和70.8%。以上结果说明氮磷钾作为植物生长必须的大量元素,对照和高质量浓度氮磷钾营养液能提供水稻幼苗生长发育所需的营养,长势显著增强(图2A、2B)。 图2C、2D分别显示了‘9311’和‘BPHR96’在不同氮磷钾质量浓度处理下褐飞虱存活数量的时间变化。低质量浓度氮磷钾处理的‘9311’褐飞虱存活数量在8 和9 d显著低于对照和高质量浓度的,平均分别少了1.3~1.4和1.1~1.2头。而低和对照质量浓度氮磷钾的‘BPHR96’褐飞虱存活数量在7、8和9 d显著低于高质量浓度的,平均分别少了1.6~2.4,1.9~2.0和1.7头。由图2E可知,取食对照和高质量浓度氮磷钾的褐飞虱增质量率显著高于低质量浓度的。对于‘9311’,对照和高质量浓度氮磷钾的增质量率分别是低质量浓度的1.6和2.1倍,对于‘BPHR96’,分别为1.5和1.8倍。由图2F可知,取食对照和高质量浓度氮磷钾‘9311’的褐飞虱蜜露排泄量显著高于低质量浓度的,分别为其2.1和2.6倍,而取食高质量浓度氮磷钾‘BPHR96’的褐飞虱蜜露排泄量显著高于低/对照质量浓度的,为低质量浓度的3.5倍和对照质量浓度的5.0倍。可见,低质量浓度氮磷钾培养的水稻幼苗不利于褐飞虱的取食和消化行为,表现出更强的抗生性;而对于高抗性水稻,提高营养条件也能促进褐飞虱的生长发育,从而降低植株的抗性。图2G2H分别显示了‘9311’和‘BPHR96’在不同质量浓度氮磷钾处理下寄主选择的褐飞虱数量的时间变化。对于‘9311’,72、96和120 h低质量浓度氮磷钾处理的褐飞虱数量均显著低于对照和高质量浓度的,并且高质量浓度氮磷钾处理的褐飞虱数量在12、24和48 h显著低于对照的。对于‘BPHR96’,接虫后12 至120 h的6个观察时间点,低质量浓度氮磷钾处理的褐飞虱数量均低于对照和高质量浓度的,对照的褐飞虱数量仅在120 h处显著高于高质量浓度氮磷钾处理的。有趣的是,结果还发现2个水稻品系的6个观察时间点,对照的平均寄主选择褐飞虱数量都是最多的。可见,褐飞虱更倾向取食正常质量浓度氮磷钾的幼苗,而对低质量浓度氮磷钾处理的幼苗表现较强的趋避性,这种现象在抗性水稻品系尤为明显。

    图  2  不同氮磷钾质量浓度对水稻品系‘9311’和‘BPHR96’苗期生长与褐飞虱取食的影响
    各小图中同一指标图柱上不同小写字母表示处理间差异显著(P < 0.05,DMRT法);TN:分蘖数;PH:株高(cm);RL:根长(cm);AFW:地上部鲜质量(g);RFW:根鲜质量(g)
    Figure  2.  Effects of different nitrogen, phosphorus and potassium mass concentration on seedling growth and brown planthopper feeding of rice lines ‘9311’ and ‘BPHR96’
    Different lowercase letters on the same indicator bar indicate significant difference among treatments (P < 0.05, DMRT method); TN: Tiller number; PH: Plant height (cm); RL: Root length (cm); AFW: Aboveground fresh weight (g); RFW: Root fresh weight (g)

    综合水稻品系‘9311’和‘BPHR96’分析,与对照相比,低质量浓度钾抑制水稻幼苗生长,高质量浓度钾促进水稻幼苗生长(图3A、3B)。对于‘9311’,低质量浓度钾对水稻幼苗的株高、根长、地上部鲜质量和根鲜质量起到显著抑制作用,与对照相比分别降低了26.9%、30.3%、39.6%和56.2%。对于‘BPHR96’,与对照相比,低质量浓度钾同样起到了显著抑制作用,分蘖数、株高、根长、地上部鲜质量和根鲜质量分别降低了53.1%、14.9%、20.8%、59.8%和57.2%;高质量浓度钾促进株高、根长和根鲜质量的增加,分别显著提高了13.8%、22.2%和32.1%。可见,钾是水稻生长发育极其重要的营养元素之一。

    图  3  不同钾质量浓度对水稻品系‘9311’和‘BPHR96’苗期生长与褐飞虱取食的影响
    各小图中同一指标图柱上不同小写字母表示处理间差异显著(P < 0.05,DMRT法);TN:分蘖数;PH:株高(cm);RL:根长(cm);AFW:地上部鲜质量(g);RFW:根鲜质量(g)
    Figure  3.  Effects of different mass concentration potassium on seedling growth and brown planthopper feeding of rice lines ‘9311’ and ‘BPHR96’
    Different lowercase letters on the same indicator bar indicate significant difference among treatments (P < 0.05, DMRT method); TN: Tiller number; PH: Plant height (cm); RL: Root length (cm); AFW: Aboveground fresh weight (g); RFW: Root fresh weight (g)

    图3C、3D可知,在观察的9 d内,水稻品系‘9311’和‘BPHR96’在低质量浓度钾,对照及高质量浓度钾处理的褐飞虱存活数量均未表现出显著差异,说明无论抗、感水稻品系,不同质量浓度的钾营养不影响褐飞虱的存活数量。图3E显示了对于感性品系‘9311’,不同质量浓度的钾营养对褐飞虱增质量率没有产生显著的影响。而对于抗性品系‘BPHR96’,与对照相比,高质量浓度钾的褐飞虱增质量率显著增加91.7%,但与低质量浓度钾相比没有显著差异。图3F显示了不同质量浓度的钾处理不影响褐飞虱的蜜露排泄量,水稻品系‘9311’和‘BPHR96’均未表现出显著性差异。综合分析认为钾营养浓度不影响褐飞虱的存活数量、增质量率及蜜露排泄量,没有改变水稻对褐飞虱的抗性作用。

    图3G、3H可知,水稻品系‘9311’和‘BPHR96’在观察的120 h内,低质量浓度钾、对照以及高质量浓度钾处理之间均未出现显著差异。可见,钾营养也不会对褐飞虱的寄主选择行为造成影响,即钾营养浓度不改变水稻幼苗对褐飞虱的趋避作用。

    褐飞虱性喜阴湿,水分胁迫能显著降低褐飞虱在感性和抗性水稻品种上的蜜露排泄量、虫体增质量率和产卵数量[18]。于莹等[19]在31 ℃高温条件下,用PEG 6000模拟干旱胁迫时发现,褐飞虱若虫发育历期随PEG 6000质量浓度的升高而延长,褐飞虱的若虫存活率、体质量、孵化率和群体增长倍数随着PEG 6000质量浓度的升高而下降。转录组分析发现,褐飞虱取食水胁迫处理的水稻,体内乙酰辅酶A与线粒体ATP合成酶表达量显著上调,表明水分胁迫导致褐飞虱体内的能量代谢加强,需要消耗更多能量去适应水分胁迫[20]。水稻生产上,可以通过合理灌溉调节田间水分含量,避免大水漫灌,精确用水达到调控褐飞虱危害的目的[21]。本研究的饥饿试验发现,在无饮用水源的条件下对褐飞虱进行饥饿胁迫,其死亡率上升迅速,在接虫后48 h就达到了100%,并远高于有水源的饥饿胁迫及取食抗性水稻品系,表明水源是影响褐飞虱死亡率的重要因子。

    矿质元素与植物防御反应有着紧密的联系,许多矿质营养直接参与植物对病虫害的免疫过程。矿质营养增强植物抗病性的机制主要表现为两方面,一方面矿质营养可以促进细胞壁增厚,形成机械障碍;另一方面矿质营养促进植物抗氧化物和多酚类等防御化合物的分泌[22]。例如,硅元素在降低禾本科作物病虫害的严重程度方面有着突出的表现,硅酸盐通过减少植物体内有毒物质的产生,增强木质化,促进病程相关蛋白(Pathogenesis related protein,PR)及酚类物质的产生,从而诱导植物的防御反应。硅元素还在植物表皮细胞积累,形成物理屏障防止真菌类菌丝的渗透蔓延[23]。植物寄主−病原物−矿质营养存在复杂的相互作用,通过调节矿质营养这一重要环境因子,可改善植物生长发育和降低病虫的为害程度。均衡的营养条件可以带来健康的植物,被认为是最有效的病虫害防控措施[2]。氮、磷和钾是水稻所必需的大量营养元素,为保持土壤的肥力,生产上会施用不同形式的肥料到稻田中,过量氮肥可能会引起褐飞虱暴发。有研究表明,100和200 kg/hm2的施氮量能明显缩短水稻受褐飞虱侵染至死亡(抗性等级9级)所需的时间,钾的施用可延长达到完全死亡所需的时长,该研究同时发现磷的施用水平不影响水稻达到9级损死所需要的时长[15]。郑许松等[24]研究表明,施用高水平氮肥提高了褐飞虱对逆境条件的生态适应性,温度和氮肥对褐飞虱存活率、若虫历期和产卵量有显著的交互作用。另有研究指出,低质量浓度氮处理(4 mg/L)或低质量浓度磷处理(1 mg/L)虽对水稻幼苗的生长有显著抑制作用,但与此同时低氮或低磷能显著减少褐飞虱增质量、蜜露排泄量以及存活率,并能显著增强趋避性,氮营养胁迫比磷营养胁迫对褐飞虱趋避作用更为明显[13]。磷营养的有效管理在减轻水稻稻瘟病和黄瓜白粉病方面也有着显著的效果[25-26]。本研究的结果与前人的结论基本一致,高质量浓度氮磷钾处理能显著降低褐飞虱的抗生性,与低质量浓度氮磷钾相比,褐飞虱存活数平均多出1.1~2.0头,增质量率和蜜露排泄量高出1.5~5.0倍,且低质量浓度氮磷钾的寄主选择数量在观察时间12 ~120 h均显著低于高质量浓度或对照的。由此推测,选择在营养更丰富的植株取食,可能是褐飞虱出于繁殖并产生下一代而做出的最佳选择,并且该现象在抗性水稻品系上尤为明显。

    钾肥的施用在大多数情况下可以降低病害的发生率,但也有相反的报道,也有在植物与病原物的互作中影响不显著的报道[27-29]。本研究试验结果表明,钾营养的质量浓度与水稻幼苗的长势呈现明显的正相关,但不同质量浓度钾处理下水稻对褐飞虱的抗性没有显著变化,认为钾施用浓度对水稻与褐飞虱互作关系不造成影响。其原因可能是水稻植株体内的钾浓度高于昆虫体内,水稻能满足褐飞虱任何生长时刻的钾需求。也有研究认为,钾的施用降低了植株体内可溶性糖和可溶性蛋白的含量,同时减低了硅的含量,使得褐飞虱的蜜露分泌量没有出现明显变化[7]。在本研究的基础上,未来可以进一步加强氮素和磷素在调控褐飞虱抗性机制的基础研究,为优化稻田水肥管理综合防治褐飞虱提供更多理论依据。

    褐飞虱对水分胁迫极为敏感,在无水源的饥饿试验中,褐飞虱死亡率迅速上升,并在48 h达到峰值,说明水分对褐飞虱存活极为重要,在水稻生产中可以结合水稻生长发育需水特点,通过优化田间水分管理有效抑制褐飞虱暴发。低质量浓度氮磷钾处理能显著减低褐飞虱的存活数、增质量率、蜜露排泄量和寄主选择性,并观察到褐飞虱取食高质量浓度氮磷钾处理水稻幼苗有着更高的取食量和消化效率,这预示着通过对水稻氮磷钾营养的调控减轻田间褐飞虱为害是可行的。钾肥的施加可以促进水稻幼苗的长势,但未发现其可在水稻与褐飞虱互作中发挥作用。综上,水分和氮磷钾营养对水稻和褐飞虱的生长都重要,本研究可为优化水分和养分管理措施防治褐飞虱提供一定的参考。

  • 图  1   植物减数分裂染色体的牵回环–轴模型

    减数分裂同源染色体的配对和联会是重组的重要保证。在减数分裂细线期,联会起始于轴向元件ASY1和ASY3在染色体上的加载,和黏连蛋白REC8一起最终形成一个线性的轴结构,使得姐妹染色单体沿着轴形成一个个DNA环。在细线期和偶线期转换时,DNA环会被牵拉到染色体轴上,由SPO11-MTOPVIB复合体介导双链断裂(DSBs)的产生。随后在偶线期,3′单链DNA会在RAD51-DMC1的介导下入侵到同源染色体间,形成D-loop,从而促进同源染色体配对。在粗线期,中央元件ZYP1加载到一对同源染色体轴中间,最终形成联会复合体的完整结构。在此时,大部分的DSB被修复,少量形成了重组中间体的结构。最后在双线期,联会复合体开始分解,同源染色体分离,只留下重组的区域形成交叉(Crossovers)

    Figure  1.   The model of tethered loop-axis of meiotic chromosomes in plant

    The pairing and synapsis of meiotic homologous chromosomes are important for recombination. At leptotene, the synapsis initiates with the loading of axial elements ASY1 and ASY3 on the chromosome, which eventually forms a linear axis structure together with cohesin REC8. Sister chromosomes form DNA loops to array along the axis. During leptotene-diplotene transition, DNA loops are tethered onto the chromosome axis, and double-strand breaks (DSBs) are induced by SPO11-MTOPVIB complex. Subsequently, 3′ single-strand DNA end searches the homologous chromosome by RAD51-DMC1 to form a D-loop, thus promoting homologous chromosome pairing. At pachytene, the central element ZYP1 is loaded onto the centre of a pair of homologous chromosome axes, and finally forms the complete synaptonemal complex (SC) with axial elements. At this point, most DSBs are repaired, and a small amount forms recombination intermediates. At diplotene , following SC disassembly, homologs are separated except where crossovers have formed

    图  2   植物减数分裂重组修复途径模型

    减数分裂的重组起始于双链断裂的形成,由SPO11-MTOPVIB复合体介导。双链断裂末端随后被切割处理形成3′单链尾巴。双链断裂修复可以选择以姐妹染色单体为模板,也可以在RAD51-DMC1的帮助下使3′单链末端入侵同源染色体形成置换环结构进行修复,后者形成减数分裂染色体重组。在以同源染色体为模板的修复中,DNA合成,第2链末端捕获和链接最终形成重组中间体的经典结构——双Holliday交叉,并最终解除形成干涉敏感型交换。同时,还存在着重组蛋白MUS81依赖的干涉不敏感型交换,但是目前植物中的重组中间体以及产物不太清楚。此外,在单链入侵后,当第2末端无法捕获时还存在一条合成依赖的链退火途径,最终也以姐妹染色单体为模板进行修复,并会产生非交换。在重组通路中,还存在着3条不同的重组抑制通路:FIGL1-FLIP、FANCM-MHF1/2和RECQ4A/B-TOP3α-RMI1,都参与抑制MUS81依赖的干涉不敏感型交换途径,并促进合成依赖的链退火

    Figure  2.   The model for meiotic recombination in plant

    Meiotic recombination initiates with the formation of DSBs, which are mediated by the SPO11-MTOPVIB complex. DSB ends are cleaved to form 3′ single-strand tails. Subsequently, DSB can be repaired by selecting the sister chromatids as the template. Alternatively, 3′ single-strand ends invade the homolog to form a D-loop for repair, which is known as recombination. Following the repair progress, DNA synthesis, second strand end capture and ligation lead to the formation of double Holliday junctions (dHJs), which are the classical structure of the recombination intermediates and finally resolved as ZMM-dependent interference-sensitive crossovers (Type I COs). Meanwhile, MUS81-dependent pathway results in interference-insensitive crossovers (Type II CO) , but the recombination intermediates and their products in plants are not well understood. In addition, single-strand invasion can be processed by synthesis-dependent strand annealing pathway (SDSA), and chooses the sister chromatids as the template for repair to produce NCO. During meiotic recombination, there are also three different recombination inhibitory pathways, including FIGL1-FLIP, FANCM-MHF1/2 and RECQ4A/ B-Top3α-RMI1, which are involved in the inhibition of MUS81-dependent Type II CO and promote SDSA

    图  3   拟南芥减数分裂重组(CO)热点的基因组/染色质特征和调控模型

    减数分裂重组在染色体上不是均匀分布的。通常倾向于发生在常染色质区,并且DSB通常发生于基因的转录起始位点或转录终止位点。重组热区伴随着低核小体密度、H2A.Z和H3K4me3的富集,并且含有AT-rich 和CTT 基序。而在异染色质区通常结构致密,TE和重复序列富集,伴随高非CG甲基化和H3K9me2,这些都是重组的抑制因素。在常染色质区提高减数分裂重组的方法有:突变重组抑制子、过表达重组酶HEI10和突变MET1和DDM1;而在异染色质区提高重组通常通过降低非CG甲基化或H3K9me2,另外还可以通过定向重组的方法提高目标区域重组

    Figure  3.   The model for regulation of Arabidopsis meiotic crossover hotspots by genomic and chromatin features

    The distribution of meiotic recombination events is not uniformly along chromosomes. The crossovers (COs) generally tends to occur in euchromatin regions, and DSBs usually occur in transcription start sites (TSS) or transcription stop sites (TTS). Meiotic recombination hotspots display low nucleosome density, occupancy of H2A.Z and H3K4me3 enrichment with AT-rich and CTT motifs. Heterochromatin is highly compacted with lots of TE and repeat sequences accompanied by high non-CG methylation and H3K9me2, which are the inhibitors of recombination. The approaches for improving meiotic recombination frequency on euchromatin are as follows: Mutating anti-CO genes, overexpressing the recombinase HEI10 or mutating DNA methyltransferases MET1 and remodeler DDM1. Increasing COs on heterochromatin can be achieved by reducing non-CG methylation or H3K9me2, and targeted recombination

    图  4   操纵减数分裂创新作物种质

    植物杂交后代具有较亲本优越的表型或适应性称为杂种优势。在有性生殖过程中,F1代杂交植物经历减数分裂染色体重组和分离,导致配子间的等位基因再分配。而后植物双受精使雄配子与雌配子融合,由于减数分裂重组,在F1代中观察到的理想杂种优势性状通常在其后代中丢失。与此相反,无融合生殖依赖于未减数孢子分裂、孤雌生殖和不依赖受精的功能性胚乳的形成。在改良的植物无融合生殖中,通过对有丝分裂代替减数分裂(Mitosis instead of Meiosis, MiMe)和BBM1/MTL基因的遗传操作,分别诱导有丝分裂代替细胞分裂,产生二倍体配子,而后通过孤雌生殖实现种子克隆。克隆种子与F1杂交植株基因一致,可以在后代中保持杂种优势。此外,还可以通过MiMe实现后代多倍化,从而提高后代植物重组频率,整合并增强优良性状

    Figure  4.   Manipulating meiosis for crop improvement

    Heterosis is a phenomenon among progenies of plants, which is known as that hybrid plants can have superior traits compared to their parents. In the process of sexual reproduction, F1 hybrid plants undergo meiotic recombination and chromosome segregation, leading to redistribution of alleles among gametes. Then plant double fertilization is the fusion of male gametes and female gametes. Due to meiotic recombination, the desirable traits observed in F1 hybrid plants are usually lost in their progenies. In contrast, apomixis relies on the apomeiosis, parthenogenesis and autonomous endosperm. In the improved apomixis of plant, MiMe induced by genetic manipulation produces diploid gametes and misexpression of BBM1/MTL in egg cell triggers parthenogenesis, thereby producing the clonal reproduction through seeds. The genome of cloned seeds is consistent with F1 hybrid plants, which can maintain heterosis in the progeny. In addition, diploid gametes can be achieved through MiMe to produce polyploid offspring, which may improve the frequency of recombination and enhance superior traits

  • [1]

    BLAT Y, PROTACIO R U, HUNTER N, et al. Physical and functional interactions among basic chromosome organizational features govern early steps of meiotic chiasma formation[J]. Cell, 2002, 111(6): 791-802. doi: 10.1016/S0092-8674(02)01167-4

    [2]

    ARMSTRONG S J, CARYL A P, JONES G H, et al. Asy1, a protein required for meiotic chromosome synapsis, localizes to axis-associated chromatin in Arabidopsis and Brassica [J]. Journal of Cell Science, 2002, 115(Pt 18): 3645-3655.

    [3]

    FERDOUS M, HIGGINS J D, OSMAN K, et al. Inter-homolog crossing-over and synapsis in Arabidopsis meiosis are dependent on the chromosome axis protein AtASY3[J]. PLoS Genetics, 2012, 8(2): e1002507. doi: 10.1371/journal.pgen.1002507.

    [4]

    KEENEY S, GIROUX C N, KLECKNER N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family[J]. Cell, 1997, 88(3): 375-384. doi: 10.1016/S0092-8674(00)81876-0

    [5]

    VRIELYNCK N, CHAMBON A, VEZON D, et al. A DNA topoisomerase VI-like complex initiates meiotic recombination[J]. Science, 2016, 351(6276): 939-943. doi: 10.1126/science.aad5196

    [6]

    SUGIMOTO-SHIRASU K, STACEY N J, CORSAR J, et al. DNA topoisomerase VI is essential for endoreduplication in Arabidopsis[J]. Current Biology, 2002, 12(20): 1782-1786. doi: 10.1016/S0960-9822(02)01198-3

    [7]

    STACEY N J, KUROMORI T, AZUMI Y, et al. Arabidopsis SPO11-2 functions with SPO11-1 in meiotic recombination[J]. The Plant Journal, 2006, 48(2): 206-216. doi: 10.1111/j.1365-313X.2006.02867.x

    [8]

    NEALE M J, PAN J, KEENEY S. Endonucleolytic processing of covalent protein-linked DNA double-strand breaks[J]. Nature, 2005, 436(7053): 1053-1057. doi: 10.1038/nature03872

    [9]

    DE MUYT A, PEREIRA L, VEZON D, et al. A high throughput genetic screen identifies new early meiotic recombination functions in Arabidopsis thaliana[J]. PLoS Genetics, 2009, 5(9): e1000654. doi: 10.1371/journal.pgen.1000654.

    [10]

    JI J H, TANG D, SHEN Y, et al. P31comet, a member of the synaptonemal complex, participates in meiotic DSB formation in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(38): 10577-10582. doi: 10.1073/pnas.1607334113

    [11]

    WANG Y X, COPENHAVER G P. Meiotic recombination: Mixing it up in plants[J]. Annual Review of Plant Biology, 2018, 69: 577-609. doi: 10.1146/annurev-arplant-042817-040431

    [12]

    MIAO C, TANG D, ZHANG H, et al. Central region component1, a novel synaptonemal complex component, is essential for meiotic recombination initiation in rice[J]. The Plant Cell, 2013, 25(8): 2998-3009. doi: 10.1105/tpc.113.113175

    [13]

    PANIZZA S, MENDOZA M A, BERLINGER M, et al. Spo11-accessory proteins link double-strand break sites to the chromosome axis in early meiotic recombination[J]. Cell, 2011, 146(3): 372-383. doi: 10.1016/j.cell.2011.07.003

    [14]

    LAMBING C, TOCK A J, TOPP S D, et al. Interacting genomic landscapes of REC8-cohesin, chromatin, and meiotic recombination in Arabidopsis[J]. The Plant Cell, 2020, 32(4): 1218-1239. doi: 10.1105/tpc.19.00866

    [15]

    LAMBING C, KUO P C, TOCK A J, et al. ASY1 acts as a dosage-dependent antagonist of telomere-led recombination and mediates crossover interference in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(24): 13647-13658. doi: 10.1073/pnas.1921055117

    [16]

    LAM I, KEENEY S. Mechanism and regulation of meiotic recombination initiation[J]. Cold Spring Harbor Perspectives in Biology, 2014, 7(1): a016634. doi: 10.1101/cshperspect.a016634.

    [17]

    UANSCHOU C, SIWIEC T, PEDROSA-HARAND A, et al. A novel plant gene essential for meiosis is related to the human CtIP and the yeast COM1/SAE2 gene[J]. The EMBO Journal, 2007, 26(24): 5061-5070. doi: 10.1038/sj.emboj.7601913

    [18]

    OSMAN K, HIGGINS J D, SANCHEZ-MORAN E, et al. Pathways to meiotic recombination in Arabidopsis thaliana[J]. New Phytologist, 2011, 190(3): 523-544. doi: 10.1111/j.1469-8137.2011.03665.x

    [19]

    WATERWORTH W M, ALTUN C, ARMSTRONG S J, et al. NBS1 is involved in DNA repair and plays a synergistic role with ATM in mediating meiotic homologous recombination in plants[J]. The Plant Journal, 2007, 52(1): 41-52. doi: 10.1111/j.1365-313X.2007.03220.x

    [20]

    JI J H, TANG D, WANG M J, et al. MRE11 is required for homologous synapsis and DSB processing in rice meiosis[J]. Chromosoma, 2013, 122(5): 363-376. doi: 10.1007/s00412-013-0421-1

    [21]

    JI J, TANG D, WANG K, et al. The role of OsCOM1 in homologous chromosome synapsis and recombination in rice meiosis [J] The Plant Journal, 2012, 72(1): 18-30.

    [22]

    TSUBOUCHI H, OGAWA H. Exo1 roles for repair of DNA double-strand breaks and meiotic crossing over in Saccharomyces cerevisiae[J]. Molecular Biology of the Cell, 2000, 11(7): 2221-2233. doi: 10.1091/mbc.11.7.2221

    [23]

    HU Q, TANG D, WANG H J, et al. The exonuclease homolog OsRAD1 promotes accurate meiotic double-strand break repair by suppressing nonhomologous end joining[J]. Plant Physiology, 2016, 172(2): 1105-1116.

    [24]

    CHE L X, WANG K J, TANG D, et al. OsHUS1 facilitates accurate meiotic recombination in rice[J]. PLoS Genetics, 2014, 10(6): e1004405. doi: 10.1371/journal.pgen.1004405.

    [25]

    WOLD M S. Replication protein A: A heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism[J]. Annual Review of Biochemistry, 1997, 66(1): 61-92. doi: 10.1146/annurev.biochem.66.1.61

    [26]

    SHI B L, XUE J Y, YIN H, et al. Dual functions for the ssDNA-binding protein RPA in meiotic recombination[J]. PLoS Genetics, 2019, 15(2): e1007952. doi: 10.1371/journal.pgen.1007952.

    [27]

    BROWN M S, BISHOP D K. DNA strand exchange and RecA homologs in meiosis[J]. Cold Spring Harbor Perspectives in Biology, 2014, 7(1): a016659. doi: 10.1101/cshperspect.a016659.

    [28]

    AKLILU B B, SODERQUIST R S, CULLIGAN K M. Genetic analysis of the replication protein A large subunit family in Arabidopsis reveals unique and overlapping roles in DNA repair, meiosis and DNA replication[J]. Nucleic Acids Research, 2014, 42(5): 3104-3118. doi: 10.1093/nar/gkt1292

    [29]

    ISHIBASHI T, KIMURA S, SAKAGUCHI K. A higher plant has three different types of RPA heterotrimeric complex[J]. The Journal of Biochemistry, 2006, 139(1): 99-104. doi: 10.1093/jb/mvj014

    [30]

    MIAO Y J, SHI W Q, WANG H J, et al. Replication protein A large subunit (RPA1a) limits chiasma formation during rice meiosis[J]. Plant Physiology, 2021, 187(3): 1605-1618. doi: 10.1093/plphys/kiab365

    [31]

    FERNANDES J B, DUHAMEL M, SEGUéLA -ARNAUD M, et al. FIGL1 and its novel partner FLIP form a conserved complex that regulates homologous recombination[J]. PLoS Genetics, 2018, 14(4): e1007317. doi: 10.1371/journal.pgen.1007317.

    [32]

    DA INES O, ABE K, GOUBELY C, et al. Differing requirements for RAD51 and DMC1 in meiotic pairing of centromeres and chromosome arms in Arabidopsis thaliana[J]. PLoS Genetics, 2012, 8(4): e1002636. doi: 10.1371/journal.pgen.1002636.

    [33]

    DA INES O, DEGROOTE F, GOUBELY C, et al. Meiotic recombination in Arabidopsis is catalysed by DMC1, with RAD51 playing a supporting role[J]. PLoS Genetics, 2013, 9(9): e1003787. doi: 10.1371/journal.pgen.1003787.

    [34]

    CLOUD V, CHAN Y L, GRUBB J, et al. Rad51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis[J]. Science, 2012, 337(6099): 1222-1225. doi: 10.1126/science.1219379

    [35]

    SEELIGER K, DUKOWIC-SCHULZE S, WURZ-WILDERSINN R, et al. BRCA2 is a mediator of RAD51- and DMC1-facilitated homologous recombination in Arabidopsis thaliana[J]. The New Phytologist, 2012, 193(2): 364-375. doi: 10.1111/j.1469-8137.2011.03947.x

    [36]

    LIN Z, KONG H, NEI M, et al. Origins and evolution of the recA/RAD51 gene family: Evidence for ancient gene duplication and endosymbiotic gene transfer[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10328-10333. doi: 10.1073/pnas.0604232103

    [37]

    MERCIER R, MÉZARD C, JENCZEWSKI E, et al. The molecular biology of meiosis in plants[J]. Annual Review of Plant Biology, 2015, 66: 297-327. doi: 10.1146/annurev-arplant-050213-035923

    [38]

    SU H, CHENG Z, HUANG J, et al. Arabidopsis RAD51, RAD51C and XRCC3 proteins form a complex and facilitate RAD51 localization on chromosomes for meiotic recombination[J]. PLoS Genetics, 2017, 13(5): e1006827. doi: 10.1371/journal.pgen.1006827.

    [39]

    WANG Y, XIAO R, WANG H, et al. The Arabidopsis RAD51 paralogs RAD51B, RAD51D and XRCC2 play partially redundant roles in somatic DNA repair and gene regulation[J]. New Phytologist, 2014, 201(1): 292-304. doi: 10.1111/nph.12498

    [40]

    DA INES O, DEGROOTE F, AMIARD S, et al. Effects of XRCC2 and RAD51B mutations on somatic and meiotic recombination in Arabidopsis thaliana[J]. The Plant Journal, 2013, 74(6): 959-970. doi: 10.1111/tpj.12182

    [41]

    COLLINS I, NEWLON C S. Chromosomal DNA replication initiates at the same origins in meiosis and mitosis[J]. Molecular and Cellular Biology, 1994, 14(5): 3524-3534.

    [42]

    SZOSTAK J W, ORR-WEAVER T L, ROTHSTEIN R J, et al. The double-strand-break repair model for recombination[J]. Cell, 1983, 33(1): 25-35. doi: 10.1016/0092-8674(83)90331-8

    [43]

    TERASAWA M, OGAWA H, TSUKAMOTO Y, et al. Meiotic recombination-related DNA synthesis and its implications for cross-over and non-cross-over recombinant formation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(14): 5965-5970. doi: 10.1073/pnas.0611490104

    [44]

    LU P L, HAN X W, QI J, et al. Analysis of Arabidopsis genome-wide variations before and after meiosis and meiotic recombination by resequencing Landsberg erecta and all four products of a single meiosis[J]. Genome Research, 2012, 22(3): 508-518. doi: 10.1101/gr.127522.111

    [45]

    YANG H X, LU P L, WANG Y X, et al. The transcriptome landscape of Arabidopsis male meiocytes from high-throughput sequencing: The complexity and evolution of the meiotic process[J]. The Plant Journal, 2011, 65(4): 503-16. doi: 10.1111/j.1365-313X.2010.04439.x

    [46]

    WANG Y X, CHENG Z H, HUANG J Y, et al. The DNA replication factor RFC1 is required for interference-sensitive meiotic crossovers in Arabidopsis thaliana[J]. PLoS Genetics, 2012, 8(11): e1003039. doi: 10.1371/journal.pgen.1003039.

    [47]

    HUANG J Y, CHENG Z H, WANG C, et al. Formation of interference-sensitive meiotic cross-overs requires sufficient DNA leading-strand elongation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(40): 12534-12539. doi: 10.1073/pnas.1507165112

    [48]

    HUANG J Y, COPENHAVER G P, MA H, et al. New insights into the role of DNA synthesis in meiotic recombination[J]. Science Bulletin, 2016, 61(16): 1260-1269. doi: 10.1007/s11434-016-1126-7

    [49]

    WANG C, HUANG J Y, ZHANG J, et al. The largest subunit of DNA polymerase delta is required for normal formation of meiotic type I crossovers[J]. Plant Physiology, 2019, 179(2): 446-459. doi: 10.1104/pp.18.00861

    [50]

    MCVEY M, KHODAVERDIAN V Y, MEYER D, et al. Eukaryotic DNA polymerases in homologous recombination[J]. Annual Review of Genetics, 2016, 50: 393-421. doi: 10.1146/annurev-genet-120215-035243

    [51]

    MAGA G, STUCKI M, SPADARI S, et al. DNA polymerase switching: I: Replication factor C displaces DNA polymerase alpha prior to PCNA loading[J]. Journal of Molecular Biology, 2000, 295(4): 791-801. doi: 10.1006/jmbi.1999.3394

    [52]

    DE MAAGD R A, LOONEN A, CHOUAREF J, et al. CRISPR/Cas inactivation of RECQ4 increases homeologous crossovers in an interspecific tomato hybrid[J]. Plant Biotechnology Journal, 2020, 18(3): 805-813. doi: 10.1111/pbi.13248

    [53]

    MALOISEL L, BHARGAVA J, ROEDER G S. A role for DNA polymerase delta in gene conversion and crossing over during meiosis in Saccharomyces cerevisiae[J]. Genetics, 2004, 167(3): 1133-1142. doi: 10.1534/genetics.104.026260

    [54]

    BISHOP D K, ZICKLER D. Early decision: Meiotic crossover interference prior to stable strand exchange and synapsis[J]. Cell, 2004, 117(1): 9-15. doi: 10.1016/S0092-8674(04)00297-1

    [55]

    KURZBAUER M T, UANSCHOU C, CHEN D, et al. The recombinases DMC1 and RAD51 are functionally and spatially separated during meiosis in Arabidopsis[J]. The Plant Cell, 2012, 24(5): 2058-2070. doi: 10.1105/tpc.112.098459

    [56]

    REN L J, ZHAO T T, ZHAO Y Z, et al. The E3 ubiquitin ligase DESYNAPSIS1 regulates synapsis and recombination in rice meiosis[J]. Cell Reports, 2021, 37(5): 109941. doi: 10.1016/j.celrep.2021.109941.

    [57]

    BENYAHYA F, NADAUD I, DA INES O, et al. SPO11.2 is essential for programmed double-strand break formation during meiosis in bread wheat (Triticum aestivum L. )[J]. The Plant Journal, 2020, 104(1): 30-43. doi: 10.1111/tpj.14903

    [58]

    CRISMANI W, GIRARD C, FROGER N, et al. FANCM limits meiotic crossovers[J]. Science, 2012, 336(6088): 1588-1590. doi: 10.1126/science.1220381

    [59]

    GIRARD C, CRISMANI W, FROGER N, et al. FANCM-associated proteins MHF1 and MHF2, but not the other Fanconi anemia factors, limit meiotic crossovers[J]. Nucleic Acids Research, 2014, 42(14): 9087-9095. doi: 10.1093/nar/gku614

    [60]

    FERNANDES J B, SÉGUÉLA-ARNAUD M, LARCHEVÊQUE C, et al. Unleashing meiotic crossovers in hybrid plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(10): 2431-2436. doi: 10.1073/pnas.1713078114

    [61]

    MERCIER R, JOLIVET S, VEZON D, et al. Two meiotic crossover classes cohabit in Arabidopsis: One is dependent on MER3, whereas the other one is not[J]. Current Biology, 2005, 15(8): 692-701. doi: 10.1016/j.cub.2005.02.056

    [62]

    LYNN A, SOUCEK R, BÖRNER G V. ZMM proteins during meiosis: Crossover artists at work[J]. Chromosome Research, 2007, 15(5): 591-605. doi: 10.1007/s10577-007-1150-1

    [63]

    MACAISNE N, VIGNARD J, MERCIER R. SHOC1 and PTD form an XPF-ERCC1-like complex that is required for formation of class I crossovers [J]. Journal of Cell Science, 2011, 124(Pt 16): 2687-91.

    [64]

    CHELYSHEVA L, VEZON D, CHAMBON A, et al. The Arabidopsis HEI10 is a new ZMM protein related to Zip3[J]. PLoS Genetics, 2012, 8(7): e1002799. doi: 10.1371/journal.pgen.1002799.

    [65]

    CHELYSHEVA L, GENDROT G, VEZON D, et al. Zip4/Spo22 is required for class I CO formation but not for synapsis completion in Arabidopsis thaliana[J]. PLoS Genetics, 2007, 3(5): e83. doi: 10.1371/journal.pgen.0030083.

    [66]

    HIGGINS J D, ARMSTRONG S J H, FRANKLIN F C, et al. The Arabidopsis MutS homolog AtMSH4 functions at an early step in recombination: Evidence for two classes of recombination in Arabidopsis[J]. Genes & Development, 2004, 18(20): 2557-2570.

    [67]

    HIGGINS J D, VIGNARD J, MERCIER R, et al. AtMSH5 partners AtMSH4 in the class I meiotic crossover pathway in Arabidopsis thaliana, but is not required for synapsis[J]. The Plant Journal, 2008, 55(1): 28-39. doi: 10.1111/j.1365-313X.2008.03470.x

    [68]

    MAZINA O M, MAZIN A V, NAKAGAWA T, et al. Saccharomyces cerevisiae Mer3 helicase stimulates 3'-5' heteroduplex extension by Rad51: Implications for crossover control in meiotic recombination[J]. Cell, 2004, 117(1): 47-56. doi: 10.1016/S0092-8674(04)00294-6

    [69]

    SNOWDEN T, ACHARYA S, BUTZ C, et al. hMSH4-hMSH5 recognizes holliday junctions and forms a meiosis-specific sliding clamp that embraces homologous chromosomes[J]. Molecular Cell, 2004, 15(3): 437-451. doi: 10.1016/j.molcel.2004.06.040

    [70]

    DE MUYT A, PYATNITSKAYA A, ANDRÉANI J, et al. A meiotic XPF-ERCC1-like complex recognizes joint molecule recombination intermediates to promote crossover formation[J]. Genes & Development, 2018, 32(3/4): 283-296.

    [71]

    PYATNITSKAYA A, ANDREANI J, GUÉROIS R, et al. The Zip4 protein directly couples meiotic crossover formation to synaptonemal complex assembly[J]. Genes & Development, 2022, 36(1/2): 53-69.

    [72]

    REYNOLDS A, QIAO H Y, YANG Y, et al. RNF212 is a dosage-sensitive regulator of crossing-over during mammalian meiosis[J]. Nature Genetics, 2013, 45(3): 269-278. doi: 10.1038/ng.2541

    [73]

    TOBY G G, GHERRABY W, COLEMAN T R, et al. A novel RING finger protein, human enhancer of invasion 10, alters mitotic progression through regulation of cyclin B levels[J]. Molecular and Cellular Biology, 2003, 23(6): 2109-2122. doi: 10.1128/MCB.23.6.2109-2122.2003

    [74]

    ZIOLKOWSKI P A, UNDERWOOD C J, LAMBING C, et al. Natural variation and dosage of the HEI10 meiotic E3 ligase control Arabidopsis crossover recombination[J]. Genes & Development, 2017, 31(3): 306-317.

    [75]

    MORGAN C, FOZARD J A, HARTLEY M, et al. Diffusion-mediated HEI10 coarsening can explain meiotic crossover positioning in Arabidopsis[J]. Nature Communications, 2021, 12(1): 4674. doi: 10.1038/s41467-021-24827-w.

    [76]

    KURZBAUER M T, PRADILLO M, KERZENDORFER C, et al. Arabidopsis thaliana FANCD2 promotes meiotic crossover formation[J]. The Plant Cell, 2018, 30(2): 415-428. doi: 10.1105/tpc.17.00745

    [77]

    MORGAN T H. Heredity and sex[Z] //Columbia University Lectures. The jessup lectures, New York: Columbia University Press, 1913.

    [78]

    CAPILLA-PÉREZ L, DURAND S, HUREL A, et al. The synaptonemal complex imposes crossover interference and heterochiasmy in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(12): e2023613118. doi: 10.1073/pnas.2023613118.

    [79]

    NONOMURA K I, NAKANO M, MURATA K, et al. An insertional mutation in the rice PAIR2 gene, the ortholog of Arabidopsis ASY1, results in a defect in homologous chromosome pairing during meiosis[J]. Molecular Genetics and Genomics, 2004, 271(2): 121-129. doi: 10.1007/s00438-003-0934-z

    [80]

    YUAN W Y, LI X W, CHANG Y X, et al. Mutation of the rice gene PAIR3 results in lack of bivalent formation in meiosis[J]. The Plant Journal, 2009, 59(2): 303-315. doi: 10.1111/j.1365-313X.2009.03870.x

    [81]

    FRANCE M G, ENDERLE J, RÖHRIG S, et al. ZYP1 is required for obligate cross-over formation and cross-over interference in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(14): e2021671118. doi: 10.1073/pnas.2021671118.

    [82]

    POCHON G, HENRY I M, YANG C, et al. The Arabidopsis Hop1 homolog ASY1 mediates cross-over assurance and interference[EB/OL]. BioRxiv, 2022: 46164616 (2022-03-17) [2022-08-20]. https://doi.org/10.1101/2022.03.17.484635.

    [83]

    DURAND S, LIAN Q, JING J, et al. Dual control of meiotic crossover patterning[EB/OL]. BioRxiv, 2022: 491364 (2022-05-11) [2022-08-20]. https://doi.org/10.1101/2022.05.11.491364.

    [84]

    ROG O, KÖHLER S, DERNBURG A F. The synaptonemal complex has liquid crystalline properties and spatially regulates meiotic recombination factors[J]. eLife, 2017, 6: e21455. doi: 10.7554/eLife.21455.

    [85]

    ZHANG L Y, STAUFFER W, ZWICKER D, et al. Crossover patterning through kinase-regulated condensation and coarsening of recombination nodules[EB/OL]. BioRxiv, 2021: 457865 (2021-08-26) [2022-08-20]. https://doi.org/10.1101/2021.08.26.457865.

    [86]

    MAYER K F X, WAUGH R, LANGRIDGE P, et al. A physical, genetic and functional sequence assembly of the barley genome[J]. Nature, 2012, 491(7426): 711-716. doi: 10.1038/nature11543

    [87]

    APPELS R, EVERSOLE K, STEIN N, et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome[J]. Science, 2018, 361(6403): eaar7191. doi: 10.1126/science.aar7191.

    [88]

    LI X, LI L, YAN J B. Dissecting meiotic recombination based on tetrad analysis by single-microspore sequencing in maize[J]. Nature Communications, 2015, 6: 6648. doi: 10.1038/ncomms7648.

    [89]

    CONSORTIUM T G. The tomato genome sequence provides insights into fleshy fruit evolution[J]. Nature, 2012, 485(7400): 635-641. doi: 10.1038/nature11119

    [90]

    MCCONAUGHY S J. Recombination hotspots in soybean [Glycine max (L. ) Merr. ], in Agronomy and Horticulture Department[D]. Lincoln: University of Nebraska, 2022.

    [91]

    SCHMUTZ J, CANNON S B, SCHLUETER J, et al. Genome sequence of the palaeopolyploid soybean[J]. Nature, 2010, 463(7278): 178-183. doi: 10.1038/nature08670

    [92]

    BLARY A, JENCZEWSKI E. Manipulation of crossover frequency and distribution for plant breeding[J]. Theoretical and Applied Genetics, 2019, 132(3): 575-592. doi: 10.1007/s00122-018-3240-1

    [93]

    HSU Y M, FALQUE M, MARTIN O C. Quantitative modelling of fine-scale variations in the Arabidopsis thaliana crossover landscape[J]. Quantitative Plant Biology, 2022, 3: e3. doi: 10.1017/qpb.2021.17.

    [94]

    PRATTO F, BRICK K, CHENG G, et al. Meiotic recombination mirrors patterns of germline replication in mice and humans[J]. Cell, 2021, 184(16): 4251-4267. doi: 10.1016/j.cell.2021.06.025

    [95]

    UNDERWOOD C J, CHOI K, LAMBING C, et al. Epigenetic activation of meiotic recombination near Arabidopsis thaliana centromeres via loss of H3K9me2 and non-CG DNA methylation[J]. Genome Research, 2018, 28(4): 519-531. doi: 10.1101/gr.227116.117

    [96]

    CHOI K, ZHAO X H, TOCK A J, et al. Nucleosomes and DNA methylation shape meiotic DSB frequency in Arabidopsis thaliana transposons and gene regulatory regions[J]. Genome Research, 2018, 28(4): 532-546. doi: 10.1101/gr.225599.117

    [97]

    LIAN Q C, SOLIER V, WALKEMEIER B, et al. The megabase-scale crossover landscape is largely independent of sequence divergence[J]. Nature Communications, 2022, 13(1): 3828. doi: 10.1038/s41467-022-31509-8.

    [98]

    YELINA N E, LAMBING C, HARDCASTLE T J, et al. DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in Arabidopsis[J]. Genes & Development, 2015, 29(20): 2183-2202.

    [99]

    CHOI K, ZHAO X, KELLY K A, et al. Arabidopsis meiotic crossover hot spots overlap with H2A. Z nucleosomes at gene promoters[J]. Nature Genetics, 2013, 45(11): 1327-1336. doi: 10.1038/ng.2766

    [100]

    MARAND A P, JANSKY S H, ZHAO H N, et al. Meiotic crossovers are associated with open chromatin and enriched with Stowaway transposons in potato[J]. Genome Biology, 2017, 18: 203. doi: 10.1186/s13059-017-1326-8.

    [101]

    KIANIAN P M A, WANG M, SIMONS K, et al. Highresolution crossover mapping reveals similarities and differences of male and female recombination in maize[J]. Nature Communications, 2018, 9: 2370. doi: 10.1038/s41467-018-04562-5.

    [102]

    TOCK A J, HOLLAND D M, JIANG W, et al. Crossover-active regions of the wheat genome are distinguished by DMC1, the chromosome axis, H3K27me3, and signatures of adaptation[J]. Genome Research, 2021, 31(9): 1614-1628. doi: 10.1101/gr.273672.120

    [103]

    YELINA N E, CHOI K, CHELYSHEVA L, et al. Epigenetic remodeling of meiotic crossover frequency in Arabidopsis thaliana DNA methyltransferase mutants[J]. PLoS Genetics, 2012, 8(8): e1002844. doi: 10.1371/journal.pgen.1002844.

    [104]

    PONT C, LEROY T, SEIDEL M, et al. Tracing the ancestry of modern bread wheats[J]. Nature Genetics, 2019, 51(5): 905-911. doi: 10.1038/s41588-019-0393-z

    [105]

    ROWAN B A, HEAVENS D, FEUERBORN T R, et al. An ultra high-density Arabidopsis thaliana crossover map that refines the influences of structural variation and epigenetic features[J]. Genetics, 2019, 213(3): 771-787. doi: 10.1534/genetics.119.302406

    [106]

    MARTÍN A C, SHAW P, PHILLIPS D, et al. Licensing MLH1 sites for crossover during meiosis[J]. Nature Communications, 2014, 5: 4580. doi: 10.1038/ncomms5580.

    [107]

    TAM S M, HAYS J B, CHETELAT R T. Effects of suppressing the DNA mismatch repair system on homeologous recombination in tomato[J]. Theoretical and Applied Genetics, 2011, 123(8): 1445-1458. doi: 10.1007/s00122-011-1679-4

    [108]

    ZHANG L, PICKERING R, MURRAY B. Direct measurement of recombination frequency in interspecific hybrids between Hordeum vulgare and H. bulbosum using genomic in situ hybridization [J]. Heredity, 1999, 83 ( Pt 3): 304-309.

    [109]

    BLACKWELL A R, DLUZEWSKA J, SZYMANSKA-LEJMAN M, et al. MSH2 shapes the meiotic crossover landscape in relation to interhomolog polymorphism in Arabidopsis[J]. The EMBO Journal, 2020, 39(21): e104858. doi: 10.15252/embj.2020104858.

    [110]

    GOODWILLIE C, KALISZ S, ECKERT C G, The evolutionary Enigma of mixed mating systems in plants: Occurrence, theoretical explanations, and empirical evidence [J]. Annual Review of Ecology, Evolution, and Systematics, 2005, 36(1): 47-79.

    [111]

    MONNAHAN P, KOLÁŘ F, BADUEL P, et al. Pervasive population genomic consequences of genome duplication in Arabidopsis arenosa[J]. Nature Ecology & Evolution, 2019, 3(3): 457-468.

    [112]

    BAUDAT F, BUARD J, GREY C, et al. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice[J]. Science, 2010, 327(5967): 836-840. doi: 10.1126/science.1183439

    [113]

    SMAGULOVA F, GREGORETTI I V, BRICK K, et al. Genome-wide analysis reveals novel molecular features of mouse recombination hotspots[J]. Nature, 2011, 472(7343): 375-378. doi: 10.1038/nature09869

    [114]

    SHILO S, MELAMED-BESSUDO C, DORONE Y, et al. DNA crossover motifs associated with epigenetic modifications delineate open chromatin regions in Arabidopsis[J]. The Plant Cell, 2015, 27(9): 2427-2436. doi: 10.1105/tpc.15.00391

    [115]

    LIU S Z, YEH C T, JI T M, et al. Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome[J]. PLoS Genetics, 2009, 5(11): e1000733. doi: 10.1371/journal.pgen.1000733.

    [116]

    SAINTENAC C, FAURE S, REMAY A, et al. Variation in crossover rates across a 3-Mb contig of bread wheat (Triticum aestivum) reveals the presence of a meiotic recombination hotspot[J]. Chromosoma, 2011, 120(2): 185-198. doi: 10.1007/s00412-010-0302-9

    [117]

    DEMIRCI S, VAN DIJK A D J, SANCHEZ PEREZ G, et al. Distribution, position and genomic characteristics of crossovers in tomato recombinant inbred lines derived from an interspecific cross between Solanum lycopersicum and Solanum pimpinellifolium[J]. The Plant Journal, 2017, 89(3): 554-564. doi: 10.1111/tpj.13406

    [118]

    HENDERSON I R. Control of meiotic recombination frequency in plant genomes[J]. Current Opinion in Plant Biology, 2012, 15(5): 556-561. doi: 10.1016/j.pbi.2012.09.002

    [119]

    KUO P, DA INES O, LAMBING C. Rewiring meiosis for crop improvement[J]. Frontiers in Plant Science, 2021, 12: 708948. doi: 10.3389/fpls.2021.708948.

    [120]

    UNDERWOOD C J, MERCIER R. Engineering apomixis: Clonal seeds approaching the fields[J]. Annual Review of Plant Biology, 2022, 73: 201-225. doi: 10.1146/annurev-arplant-102720-013958

    [121]

    BERCHOWITZ L E, FRANCIS K E, BEY A L, et al. The role of AtMUS81 in interference-insensitive crossovers in A. thaliana[J]. PLoS Genetics, 2007, 3(8): e132. doi: 10.1371/journal.pgen.0030132.

    [122]

    HARTUNG F, SUER S, PUCHTA H. Two closely related RecQ helicases have antagonistic roles in homologous recombination and DNA repair in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(47): 18836-18841. doi: 10.1073/pnas.0705998104

    [123]

    SÉGUÉLA-ARNAUD M, CHOINARD S, LARCHEVÊQUE C, et al. RMI1 and TOP3α limit meiotic CO formation through their C-terminal domains[J]. Nucleic Acids Research, 2017, 45(4): 1860-1871.

    [124]

    SÉGUÉLA-ARNAUD M, CRISMANI W, LARCHEVÊQUE C, et al. Multiple mechanisms limit meiotic crossovers: TOP3α and two BLM homologs antagonize crossovers in parallel to FANCM[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(15): 4713-4718. doi: 10.1073/pnas.1423107112

    [125]

    GIRARD C, CHELYSHEVA L, CHOINARD S, et al. Correction: AAA-ATPase FIDGETIN-LIKE 1 and helicase FANCM antagonize meiotic crossovers by distinct mechanisms[J]. PLoS Genetics, 2015, 11(9): e1005448. doi: 10.1371/journal.pgen.1005448.

    [126]

    BLARY A, GONZALO A, EBER F, et al. FANCM limits meiotic crossovers in Brassica crops[J]. Frontiers in Plant Science, 2018, 9: 368. doi: 10.3389/fpls.2018.00368.

    [127]

    DESJARDINS S D, SIMMONDS J, GUTERMAN I, et al. FANCM promotes class I interfering crossovers and suppresses class II non-interfering crossovers in wheat meiosis[J]. Nature Communications, 2022, 13(1): 3644. doi: 10.1038/s41467-022-31438-6.

    [128]

    MIEULET D, AUBERT G, BRES C, et al. Unleashing meiotic crossovers in crops[J]. Nature Plants, 2018, 4(12): 1010-1016. doi: 10.1038/s41477-018-0311-x

    [129]

    RAZ A, DAHAN-MEIR T, MELAMED-BESSUDO C, et al. Redistribution of meiotic crossovers along wheat chromosomes by virus-induced gene silencing[J]. Frontiers in Plant Science, 2021, 11: 635139. doi: 10.3389/fpls.2020.635139.

    [130]

    LI X, YU M S, BOLAÑOS-VILLEGAS P, et al. Fanconi anemia ortholog FANCM regulates meiotic crossover distribution in plants[J]. Plant Physiology, 2021, 186(1): 344-360. doi: 10.1093/plphys/kiab061

    [131]

    ARRIETA M, MACAULAY M, COLAS I, et al. An induced mutation in HvRECQL4 increases the overall recombination and restores fertility in a barley HvMLH3 mutant background[J]. Frontiers in Plant Science, 2021, 12: 706560. doi: 10.3389/fpls.2021.706560.

    [132]

    DE MUYT A, ZHANG L R, PIOLOT T, et al. E3 ligase Hei10: A multifaceted structure-based signaling molecule with roles within and beyond meiosis[J]. Genes & Development, 2014, 28(10): 1111-1123.

    [133]

    SERRA H, LAMBING C, GRIFFIN C H, et al. Massive crossover elevation via combination of HEI10 and recq4a recq4b during Arabidopsis meiosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(10): 2437-2442. doi: 10.1073/pnas.1713071115

    [134]

    TAAGEN E, BOGDANOVE A J, SORRELLS M E. Counting on crossovers: Controlled recombination for plant breeding[J]. Trends in Plant Science, 2020, 25(5): 455-465. doi: 10.1016/j.tplants.2019.12.017

    [135]

    MELAMED-BESSUDO C, LEVY A A. Deficiency in DNA methylation increases meiotic crossover rates in euchromatic but not in heterochromatic regions in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): E981-E988. doi: 10.1073/pnas.1120742109.

    [136]

    LIU C L, CAO Y W, HUA Y F, et al. Concurrent disruption of genetic interference and increase of genetic recombination frequency in hybrid rice using CRISPR/Cas9[J]. Frontiers in Plant Science, 2021, 12: 757152. doi: 10.3389/fpls.2021.757152.

    [137]

    WANG K J, WANG C, LIU Q, et al. Increasing the genetic recombination frequency by partial loss of function of the synaptonemal complex in rice[J]. Molecular Plant, 2015, 8(8): 1295-1298. doi: 10.1016/j.molp.2015.04.011

    [138]

    NAGESWARAN D C, KIM J, LAMBING C, et al. HIGH CROSSOVER RATE1 encodes PROTEIN PHOSPHATASE X1 and restricts meiotic crossovers in Arabidopsis[J]. Nature Plants, 2021, 7(4): 452-467. doi: 10.1038/s41477-021-00889-y

    [139]

    HOCHHOLDINGER F, BALDAUF J A. Heterosis in plants[J]. Current Biology, 2018, 28(18): R1089-R1092. doi: 10.1016/j.cub.2018.06.041

    [140]

    SPILLANE C, CURTIS M D, GROSSNIKLAUS U. Apomixis technology development: Virgin births in farmers’ fields?[J]. Nature Biotechnology, 2004, 22(6): 687-691. doi: 10.1038/nbt976

    [141]

    WANG C, LIU Q, SHEN Y, et al. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes[J]. Nature Biotechnology, 2019, 37(3): 283-286. doi: 10.1038/s41587-018-0003-0

    [142]

    MARIMUTHU M P A, JOLIVET S, RAVI M, et al. Synthetic clonal reproduction through seeds[J]. Science, 2011, 331(6019): 876. doi: 10.1126/science.1199682.

    [143]

    D'ERFURTH I, JOLIVET S, FROGER N, et al. Turning meiosis into mitosis[J]. PLoS Biology, 2009, 7(6): e1000124. doi: 10.1371/journal.pbio.1000124.

    [144]

    MIEULET D, JOLIVET S, RIVARD M, et al. Turning rice meiosis into mitosis[J]. Cell Research, 2016, 26(11): 1242-1254. doi: 10.1038/cr.2016.117

    [145]

    CROMER L, HEYMAN J, TOUATI S, et al. OSD1 promotes meiotic progression via APC/C inhibition and forms a regulatory network with TDM and CYCA1;2/TAM[J]. PLoS Genetics, 2012, 8(7): e1002865. doi: 10.1371/journal.pgen.1002865.

    [146]

    RAVI M, MARIMUTHU M P A, SIDDIQI I. Gamete formation without meiosis in Arabidopsis[J]. Nature, 2008, 451(7182): 1121-1124.

    [147]

    HSU P D, LANDER E S, ZHANG F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6): 1262-1278. doi: 10.1016/j.cell.2014.05.010

    [148]

    RÖNSPIES M, DORN A, SCHINDELE P, et al. CRISPR-Cas-mediated chromosome engineering for crop improvement and synthetic biology[J]. Nature Plants, 2021, 7(5): 566-573. doi: 10.1038/s41477-021-00910-4

    [149]

    SARNO R, VICQ Y, UEMATSU N, et al. Programming sites of meiotic crossovers using Spo11 fusion proteins[J]. Nucleic Acids Research, 2017, 45(19): e164. doi: 10.1093/nar/gkx739.

    [150]

    YELINA N E, HOLLAND D, GONZALEZ-JORGE S, et al. Coexpression of MEIOTIC-TOPOISOMERASE VIB-dCas9 with guide RNAs specific to a recombination hotspot is insufficient to increase crossover frequency in Arabidopsis[J]. G3 (Genes Genomes Genetics), 2022, 12(7): jkac105. doi: 10.1093/g3journal/jkac105.

    [151]

    MANCERA E, BOURGON R, BROZZI A, et al. High-resolution mapping of meiotic crossovers and non-crossovers in yeast[J]. Nature, 2008, 454(7203): 479-485. doi: 10.1038/nature07135

    [152]

    WANG Y Z, VAN RENGS W M J, ZAIDAN M W A M, et al. Meiosis in crops: From genes to genomes[J]. Journal of Experimental Botany, 2021, 72(18): 6091-6109. doi: 10.1093/jxb/erab217

    [153]

    FILLER HAYUT S, MELAMED BESSUDO C, LEVY A A. Targeted recombination between homologous chromosomes for precise breeding in tomato[J]. Nature Communications, 2017, 8: 15605. doi: 10.1038/ncomms15605.

    [154]

    KOURANOV A, ARMSTRONG C, SHRAWAT A, et al. Demonstration of targeted crossovers in hybrid maize using CRISPR technology[J]. Communications Biology, 2022, 5(1): 53. doi: 10.1038/s42003-022-03004-9.

    [155]

    BEYING N, SCHMIDT C, PACHER M, et al. CRISPR-Cas9-mediated induction of heritable chromosomal translocations in Arabidopsis[J]. Nature Plants, 2020, 6(6): 638-645. doi: 10.1038/s41477-020-0663-x

    [156]

    SCHMIDT C, FRANSZ P, RÖNSPIES M, et al. Changing local recombination patterns in Arabidopsis by CRISPR/Cas mediated chromosome engineering[J]. Nature Communications, 2020, 11(1): 4418. doi: 10.1038/s41467-020-18277-z.

    [157]

    SCHWARTZ C, LENDERTS B, FEIGENBUTZ L, et al. CRISPR-Cas9-mediated 75.5-Mb inversion in maize[J]. Nature Plants, 2020, 6(12): 1427-1431. doi: 10.1038/s41477-020-00817-6

    [158]

    GALLEGO-BARTOLOMÉ J, GARDINER J, LIU W L, et al. Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(9): E2125-E2134. doi: 10.1073/pnas.1716945115.

    [159]

    GALLEGO-BARTOLOMÉ J, LIU W L, KUO P H, et al. Co-targeting RNA polymerases IV and V promotes efficient de novo DNA methylation in Arabidopsis[J]. Cell, 2019, 176(5): 1068-1082.e19. doi: 10.1016/j.cell.2019.01.029

    [160]

    DIRKS R, VAN DUN K, DE SNOO C B, et al. Reverse breeding: A novel breeding approach based on engineered meiosis[J]. Plant Biotechnology Journal, 2009, 7(9): 837-845. doi: 10.1111/j.1467-7652.2009.00450.x

    [161]

    WIJNKER E, DEURHOF L, VAN DE BELT J, et al. Hybrid recreation by reverse breeding in Arabidopsis thaliana[J]. Nature Protocols, 2014, 9(4): 761-772. doi: 10.1038/nprot.2014.049

    [162]

    WIJNKER E, VAN DUN K, DE SNOO C B, et al. Reverse breeding in Arabidopsis thaliana generates homozygous parental lines from a heterozygous plant[J]. Nature Genetics, 2012, 44(4): 467-470. doi: 10.1038/ng.2203

    [163]

    CALVO‐BALTANÁS V, WIJNEN C L, YANG C, et al. Meiotic crossover reduction by virus‐induced gene silencing enables the efficient generation of chromosome substitution lines and reverse breeding in Arabidopsis thaliana[J]. The Plant Journal, 2020, 104(5): 1437-1452. doi: 10.1111/tpj.14990

图(4)
计量
  • 文章访问数:  617
  • HTML全文浏览量:  86
  • PDF下载量:  572
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-29
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2022-11-09

目录

/

返回文章
返回