Advances in molecular genetic mechanism of meiotic recombination and applications in crop breeding
-
摘要:
减数分裂是真核生物有性生殖产生染色体数目减半的单倍体配子所必需的生命过程。重组是减数分裂的核心事件之一,既增加了同源染色体间遗传信息的交换,又保证了其在减数分裂后期Ⅰ的正确分离。因此,减数分裂重组不仅增加了后代遗传多样性,还是作物遗传育种的基础。通过提高重组频率或改变其分布可以加速农作物育种进程,而降低或抑制重组可以固定杂种优势。近年来对植物减数分裂重组的分子遗传机制的研究取得了很大进展,包括重组的遗传和表观遗传调控机制,重组的遗传操控技术、固定杂交优势和染色体工程等方面。本文针对以上方面进行了全面的总结,这些内容不仅方便了读者对减数分裂重组的理论认知,还拓展了通过调控减数分裂重组操控生物育种的思路。
Abstract:Meiosis is essential for producing haploid gametes during sexual reproduction in most eukaryotes. Homologous recombination is one of the critical events of meiosis prophase I. It not only leads to the reshuffle of genetic information between homologs, but also ensures their proper segregation at anaphase I. Therefore, meiotic recombination is important to facilitate the genetic diversity and evolution among progeny, and also provides the theoretical basis for crop breeding. As expectedly, increasing the frequency of recombination or changing its distribution can benefit crop breeding, while reducing or inhibiting recombination can sustain heterosis. Over the past decades, numerous achievements have been made in understanding and utilizing meiotic recombination in plants, including mechanisms on genetic and epigenetic regulation of meiotic recombination, manipulation technologies on recombination, fixation of heterosis and chromosome engineering. In this review, we summarize the latest findings and technologies for regulating meiotic recombination, which will enable the readers to have an easy access to understand meiotic recombination, and also expand the idea of manipulating breeding through meiotic recombination.
-
近年来浓香型烤烟Nicotiana tabacum L.风格弱化和特色优质烟叶供应不足已成为我国烟草行业的一个重大问题,直接制约品牌卷烟上升水平。有研究表明烤烟品质受品种、栽培技术、烘烤工艺和生态条件等多种因素影响,其中生态条件对烤烟质量的贡献率高达56%[1],是特色烟叶形成的重要基础[2-3]。气候和土壤是影响烤烟质量与风格特征的两大生态因子,但目前仍不清楚二者是如何影响烟叶风格特征的[4]。蔡永占等[5]指出,在不同的生态试验点,丽江的气候条件更利于烟叶碳水化合物的积累。赵福杨等[6]报道在不同类型土壤条件下种植的烤烟,其化学成分存在显著差异,其中沙质土种植的烤烟,其化学成分较为协调。王海涛[7]指出,河南烟区不同日照、降水和温湿度条件对烟叶化学成分存在不同的影响。国内其他烟区也有关于生态条件对烤烟质量影响的研究报道,但将气候因子和土壤因子结合起来的研究报道较少,结果也不一致[8-10]。
南雄烟区是我国著名的浓香型优质烟叶产区之一,所产烟叶以浓香型、高香气的调香为主[11]。现有文献虽然对南雄烟区的生态条件进行了全面的评价[12],但并未指出气候和土壤因子影响烟叶品质及风格特征形成的作用机理,因此开展相关的研究迫在眉睫。本文根据2个不同生态亚区帽子峰与古市生态条件和地域的微观差异,在两地互相置换相同质地土壤,研究土壤和气候条件对不同生育时期烟叶光合特性参数和烤后烟叶化学成分的影响,探讨影响浓香型烤烟风格特征的关键生态因子,为浓香型特色优质烟叶开发提供参考和依据。
1. 材料与方法
1.1 试验材料
供试烤烟品种为‘粤烟97’,浓香型,由广东省烟草南雄科学研究所提供。
1.2 试验点生态条件
试验于2015—2016年连续2年在广东省南雄市帽子峰镇和古市镇同时进行,试验田块相对平坦,有代表性,排灌方便,前茬为水稻。供试土壤类型均为沙泥田,基本理化性质如表1所示。
表 1 土壤基本理化性质1)Table 1. The basic physicochemical property of soil试验点
Test sitepH w(H2O)
/%w/(g·kg–1) w/(mg·kg–1) 有机质
Organic matter全氮
Total N全钾
Total K全磷
Total P速效磷
Available P碱解氮
Alkaline N速效钾
Available K帽子峰 Maozifeng 5.08 23.05 24.75±0.35b 1.40±0.04a 169.58±2.94a 5.02±0.17b 27.00±0.40b 10.71±0.11b 44.25±1.67b 古市 Gushi 5.20 28.69 29.68±0.94a 1.50±0.01a 143.96±3.33b 6.13±0.15a 30.81±0.56a 14.08±0.17a 63.09±2.38a 1) 同列数据后不同小写字母表示差异显著 (P<0.05,t 检验)
1) Different lowercase letters in the same column indicated significant difference (P<0.05,t test)南雄属于中亚热带季风湿润气候,四季分明,年平均气温19.7 ℃,年降水量1 550 mm,年日照1 850 h,无霜期293 d[13]。2个试验点虽处于相同生态区,但地形和海拔有所差异,帽子峰山地环绕,海拔375 m,古市以平原为主,海拔121 m。2016年烤烟不同生育期的大田气象资料如表2所示,数据由广东省南雄市气象局提供。
表 2 2016年烤烟不同生育期的大田气象资料Table 2. Meteorological data during field growth period of tobacco in 2016时间(生育期)
Time (Growth period)试验点
Site降水量
/mm
Percipitation平均气温
/℃
Temperature日照时数
/h
Sunshine3 月 March 帽子峰 Maozifeng 86.20 13.20 90.80 古市 Gushi 312.90 15.00 90.80 4 月 April 帽子峰 Maozifeng 182.50 21.50 60.80 古市 Gushi 280.10 22.30 60.80 5 月 May 帽子峰 Maozifeng 172.20 23.20 122.90 古市 Gushi 168.40 24.60 122.90 6 月 June 帽子峰 Maozifeng 157.80 26.80 201.00 古市 Gushi 123.30 28.20 201.00 伸根期
Elongation stage帽子峰 Maozifeng 186.10 16.53 125.40 古市 Gushi 412.80 16.90 113.90 旺长期
Fast growing stage帽子峰 Maozifeng 154.50 22.13 50.10 古市 Gushi 180.20 22.15 37.70 成熟期
Maturity stage帽子峰 Maozifeng 258.10 25.45 300.00 古市 Gushi 291.70 26.42 323.90 大田生育期
Field growth stage帽子峰 Maozifeng 598.70 21.18 475.50 古市 Gushi 884.70 22.53 475.50 1.3 试验设计
采用随机区组设计,以土壤和气候为试验因素,采用置换土壤的方法,设置4个处理。T1:将帽子峰沙泥田土壤置换到古市,在古市气候条件下种植烤烟;T2:在古市沙泥田土壤和古市气候条件下种植烤烟;T3:将古市沙泥田土壤置换到帽子峰,在帽子峰气候条件下种植烤烟;T4:在帽子峰沙泥田土壤和帽子峰气候条件下种植烤烟。每个处理重复3次,共12个小区,每个小区种植烤烟30株,小区四周设保护行。土壤置换方法是分别在帽子峰和古市选择相同土壤质地的沙泥田,各试验小区按长5.0 m、宽4.0 m、深0.3 m的规格挖坑,将2个试验点各小区土壤各取30 cm深,耕作层与犁底层分层挖出,2层土壤同时互换,在分层依序回填之前先铺黑色地膜,地膜底部钻洞便于排水。试验烟苗分别于2015、2016年的2月20日移栽,田间管理统一按当地优质烟叶生产技术标准进行,烟叶采烤按照烟叶成熟标准和密集烘烤工艺[14]操作。由于2015—2016年连续2年试验结果相似,本文以2016年试验结果为例。
1.4 测定项目及方法
1.4.1 光合特性参数
采用LI-6400便携式光合测定系统(LI-COR,美国)分别在移栽后30、40、50、60和70 d的10:00—12:00选取中部叶测定叶片气孔导度、蒸腾速率、胞间CO2浓度和净光合速率,每个处理重复3次。
1.4.2 常规化学成分
每个处理分别选取烤后不同部位烟叶(上部叶、中部叶和下部叶)测定化学成分含量。烟碱含量采用分光光度法[15]测定;可溶性总糖和淀粉含量采用蒽酮比色法[16]测定;还原糖含量采用3,5−二硝基水杨酸(DNS)比色法[16]测定;钾含量采用火焰光度计法[16]测定;总氮含量采用凯氏自动定氮仪CID-310(Foss,瑞典)测定。
1.5 数据处理及分析
采用Excel 2013整理数据,Origin Pro 9.1制图,使用SPSS 21.0进行数据统计分析。土壤、气候及二者互作的贡献效果检验采用主效应分析法,同时引入偏Eta平方值Pη2解释分析结果,0.01<Pη2≤0.06表示低度影响效应,0.06<Pη2≤0.16表示中度影响效应,Pη2>0.16表示高度影响效应[17]。为保证数据独立性的要求,对相同处理不同部位烟叶化学指标取算数平均值后再进行双因素方差分析,以显著水平P=0.05为自变量取舍的临界值。
2. 结果与分析
2.1 不同生态亚区土壤和气候条件对烟叶光合特性的影响
从图1可以看出,不同生态亚区土壤和气候条件对烟叶光合特性参数有显著影响。各处理气孔导度均呈先缓升再陡降后缓降的趋势,在移栽50 d左右达到峰值,整体来看,T1处理气孔导度最大,其次为T2、T3,T4最小。蒸腾速率均呈先缓升后陡降的趋势,移栽50 d之前T2处理高于T1,移栽50 d之后T2下降速率高于T1,最终T2的蒸腾速率低于T1。胞间CO2浓度均呈先降低后升高的趋势,在移栽50 d时达最小值,整体来看,在移栽50 d之后T1、T2、T3和T4处理的胞间CO2浓度依次升高。净光合速率变化趋势与胞间CO2浓度完全相反,呈陡升–缓升–缓降–陡降的趋势,各处理变化趋势的走向趋于平行,在移栽50 d时达最大值,T1处理净光合速率为21.80 μmol·m–2·s–1,T2为21.03 μmol·m–2·s–1,T3为19.16 μmol·m–2·s–1,T4为18.82 μmol·m–2·s–1。T1与T2、T3与T4处于相同气候条件不同土壤条件,移栽50 d时,T1处理的净光合速率比T2高3.66%,T3比T4高1.81%;T1与T4、T2与T3处于相同土壤条件不同气候条件,移栽50 d时,T1处理的净光合速率比T4高15.83%,T3比T2低8.89%。
2.2 不同生态亚区土壤和气候条件及其互作对烟叶光合特性的主效应分析
将土壤和气候条件作为分组因素进行主效应分析,结果见表3。不同土壤条件下烟叶光合特性参数(气孔导度、蒸腾速率、胞间CO2浓度和净光合速率)均差异不显著(P≥0.177),对应的Pη2均小于0.06,表明土壤条件对烟叶光合特性参数影响很弱;不同气候条件下烟叶光合特性参数差异均达到极显著水平(P<0.01),对应的Pη2均大于0.16,表明气候条件对光合特性参数具有高度影响;在土壤与气候互作条件下只有气孔导度的差异达极显著水平(P=0.001),Pη2=0.237,蒸腾速率、胞间CO2浓度和净光合速率的差异未达显著水平(P>0.05),Pη2≤0.065,表明土壤与气候互作对气孔导度影响较强,对蒸腾速率、胞间CO2浓度和净光合速率影响较弱。综上所述,影响烟叶光合特性参数的主要因素是气候,其次是土壤与气候互作,土壤因素相对较弱。
表 3 不同生态亚区土壤与气候及其互作对烟叶光合特性的主效应分析Table 3. Analyses of main effects of soil, climate and their interaction on photosynthetic characteristics of tobacco leaves in different ecological subregions测定指标
Measured index变异来源
Variation source平方和
Sum of squares自由度
Degree of freedom均方
Mean squareF P Pη2 气孔导度 Stomatal conductance 土壤 Soil 0.003 1 0.003 1.881 0.177 0.041 气候 Climate 0.105 1 0.105 62.605 0.000 0.587 土壤×气候 Soil × climate 0.023 1 0.023 13.634 0.001 0.237 误差 Error 0.074 8 0.002 总变异 Total variations 8 773.109 11 蒸腾速率 Transpiration rate 土壤 Soil 0.416 1 0.416 0.559 0.459 0.013 气候 Climate 25.799 1 25.799 34.660 0.000 0.441 土壤×气候 Soil × climate 1.908 1 1.908 2.563 0.117 0.055 误差 Error 32.751 8 0.744 总变异 Total variations 60.874 11 胞间CO2浓度 CO2 concentration 土壤 Soil 11.408 1 11.408 0.078 0.781 0.002 气候 Climate 1 966.848 1 1 966.848 13.472 0.001 0.234 土壤×气候 Soil × climate 370.963 1 370.963 2.541 0.118 0.055 误差 Error 6 423.890 8 145.998 总变异 Total variations 8 773.109 11 净光合速率
Net photosynthetic rate土壤 Soil 0.480 1 0.480 0.075 0.785 0.002 气候 Climate 84.907 1 84.907 13.348 0.001 0.233 土壤×气候 Soil × climate 19.584 1 19.584 3.079 0.086 0.065 误差 Error 279.894 8 6.361 总变异 Total variations 384.865 11 2.3 不同生态亚区土壤和气候条件对烤后烟叶化学成分含量及协调性的影响
从表4可以看出,与T3、T4处理相比,T1、T2烤后烟叶的化学成分含量及其协调性更趋于浓香型优质烟叶的最适范围。在中部叶中,T1处理的总糖、还原糖和淀粉含量分别比T2低5.74%、4.77%和10.73%,差异均达到显著水平(P<0.05)。各处理的烟碱质量分数在1.83%~3.16%之间,其中T1处理上、中、下部叶的烟碱含量分别显著高于T2处理8.59%、6.49%、5.41%(P<0.05)。各处理K+质量分数在1.95%~2.81%范围内波动,T1处理中部叶的K+含量比T2高11.07%(P<0.05),上部叶和下部叶各处理间K+含量差异均不显著。各处理总氮质量分数在1.58%~2.47%之间,T1处理上部叶的总氮含量比T2低5.67%,中部叶的总氮含量比T2高11.34%,且差异显著(P<0.05)。各处理淀粉质量分数在3.65%~5.52%之间波动,除了T3、T4处理上部叶和T3处理中部叶的淀粉质量分数大于5%外,其他处理的淀粉质量分数均小于5%。各处理糖碱比和氮碱比分别在6.86~9.89和0.75~0.90范围内波动,均落在浓香型优质烟叶的最适范围,化学成分协调性较好。
表 4 不同生态亚区土壤和气候条件对烤后烟叶化学成分含量及其协调性的影响1)Table 4. Effects of soil and climate on chemical constituent contents and coordinations of flue-cured tobacco leaves in different ecological subregions烟叶
Tobacco leaf处理
Treatmentw/% 糖碱比
Ratio of sugar to nicotine氮碱比
Ratio of N
to nicotine总糖
Total
sugar还原糖
Reducing
sugar烟碱
NicotineK+ 总氮
Total N淀粉
Starch上部叶 Upper leaf T1 21.70±0.35a 17.81±0.18a 3.16±0.03a 2.37±0.12a 2.33±0.02b 4.46±0.17b 7.46±0.10a 0.80±0.01b T2 21.69±0.61a 16.92±0.11a 2.91±0.04b 2.29±0.16a 2.47±0.02a 4.94±0.23ab 6.86±0.13b 0.78±0.00b T3 19.04±0.15b 14.12±0.31b 2.66±0.01c 2.17±0.13a 1.99±0.01d 5.29±0.27a 7.15±0.09ab 0.75±0.01b T4 19.34±0.41b 14.55±0.04b 2.63±0.01c 2.04±0.04a 2.24±0.01c 5.52±0.20a 7.35±0.18a 0.85±0.01a 中部叶 Middle leaf T1 21.03±0.11b 17.75±0.11b 2.46±0.02a 2.81±0.06a 2.16±0.01a 3.66±0.05d 8.55±0.04b 0.88±0.01a T2 22.31±0.17a 18.64±0.05a 2.31±0.02b 2.53±0.08b 1.94±0.12b 4.10±0.05c 9.67±0.11a 0.84±0.05a T3 19.11±0.33c 15.44±0.44c 2.05±0.01c 2.39±0.07b 1.85±0.01b 5.29±0.20a 9.32±0.19a 0.90±0.01a T4 19.68±0.24c 17.16±0.20b 2.36±0.04b 2.32±0.05b 2.01±0.01ab 4.84±0.03b 8.33±0.21b 0.85±0.02a 下部叶 Lower leaf T1 21.03±0.07a 17.05±0.04a 2.34±0.02a 2.27±0.18a 1.79±0.13a 4.69±0.03ab 8.98±0.05b 0.76±0.05b T2 20.84±0.46a 16.40±0.06b 2.22±0.04b 1.95±0.15a 1.91±0.15a 4.86±0.03a 9.37±0.08a 0.86±0.07a T3 18.12±0.03b 15.35±0.29c 1.83±0.00d 2.24±0.06a 1.58±0.01a 3.65±0.20c 9.89±0.03a 0.86±0.01a T4 17.89±0.21b 13.47±0.08d 1.97±0.00c 2.14±0.10a 1.72±0.01a 4.33±0.22b 9.08±0.12b 0.88±0.00a 1) 相同部位烟叶的同列数据后,不同小写字母表示差异显著 (P<0.05,Duncan’s 法)
1) Different lowercase letters in the same column of the same tobacco leaf indicated significicant difference (P<0.05, Duncan’s method)2.4 不同生态亚区土壤和气候条件及其互作对烤后烟叶化学成分含量的主效应分析
将土壤与气候条件作为分组因素进行主效应分析,结果如表5所示。在不同土壤条件下烤后烟叶K+和总氮含量以及糖碱比差异显著(P<0.05),Pη2均大于0.16,表明土壤对K+和总氮含量及糖碱比具有显著影响;其他指标均差异不显著(P>0.05),其中总糖的Pη2小于0.06,其余在0.06~0.16之间,表明土壤对总糖含量影响较小,对其他指标有一定影响。在不同气候条件下K+含量和糖碱比差异不显著(P>0.05),其他指标的差异均达到显著水平(P<0.05),从Pη2来看,气候对糖碱比影响较小,对K+含量有一定影响,对其他指标有显著影响。在土壤与气候互作条件下除总糖和K+含量以及糖碱比差异不显著(P>0.05)外,其他指标的差异均达到显著水平(P<0.05),根据Pη2来看,土壤与气候互作对还原糖、烟碱、总氮和淀粉含量及氮碱比有显著影响,对总糖和K+含量及糖碱比有一定影响。
表 5 不同生态亚区土壤与气候条件及其互作对烤后烟叶化学成分含量及其协调性的主效应分析Table 5. Analyses of main effects of soil, climate and their interaction on chemical constituent contents and coordinations of flue-cured tobacco leaves in different ecological subregions测定指标
Measured index变异来源
Variation source平方和
Sum of squares自由度
Degree of freedom均方
Mean squareF P Pη2 总糖
Total sugar土壤 Soil 0.062 1 0.062 0.121 0.737 0.015 气候 Climate 5.286 1 5.286 10.237 0.013 0.561 土壤×气候 Soil×climate 0.602 1 0.602 1.166 0.312 0.127 误差 Error 4.131 8 0.516 总变异 Total variations 10.082 11 还原糖 Reducing sugar 土壤 Soil 0.463 1 0.463 1.098 0.325 0.121 气候 Climate 6.357 1 6.357 15.063 0.005 0.653 土壤×气候 Soil×climate 3.485 1 3.485 5.592 0.046 0.411 误差 Error 3.376 8 0.422 总变异 Total variations 13.681 11 烟碱 Nicotine 土壤 Soil 0.103 1 0.103 0.997 0.347 0.111 气候 Climate 1.334 1 1.334 12.951 0.007 0.618 土壤×气候 Soil×climate 0.659 1 0.659 5.394 0.049 0.403 误差 Error 0.824 8 0.103 总变异 Total variations 2.919 11 K+ 土壤 Soil 1.919 1 1.919 7.379 0.026 0.480 气候 Climate 0.332 1 0.332 1.275 0.291 0.138 土壤×气候 Soil×climate 0.254 1 0.254 0.978 0.352 0.109 误差 Error 2.081 8 0.260 总变异 Total variations 4.587 11 总氮 Total N 土壤 Soil 0.022 1 0.022 11.691 0.009 0.594 气候 Climate 0.120 1 0.120 62.925 0.000 0.887 土壤×气候 Soil×climate 0.029 1 0.029 6.165 0.038 0.435 误差 Error 0.015 8 0.002 总变异 Total variations 0.186 11 续表5 Continued table 5 测定指标
Measured index变异来源
Variation source平方和
Sum of squares自由度
Degree of freedom均方
Mean squareF P Pη2 淀粉 Starch 土壤 Soil 0.032 1 0.032 0.999 0.347 0.111 气候 Climate 0.410 1 0.410 12.951 0.007 0.618 土壤×气候 Soil×climate 0.184 1 0.184 5.821 0.042 0.421 误差 Error 0.253 8 0.032 总变异 Total variations 0.897 11 糖碱比
Ratio of sugar to nicotine土壤 Soil 0.195 1 0.195 15.298 0.005 0.657 气候 Climate 0.005 1 0.005 0.414 0.538 0.049 土壤×气候 Soil×climate 0.015 1 0.015 1.178 0.309 0.128 误差 Error 0.102 8 0.013 总变异 Total variations 0.317 11 氮碱比
Ratio of N to nicotine土壤 Soil 0.015 1 0.015 1.125 0.320 0.123 气候 Climate 0.098 1 0.098 7.312 0.027 0.478 土壤×气候 Soil×climate 0.197 1 0.197 12.729 0.007 0.614 误差 Error 0.107 8 0.013 总变异 Total variations 0.417 11 2.5 不同生态亚区气候因子与烤后烟叶化学成分含量及协调性间的相关性分析
将烤烟各生育期气候因子与烤后烟叶化学成分含量进行相关性分析,结果如表6所示。总糖含量与旺长期平均气温呈极显著负相关,还原糖含量与伸根期和旺长期降水量呈显著负相关,烟碱含量与伸根期降水量呈显著正相关,总氮含量与伸根期平均气温呈显著负相关,糖碱比与旺长期平均气温呈显著正相关,氮碱比与伸根期降水量呈显著正相关。上述相关性分析结果表明,影响烤后烟叶化学成分含量及协调性的主要气候因子是伸根期与旺长期的降水量和平均气温。
表 6 不同生态亚区气候因子与烤后烟叶化学成分含量的相关性分析1)Table 6. Correlation analyses between climate factors and chemical constituent contents of flue-cured tobacco leaves in different ecological subregions指标
Index伸根期 Elongation stage 旺长期 Fast growing stage 成熟期 Maturity stage 降水量
Precipitation平均气温
Mean temperature日照时数
Sunshine hour降水量
Precipitation平均气温
Mean temperature日照时数
Sunshine hour降水量
Precipitation平均气温
Mean temperature日照时数
Sunshine hour总糖
Total sugar−0.643 −0.533 −0.027 −0.527 −0.932** −0.085 −0.290 −0.240 0.074 还原糖
Reducing sugar−0.834* −0.704 −0.177 −0.628* −0.759 −0.157 −0.079 −0.053 0.315 烟碱
Nicotine0.798* 0.060 0.265 0.448 0.422 0.074 0.493 −0.106 −0.096 K+ 0.085 −0.037 −0.163 −0.093 −0.452 −0.156 0.534 −0.581 0.272 总氮
Total N−0.427 −0.791* 0.078 −0.493 −0.574 −0.123 0.569 −0.049 0.052 淀粉
Starch0.010 0.243 0.048 0.540 −0.156 −0.053 0.136 0.194 −0.019 糖碱比
Sugar/nicotine0.212 −0.301 −0.303 0.245 0.852* −0.089 −0.529 0.053 0.183 氮碱比
N/nicotine0.827* −0.257 −0.467 0.178 −0.009 −0.393 −0.061 0.182 0.382 1) “*” 和 “**” 分别表示 0.05 和 0.01 的显著相关
1) “*” and “**” indicated significant correlation at P<0.05 andP<0.01 levels, respectively3. 讨论与结论
光合作用是物质同化作用的主要过程,是植物生理代谢过程中重要有机物质的来源,净光合速率是衡量植物光合作用强弱的重要指标[18]。金云峰等[19]在烟草不同生育期叶片光合作用的研究中发现,移栽后至团棵期,烟叶的净光合速率逐渐升高,团棵期至现蕾期,净光合速率趋于平稳,成熟期急剧下降。柯学等[20-21]提出烟叶净光合速率变化曲线呈“抛物线”型。本研究发现,浓香型烟区大田生育期烤烟叶片的净光合速率呈“陡升–缓升–缓降–陡降”的趋势,这与前人[19-21]有关研究结果相似。有研究指出种植措施、光照、品种、肥料和温度等因素都会影响植物光合作用的强弱[22-23],将气候和土壤结合起来研究其对光合作用影响的报道比较少见。本研究发现影响烤烟光合特性的主要生态因子是气候,将帽子峰土壤置换到古市(T1处理)后种植的烟叶的净光合速率比在帽子峰当地土壤和气候条件(T4处理)下种植的烟叶高15.83%,将古市土壤置换到帽子峰(T3处理)后种植的烟叶的净光合速率比在古市当地土壤和气候条件(T2处理)下种植的烟叶低8.89%,即在相同土壤和不同气候条件下,古市生态亚区烟叶的净光合速率高于帽子峰烟叶,说明古市的气候条件可能更适合浓香型优质烟叶的生产。与帽子峰相比,移栽期古市降水丰富,月平均气温略高1~2 ℃,大田生育期日照时数接近500 h,成熟期在300 h以上,气候条件的微观差异可能是古市烟叶光合特性优于帽子峰烟叶的主要原因。将帽子峰沙泥田土壤置换到古市种植烟草,能够提高烟草光合作用水平,为后期有机物的积累奠定基础。
化学成分是影响烟叶内在品质的物质基础。一般认为,浓香型优质烟叶化学成分含量的适宜范围是总糖质量分数16%~23%,还原糖质量分数14%~18%,淀粉质量分数≤5%,总氮质量分数1.5%~2.3%,烟碱质量分数1.5%~3.5%,K+质量分数≥2.0%,糖碱比6~10,氮碱比<1[4, 24]。本研究2个试验点烤后烟叶的化学成分含量及其协调性接近浓香型优质烟叶范围,在古市种植的烟叶化学品质特征优于在帽子峰种植的烟叶。王行等[25]指出南雄产区烟叶浓香型风格特征弱化主要表现为中部叶含糖量大幅提升,烟碱含量下降。本研究发现,对中部叶来说,将帽子峰沙泥田土壤置换到古市(T1处理)后种植的烟叶与古市当地(T2处理)种植的烟叶相比,总糖和还原糖含量分别降低了5.74%和4.77%,烟碱含量提高了6.49%,达到了降糖升碱的效果,符合低糖、中烟碱的优质浓香型烟叶质量特征。因此,将帽子峰沙泥田土壤置换到古市种植烟叶能够改善烟叶化学成分及协调性,彰显浓香型风格特征。
国内外研究发现,土壤、气候及耕作条件对烟叶化学品质特征有显著影响[26-27],本研究在耕作条件一致的前提下发现,气候对总糖、还原糖、淀粉、烟碱和总氮含量及氮碱比有高度影响;土壤与气候互作对还原糖、淀粉、烟碱和总氮含量及氮碱比有高度影响,对总糖和K+含量及糖碱比有中度影响;土壤仅对K+和总氮含量及糖碱比有高度影响。这与黄爱缨等[26]和彭新辉等[28]研究结果相近。综上所述,影响烟叶化学品质的主要生态因子是气候条件,其次是土壤与气候互作。本研究将气候因子与烤后烟叶化学成分含量及协调性进行相关性分析发现,影响烟叶内在化学品质的主要气候因子是伸根期与旺长期的降水量和平均气温,这与王育军等[29]和李琦等[30]的研究结果有相似之处。
蔡雪娇等[31]和母少东等[32]在对相同生态区域烤烟品质的研究中指出,土壤对烟叶浓香型风格特征的形成有显著影响。本研究发现,气候是影响烤后烟叶品质及浓香型风格特征的主要因子,土壤的作用相对较弱。上述文献[31-32]的试验点均选在相同海拔和气候条件下,本研究的2个试验点只在相同生态区域,海拔不同,气候条件也存在微观差异,通过主效应分析和相关性分析得出,影响烤烟品质的主要生态因素是气候因子,尤其是伸根期与旺长期的降水量和平均气温。古市生态亚区降水呈“前中期多、后期少”的特点,这种独特的降水分布正是影响烟叶品质的重要因素。南雄烟区烟苗移栽时间一般在2月底3月初,降水充足,土壤底墒高,有利于烟苗成活。成熟后期(6月)降水适量减少,烟叶能够正常成熟落黄,有利于干物质及油分的积累。
本研究根据不同生态亚区土壤与气候条件的微观差异展开对烤烟品质及浓香型风格特征形成的探讨,运用主效应分析、Pη2和相关性分析等科学统计方法解释分析结果,得出了相关结论。本试验仅选取了降水量、平均气温和日照时数这3个代表性指标作为气候因子,后续研究中还需考虑相对湿度、蒸发量和海拔等因子的影响。总之构建浓香型特色烟叶生产技术体系时要综合考虑气候、土壤和地理等多方面因素的影响。
-
图 1 植物减数分裂染色体的牵回环–轴模型
减数分裂同源染色体的配对和联会是重组的重要保证。在减数分裂细线期,联会起始于轴向元件ASY1和ASY3在染色体上的加载,和黏连蛋白REC8一起最终形成一个线性的轴结构,使得姐妹染色单体沿着轴形成一个个DNA环。在细线期和偶线期转换时,DNA环会被牵拉到染色体轴上,由SPO11-MTOPVIB复合体介导双链断裂(DSBs)的产生。随后在偶线期,3′单链DNA会在RAD51-DMC1的介导下入侵到同源染色体间,形成D-loop,从而促进同源染色体配对。在粗线期,中央元件ZYP1加载到一对同源染色体轴中间,最终形成联会复合体的完整结构。在此时,大部分的DSB被修复,少量形成了重组中间体的结构。最后在双线期,联会复合体开始分解,同源染色体分离,只留下重组的区域形成交叉(Crossovers)
Figure 1. The model of tethered loop-axis of meiotic chromosomes in plant
The pairing and synapsis of meiotic homologous chromosomes are important for recombination. At leptotene, the synapsis initiates with the loading of axial elements ASY1 and ASY3 on the chromosome, which eventually forms a linear axis structure together with cohesin REC8. Sister chromosomes form DNA loops to array along the axis. During leptotene-diplotene transition, DNA loops are tethered onto the chromosome axis, and double-strand breaks (DSBs) are induced by SPO11-MTOPVIB complex. Subsequently, 3′ single-strand DNA end searches the homologous chromosome by RAD51-DMC1 to form a D-loop, thus promoting homologous chromosome pairing. At pachytene, the central element ZYP1 is loaded onto the centre of a pair of homologous chromosome axes, and finally forms the complete synaptonemal complex (SC) with axial elements. At this point, most DSBs are repaired, and a small amount forms recombination intermediates. At diplotene , following SC disassembly, homologs are separated except where crossovers have formed
图 2 植物减数分裂重组修复途径模型
减数分裂的重组起始于双链断裂的形成,由SPO11-MTOPVIB复合体介导。双链断裂末端随后被切割处理形成3′单链尾巴。双链断裂修复可以选择以姐妹染色单体为模板,也可以在RAD51-DMC1的帮助下使3′单链末端入侵同源染色体形成置换环结构进行修复,后者形成减数分裂染色体重组。在以同源染色体为模板的修复中,DNA合成,第2链末端捕获和链接最终形成重组中间体的经典结构——双Holliday交叉,并最终解除形成干涉敏感型交换。同时,还存在着重组蛋白MUS81依赖的干涉不敏感型交换,但是目前植物中的重组中间体以及产物不太清楚。此外,在单链入侵后,当第2末端无法捕获时还存在一条合成依赖的链退火途径,最终也以姐妹染色单体为模板进行修复,并会产生非交换。在重组通路中,还存在着3条不同的重组抑制通路:FIGL1-FLIP、FANCM-MHF1/2和RECQ4A/B-TOP3α-RMI1,都参与抑制MUS81依赖的干涉不敏感型交换途径,并促进合成依赖的链退火
Figure 2. The model for meiotic recombination in plant
Meiotic recombination initiates with the formation of DSBs, which are mediated by the SPO11-MTOPVIB complex. DSB ends are cleaved to form 3′ single-strand tails. Subsequently, DSB can be repaired by selecting the sister chromatids as the template. Alternatively, 3′ single-strand ends invade the homolog to form a D-loop for repair, which is known as recombination. Following the repair progress, DNA synthesis, second strand end capture and ligation lead to the formation of double Holliday junctions (dHJs), which are the classical structure of the recombination intermediates and finally resolved as ZMM-dependent interference-sensitive crossovers (Type I COs). Meanwhile, MUS81-dependent pathway results in interference-insensitive crossovers (Type II CO) , but the recombination intermediates and their products in plants are not well understood. In addition, single-strand invasion can be processed by synthesis-dependent strand annealing pathway (SDSA), and chooses the sister chromatids as the template for repair to produce NCO. During meiotic recombination, there are also three different recombination inhibitory pathways, including FIGL1-FLIP, FANCM-MHF1/2 and RECQ4A/ B-Top3α-RMI1, which are involved in the inhibition of MUS81-dependent Type II CO and promote SDSA
图 3 拟南芥减数分裂重组(CO)热点的基因组/染色质特征和调控模型
减数分裂重组在染色体上不是均匀分布的。通常倾向于发生在常染色质区,并且DSB通常发生于基因的转录起始位点或转录终止位点。重组热区伴随着低核小体密度、H2A.Z和H3K4me3的富集,并且含有AT-rich 和CTT 基序。而在异染色质区通常结构致密,TE和重复序列富集,伴随高非CG甲基化和H3K9me2,这些都是重组的抑制因素。在常染色质区提高减数分裂重组的方法有:突变重组抑制子、过表达重组酶HEI10和突变MET1和DDM1;而在异染色质区提高重组通常通过降低非CG甲基化或H3K9me2,另外还可以通过定向重组的方法提高目标区域重组
Figure 3. The model for regulation of Arabidopsis meiotic crossover hotspots by genomic and chromatin features
The distribution of meiotic recombination events is not uniformly along chromosomes. The crossovers (COs) generally tends to occur in euchromatin regions, and DSBs usually occur in transcription start sites (TSS) or transcription stop sites (TTS). Meiotic recombination hotspots display low nucleosome density, occupancy of H2A.Z and H3K4me3 enrichment with AT-rich and CTT motifs. Heterochromatin is highly compacted with lots of TE and repeat sequences accompanied by high non-CG methylation and H3K9me2, which are the inhibitors of recombination. The approaches for improving meiotic recombination frequency on euchromatin are as follows: Mutating anti-CO genes, overexpressing the recombinase HEI10 or mutating DNA methyltransferases MET1 and remodeler DDM1. Increasing COs on heterochromatin can be achieved by reducing non-CG methylation or H3K9me2, and targeted recombination
图 4 操纵减数分裂创新作物种质
植物杂交后代具有较亲本优越的表型或适应性称为杂种优势。在有性生殖过程中,F1代杂交植物经历减数分裂染色体重组和分离,导致配子间的等位基因再分配。而后植物双受精使雄配子与雌配子融合,由于减数分裂重组,在F1代中观察到的理想杂种优势性状通常在其后代中丢失。与此相反,无融合生殖依赖于未减数孢子分裂、孤雌生殖和不依赖受精的功能性胚乳的形成。在改良的植物无融合生殖中,通过对有丝分裂代替减数分裂(Mitosis instead of Meiosis, MiMe)和BBM1/MTL基因的遗传操作,分别诱导有丝分裂代替细胞分裂,产生二倍体配子,而后通过孤雌生殖实现种子克隆。克隆种子与F1杂交植株基因一致,可以在后代中保持杂种优势。此外,还可以通过MiMe实现后代多倍化,从而提高后代植物重组频率,整合并增强优良性状
Figure 4. Manipulating meiosis for crop improvement
Heterosis is a phenomenon among progenies of plants, which is known as that hybrid plants can have superior traits compared to their parents. In the process of sexual reproduction, F1 hybrid plants undergo meiotic recombination and chromosome segregation, leading to redistribution of alleles among gametes. Then plant double fertilization is the fusion of male gametes and female gametes. Due to meiotic recombination, the desirable traits observed in F1 hybrid plants are usually lost in their progenies. In contrast, apomixis relies on the apomeiosis, parthenogenesis and autonomous endosperm. In the improved apomixis of plant, MiMe induced by genetic manipulation produces diploid gametes and misexpression of BBM1/MTL in egg cell triggers parthenogenesis, thereby producing the clonal reproduction through seeds. The genome of cloned seeds is consistent with F1 hybrid plants, which can maintain heterosis in the progeny. In addition, diploid gametes can be achieved through MiMe to produce polyploid offspring, which may improve the frequency of recombination and enhance superior traits
-
[1] BLAT Y, PROTACIO R U, HUNTER N, et al. Physical and functional interactions among basic chromosome organizational features govern early steps of meiotic chiasma formation[J]. Cell, 2002, 111(6): 791-802. doi: 10.1016/S0092-8674(02)01167-4
[2] ARMSTRONG S J, CARYL A P, JONES G H, et al. Asy1, a protein required for meiotic chromosome synapsis, localizes to axis-associated chromatin in Arabidopsis and Brassica [J]. Journal of Cell Science, 2002, 115(Pt 18): 3645-3655.
[3] FERDOUS M, HIGGINS J D, OSMAN K, et al. Inter-homolog crossing-over and synapsis in Arabidopsis meiosis are dependent on the chromosome axis protein AtASY3[J]. PLoS Genetics, 2012, 8(2): e1002507. doi: 10.1371/journal.pgen.1002507.
[4] KEENEY S, GIROUX C N, KLECKNER N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family[J]. Cell, 1997, 88(3): 375-384. doi: 10.1016/S0092-8674(00)81876-0
[5] VRIELYNCK N, CHAMBON A, VEZON D, et al. A DNA topoisomerase VI-like complex initiates meiotic recombination[J]. Science, 2016, 351(6276): 939-943. doi: 10.1126/science.aad5196
[6] SUGIMOTO-SHIRASU K, STACEY N J, CORSAR J, et al. DNA topoisomerase VI is essential for endoreduplication in Arabidopsis[J]. Current Biology, 2002, 12(20): 1782-1786. doi: 10.1016/S0960-9822(02)01198-3
[7] STACEY N J, KUROMORI T, AZUMI Y, et al. Arabidopsis SPO11-2 functions with SPO11-1 in meiotic recombination[J]. The Plant Journal, 2006, 48(2): 206-216. doi: 10.1111/j.1365-313X.2006.02867.x
[8] NEALE M J, PAN J, KEENEY S. Endonucleolytic processing of covalent protein-linked DNA double-strand breaks[J]. Nature, 2005, 436(7053): 1053-1057. doi: 10.1038/nature03872
[9] DE MUYT A, PEREIRA L, VEZON D, et al. A high throughput genetic screen identifies new early meiotic recombination functions in Arabidopsis thaliana[J]. PLoS Genetics, 2009, 5(9): e1000654. doi: 10.1371/journal.pgen.1000654.
[10] JI J H, TANG D, SHEN Y, et al. P31comet, a member of the synaptonemal complex, participates in meiotic DSB formation in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(38): 10577-10582. doi: 10.1073/pnas.1607334113
[11] WANG Y X, COPENHAVER G P. Meiotic recombination: Mixing it up in plants[J]. Annual Review of Plant Biology, 2018, 69: 577-609. doi: 10.1146/annurev-arplant-042817-040431
[12] MIAO C, TANG D, ZHANG H, et al. Central region component1, a novel synaptonemal complex component, is essential for meiotic recombination initiation in rice[J]. The Plant Cell, 2013, 25(8): 2998-3009. doi: 10.1105/tpc.113.113175
[13] PANIZZA S, MENDOZA M A, BERLINGER M, et al. Spo11-accessory proteins link double-strand break sites to the chromosome axis in early meiotic recombination[J]. Cell, 2011, 146(3): 372-383. doi: 10.1016/j.cell.2011.07.003
[14] LAMBING C, TOCK A J, TOPP S D, et al. Interacting genomic landscapes of REC8-cohesin, chromatin, and meiotic recombination in Arabidopsis[J]. The Plant Cell, 2020, 32(4): 1218-1239. doi: 10.1105/tpc.19.00866
[15] LAMBING C, KUO P C, TOCK A J, et al. ASY1 acts as a dosage-dependent antagonist of telomere-led recombination and mediates crossover interference in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(24): 13647-13658. doi: 10.1073/pnas.1921055117
[16] LAM I, KEENEY S. Mechanism and regulation of meiotic recombination initiation[J]. Cold Spring Harbor Perspectives in Biology, 2014, 7(1): a016634. doi: 10.1101/cshperspect.a016634.
[17] UANSCHOU C, SIWIEC T, PEDROSA-HARAND A, et al. A novel plant gene essential for meiosis is related to the human CtIP and the yeast COM1/SAE2 gene[J]. The EMBO Journal, 2007, 26(24): 5061-5070. doi: 10.1038/sj.emboj.7601913
[18] OSMAN K, HIGGINS J D, SANCHEZ-MORAN E, et al. Pathways to meiotic recombination in Arabidopsis thaliana[J]. New Phytologist, 2011, 190(3): 523-544. doi: 10.1111/j.1469-8137.2011.03665.x
[19] WATERWORTH W M, ALTUN C, ARMSTRONG S J, et al. NBS1 is involved in DNA repair and plays a synergistic role with ATM in mediating meiotic homologous recombination in plants[J]. The Plant Journal, 2007, 52(1): 41-52. doi: 10.1111/j.1365-313X.2007.03220.x
[20] JI J H, TANG D, WANG M J, et al. MRE11 is required for homologous synapsis and DSB processing in rice meiosis[J]. Chromosoma, 2013, 122(5): 363-376. doi: 10.1007/s00412-013-0421-1
[21] JI J, TANG D, WANG K, et al. The role of OsCOM1 in homologous chromosome synapsis and recombination in rice meiosis [J] The Plant Journal, 2012, 72(1): 18-30.
[22] TSUBOUCHI H, OGAWA H. Exo1 roles for repair of DNA double-strand breaks and meiotic crossing over in Saccharomyces cerevisiae[J]. Molecular Biology of the Cell, 2000, 11(7): 2221-2233. doi: 10.1091/mbc.11.7.2221
[23] HU Q, TANG D, WANG H J, et al. The exonuclease homolog OsRAD1 promotes accurate meiotic double-strand break repair by suppressing nonhomologous end joining[J]. Plant Physiology, 2016, 172(2): 1105-1116.
[24] CHE L X, WANG K J, TANG D, et al. OsHUS1 facilitates accurate meiotic recombination in rice[J]. PLoS Genetics, 2014, 10(6): e1004405. doi: 10.1371/journal.pgen.1004405.
[25] WOLD M S. Replication protein A: A heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism[J]. Annual Review of Biochemistry, 1997, 66(1): 61-92. doi: 10.1146/annurev.biochem.66.1.61
[26] SHI B L, XUE J Y, YIN H, et al. Dual functions for the ssDNA-binding protein RPA in meiotic recombination[J]. PLoS Genetics, 2019, 15(2): e1007952. doi: 10.1371/journal.pgen.1007952.
[27] BROWN M S, BISHOP D K. DNA strand exchange and RecA homologs in meiosis[J]. Cold Spring Harbor Perspectives in Biology, 2014, 7(1): a016659. doi: 10.1101/cshperspect.a016659.
[28] AKLILU B B, SODERQUIST R S, CULLIGAN K M. Genetic analysis of the replication protein A large subunit family in Arabidopsis reveals unique and overlapping roles in DNA repair, meiosis and DNA replication[J]. Nucleic Acids Research, 2014, 42(5): 3104-3118. doi: 10.1093/nar/gkt1292
[29] ISHIBASHI T, KIMURA S, SAKAGUCHI K. A higher plant has three different types of RPA heterotrimeric complex[J]. The Journal of Biochemistry, 2006, 139(1): 99-104. doi: 10.1093/jb/mvj014
[30] MIAO Y J, SHI W Q, WANG H J, et al. Replication protein A large subunit (RPA1a) limits chiasma formation during rice meiosis[J]. Plant Physiology, 2021, 187(3): 1605-1618. doi: 10.1093/plphys/kiab365
[31] FERNANDES J B, DUHAMEL M, SEGUéLA -ARNAUD M, et al. FIGL1 and its novel partner FLIP form a conserved complex that regulates homologous recombination[J]. PLoS Genetics, 2018, 14(4): e1007317. doi: 10.1371/journal.pgen.1007317.
[32] DA INES O, ABE K, GOUBELY C, et al. Differing requirements for RAD51 and DMC1 in meiotic pairing of centromeres and chromosome arms in Arabidopsis thaliana[J]. PLoS Genetics, 2012, 8(4): e1002636. doi: 10.1371/journal.pgen.1002636.
[33] DA INES O, DEGROOTE F, GOUBELY C, et al. Meiotic recombination in Arabidopsis is catalysed by DMC1, with RAD51 playing a supporting role[J]. PLoS Genetics, 2013, 9(9): e1003787. doi: 10.1371/journal.pgen.1003787.
[34] CLOUD V, CHAN Y L, GRUBB J, et al. Rad51 is an accessory factor for Dmc1-mediated joint molecule formation during meiosis[J]. Science, 2012, 337(6099): 1222-1225. doi: 10.1126/science.1219379
[35] SEELIGER K, DUKOWIC-SCHULZE S, WURZ-WILDERSINN R, et al. BRCA2 is a mediator of RAD51- and DMC1-facilitated homologous recombination in Arabidopsis thaliana[J]. The New Phytologist, 2012, 193(2): 364-375. doi: 10.1111/j.1469-8137.2011.03947.x
[36] LIN Z, KONG H, NEI M, et al. Origins and evolution of the recA/RAD51 gene family: Evidence for ancient gene duplication and endosymbiotic gene transfer[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10328-10333. doi: 10.1073/pnas.0604232103
[37] MERCIER R, MÉZARD C, JENCZEWSKI E, et al. The molecular biology of meiosis in plants[J]. Annual Review of Plant Biology, 2015, 66: 297-327. doi: 10.1146/annurev-arplant-050213-035923
[38] SU H, CHENG Z, HUANG J, et al. Arabidopsis RAD51, RAD51C and XRCC3 proteins form a complex and facilitate RAD51 localization on chromosomes for meiotic recombination[J]. PLoS Genetics, 2017, 13(5): e1006827. doi: 10.1371/journal.pgen.1006827.
[39] WANG Y, XIAO R, WANG H, et al. The Arabidopsis RAD51 paralogs RAD51B, RAD51D and XRCC2 play partially redundant roles in somatic DNA repair and gene regulation[J]. New Phytologist, 2014, 201(1): 292-304. doi: 10.1111/nph.12498
[40] DA INES O, DEGROOTE F, AMIARD S, et al. Effects of XRCC2 and RAD51B mutations on somatic and meiotic recombination in Arabidopsis thaliana[J]. The Plant Journal, 2013, 74(6): 959-970. doi: 10.1111/tpj.12182
[41] COLLINS I, NEWLON C S. Chromosomal DNA replication initiates at the same origins in meiosis and mitosis[J]. Molecular and Cellular Biology, 1994, 14(5): 3524-3534.
[42] SZOSTAK J W, ORR-WEAVER T L, ROTHSTEIN R J, et al. The double-strand-break repair model for recombination[J]. Cell, 1983, 33(1): 25-35. doi: 10.1016/0092-8674(83)90331-8
[43] TERASAWA M, OGAWA H, TSUKAMOTO Y, et al. Meiotic recombination-related DNA synthesis and its implications for cross-over and non-cross-over recombinant formation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(14): 5965-5970. doi: 10.1073/pnas.0611490104
[44] LU P L, HAN X W, QI J, et al. Analysis of Arabidopsis genome-wide variations before and after meiosis and meiotic recombination by resequencing Landsberg erecta and all four products of a single meiosis[J]. Genome Research, 2012, 22(3): 508-518. doi: 10.1101/gr.127522.111
[45] YANG H X, LU P L, WANG Y X, et al. The transcriptome landscape of Arabidopsis male meiocytes from high-throughput sequencing: The complexity and evolution of the meiotic process[J]. The Plant Journal, 2011, 65(4): 503-16. doi: 10.1111/j.1365-313X.2010.04439.x
[46] WANG Y X, CHENG Z H, HUANG J Y, et al. The DNA replication factor RFC1 is required for interference-sensitive meiotic crossovers in Arabidopsis thaliana[J]. PLoS Genetics, 2012, 8(11): e1003039. doi: 10.1371/journal.pgen.1003039.
[47] HUANG J Y, CHENG Z H, WANG C, et al. Formation of interference-sensitive meiotic cross-overs requires sufficient DNA leading-strand elongation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(40): 12534-12539. doi: 10.1073/pnas.1507165112
[48] HUANG J Y, COPENHAVER G P, MA H, et al. New insights into the role of DNA synthesis in meiotic recombination[J]. Science Bulletin, 2016, 61(16): 1260-1269. doi: 10.1007/s11434-016-1126-7
[49] WANG C, HUANG J Y, ZHANG J, et al. The largest subunit of DNA polymerase delta is required for normal formation of meiotic type I crossovers[J]. Plant Physiology, 2019, 179(2): 446-459. doi: 10.1104/pp.18.00861
[50] MCVEY M, KHODAVERDIAN V Y, MEYER D, et al. Eukaryotic DNA polymerases in homologous recombination[J]. Annual Review of Genetics, 2016, 50: 393-421. doi: 10.1146/annurev-genet-120215-035243
[51] MAGA G, STUCKI M, SPADARI S, et al. DNA polymerase switching: I: Replication factor C displaces DNA polymerase alpha prior to PCNA loading[J]. Journal of Molecular Biology, 2000, 295(4): 791-801. doi: 10.1006/jmbi.1999.3394
[52] DE MAAGD R A, LOONEN A, CHOUAREF J, et al. CRISPR/Cas inactivation of RECQ4 increases homeologous crossovers in an interspecific tomato hybrid[J]. Plant Biotechnology Journal, 2020, 18(3): 805-813. doi: 10.1111/pbi.13248
[53] MALOISEL L, BHARGAVA J, ROEDER G S. A role for DNA polymerase delta in gene conversion and crossing over during meiosis in Saccharomyces cerevisiae[J]. Genetics, 2004, 167(3): 1133-1142. doi: 10.1534/genetics.104.026260
[54] BISHOP D K, ZICKLER D. Early decision: Meiotic crossover interference prior to stable strand exchange and synapsis[J]. Cell, 2004, 117(1): 9-15. doi: 10.1016/S0092-8674(04)00297-1
[55] KURZBAUER M T, UANSCHOU C, CHEN D, et al. The recombinases DMC1 and RAD51 are functionally and spatially separated during meiosis in Arabidopsis[J]. The Plant Cell, 2012, 24(5): 2058-2070. doi: 10.1105/tpc.112.098459
[56] REN L J, ZHAO T T, ZHAO Y Z, et al. The E3 ubiquitin ligase DESYNAPSIS1 regulates synapsis and recombination in rice meiosis[J]. Cell Reports, 2021, 37(5): 109941. doi: 10.1016/j.celrep.2021.109941.
[57] BENYAHYA F, NADAUD I, DA INES O, et al. SPO11.2 is essential for programmed double-strand break formation during meiosis in bread wheat (Triticum aestivum L. )[J]. The Plant Journal, 2020, 104(1): 30-43. doi: 10.1111/tpj.14903
[58] CRISMANI W, GIRARD C, FROGER N, et al. FANCM limits meiotic crossovers[J]. Science, 2012, 336(6088): 1588-1590. doi: 10.1126/science.1220381
[59] GIRARD C, CRISMANI W, FROGER N, et al. FANCM-associated proteins MHF1 and MHF2, but not the other Fanconi anemia factors, limit meiotic crossovers[J]. Nucleic Acids Research, 2014, 42(14): 9087-9095. doi: 10.1093/nar/gku614
[60] FERNANDES J B, SÉGUÉLA-ARNAUD M, LARCHEVÊQUE C, et al. Unleashing meiotic crossovers in hybrid plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(10): 2431-2436. doi: 10.1073/pnas.1713078114
[61] MERCIER R, JOLIVET S, VEZON D, et al. Two meiotic crossover classes cohabit in Arabidopsis: One is dependent on MER3, whereas the other one is not[J]. Current Biology, 2005, 15(8): 692-701. doi: 10.1016/j.cub.2005.02.056
[62] LYNN A, SOUCEK R, BÖRNER G V. ZMM proteins during meiosis: Crossover artists at work[J]. Chromosome Research, 2007, 15(5): 591-605. doi: 10.1007/s10577-007-1150-1
[63] MACAISNE N, VIGNARD J, MERCIER R. SHOC1 and PTD form an XPF-ERCC1-like complex that is required for formation of class I crossovers [J]. Journal of Cell Science, 2011, 124(Pt 16): 2687-91.
[64] CHELYSHEVA L, VEZON D, CHAMBON A, et al. The Arabidopsis HEI10 is a new ZMM protein related to Zip3[J]. PLoS Genetics, 2012, 8(7): e1002799. doi: 10.1371/journal.pgen.1002799.
[65] CHELYSHEVA L, GENDROT G, VEZON D, et al. Zip4/Spo22 is required for class I CO formation but not for synapsis completion in Arabidopsis thaliana[J]. PLoS Genetics, 2007, 3(5): e83. doi: 10.1371/journal.pgen.0030083.
[66] HIGGINS J D, ARMSTRONG S J H, FRANKLIN F C, et al. The Arabidopsis MutS homolog AtMSH4 functions at an early step in recombination: Evidence for two classes of recombination in Arabidopsis[J]. Genes & Development, 2004, 18(20): 2557-2570.
[67] HIGGINS J D, VIGNARD J, MERCIER R, et al. AtMSH5 partners AtMSH4 in the class I meiotic crossover pathway in Arabidopsis thaliana, but is not required for synapsis[J]. The Plant Journal, 2008, 55(1): 28-39. doi: 10.1111/j.1365-313X.2008.03470.x
[68] MAZINA O M, MAZIN A V, NAKAGAWA T, et al. Saccharomyces cerevisiae Mer3 helicase stimulates 3'-5' heteroduplex extension by Rad51: Implications for crossover control in meiotic recombination[J]. Cell, 2004, 117(1): 47-56. doi: 10.1016/S0092-8674(04)00294-6
[69] SNOWDEN T, ACHARYA S, BUTZ C, et al. hMSH4-hMSH5 recognizes holliday junctions and forms a meiosis-specific sliding clamp that embraces homologous chromosomes[J]. Molecular Cell, 2004, 15(3): 437-451. doi: 10.1016/j.molcel.2004.06.040
[70] DE MUYT A, PYATNITSKAYA A, ANDRÉANI J, et al. A meiotic XPF-ERCC1-like complex recognizes joint molecule recombination intermediates to promote crossover formation[J]. Genes & Development, 2018, 32(3/4): 283-296.
[71] PYATNITSKAYA A, ANDREANI J, GUÉROIS R, et al. The Zip4 protein directly couples meiotic crossover formation to synaptonemal complex assembly[J]. Genes & Development, 2022, 36(1/2): 53-69.
[72] REYNOLDS A, QIAO H Y, YANG Y, et al. RNF212 is a dosage-sensitive regulator of crossing-over during mammalian meiosis[J]. Nature Genetics, 2013, 45(3): 269-278. doi: 10.1038/ng.2541
[73] TOBY G G, GHERRABY W, COLEMAN T R, et al. A novel RING finger protein, human enhancer of invasion 10, alters mitotic progression through regulation of cyclin B levels[J]. Molecular and Cellular Biology, 2003, 23(6): 2109-2122. doi: 10.1128/MCB.23.6.2109-2122.2003
[74] ZIOLKOWSKI P A, UNDERWOOD C J, LAMBING C, et al. Natural variation and dosage of the HEI10 meiotic E3 ligase control Arabidopsis crossover recombination[J]. Genes & Development, 2017, 31(3): 306-317.
[75] MORGAN C, FOZARD J A, HARTLEY M, et al. Diffusion-mediated HEI10 coarsening can explain meiotic crossover positioning in Arabidopsis[J]. Nature Communications, 2021, 12(1): 4674. doi: 10.1038/s41467-021-24827-w.
[76] KURZBAUER M T, PRADILLO M, KERZENDORFER C, et al. Arabidopsis thaliana FANCD2 promotes meiotic crossover formation[J]. The Plant Cell, 2018, 30(2): 415-428. doi: 10.1105/tpc.17.00745
[77] MORGAN T H. Heredity and sex[Z] //Columbia University Lectures. The jessup lectures, New York: Columbia University Press, 1913.
[78] CAPILLA-PÉREZ L, DURAND S, HUREL A, et al. The synaptonemal complex imposes crossover interference and heterochiasmy in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(12): e2023613118. doi: 10.1073/pnas.2023613118.
[79] NONOMURA K I, NAKANO M, MURATA K, et al. An insertional mutation in the rice PAIR2 gene, the ortholog of Arabidopsis ASY1, results in a defect in homologous chromosome pairing during meiosis[J]. Molecular Genetics and Genomics, 2004, 271(2): 121-129. doi: 10.1007/s00438-003-0934-z
[80] YUAN W Y, LI X W, CHANG Y X, et al. Mutation of the rice gene PAIR3 results in lack of bivalent formation in meiosis[J]. The Plant Journal, 2009, 59(2): 303-315. doi: 10.1111/j.1365-313X.2009.03870.x
[81] FRANCE M G, ENDERLE J, RÖHRIG S, et al. ZYP1 is required for obligate cross-over formation and cross-over interference in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(14): e2021671118. doi: 10.1073/pnas.2021671118.
[82] POCHON G, HENRY I M, YANG C, et al. The Arabidopsis Hop1 homolog ASY1 mediates cross-over assurance and interference[EB/OL]. BioRxiv, 2022: 46164616 (2022-03-17) [2022-08-20]. https://doi.org/10.1101/2022.03.17.484635.
[83] DURAND S, LIAN Q, JING J, et al. Dual control of meiotic crossover patterning[EB/OL]. BioRxiv, 2022: 491364 (2022-05-11) [2022-08-20]. https://doi.org/10.1101/2022.05.11.491364.
[84] ROG O, KÖHLER S, DERNBURG A F. The synaptonemal complex has liquid crystalline properties and spatially regulates meiotic recombination factors[J]. eLife, 2017, 6: e21455. doi: 10.7554/eLife.21455.
[85] ZHANG L Y, STAUFFER W, ZWICKER D, et al. Crossover patterning through kinase-regulated condensation and coarsening of recombination nodules[EB/OL]. BioRxiv, 2021: 457865 (2021-08-26) [2022-08-20]. https://doi.org/10.1101/2021.08.26.457865.
[86] MAYER K F X, WAUGH R, LANGRIDGE P, et al. A physical, genetic and functional sequence assembly of the barley genome[J]. Nature, 2012, 491(7426): 711-716. doi: 10.1038/nature11543
[87] APPELS R, EVERSOLE K, STEIN N, et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome[J]. Science, 2018, 361(6403): eaar7191. doi: 10.1126/science.aar7191.
[88] LI X, LI L, YAN J B. Dissecting meiotic recombination based on tetrad analysis by single-microspore sequencing in maize[J]. Nature Communications, 2015, 6: 6648. doi: 10.1038/ncomms7648.
[89] CONSORTIUM T G. The tomato genome sequence provides insights into fleshy fruit evolution[J]. Nature, 2012, 485(7400): 635-641. doi: 10.1038/nature11119
[90] MCCONAUGHY S J. Recombination hotspots in soybean [Glycine max (L. ) Merr. ], in Agronomy and Horticulture Department[D]. Lincoln: University of Nebraska, 2022.
[91] SCHMUTZ J, CANNON S B, SCHLUETER J, et al. Genome sequence of the palaeopolyploid soybean[J]. Nature, 2010, 463(7278): 178-183. doi: 10.1038/nature08670
[92] BLARY A, JENCZEWSKI E. Manipulation of crossover frequency and distribution for plant breeding[J]. Theoretical and Applied Genetics, 2019, 132(3): 575-592. doi: 10.1007/s00122-018-3240-1
[93] HSU Y M, FALQUE M, MARTIN O C. Quantitative modelling of fine-scale variations in the Arabidopsis thaliana crossover landscape[J]. Quantitative Plant Biology, 2022, 3: e3. doi: 10.1017/qpb.2021.17.
[94] PRATTO F, BRICK K, CHENG G, et al. Meiotic recombination mirrors patterns of germline replication in mice and humans[J]. Cell, 2021, 184(16): 4251-4267. doi: 10.1016/j.cell.2021.06.025
[95] UNDERWOOD C J, CHOI K, LAMBING C, et al. Epigenetic activation of meiotic recombination near Arabidopsis thaliana centromeres via loss of H3K9me2 and non-CG DNA methylation[J]. Genome Research, 2018, 28(4): 519-531. doi: 10.1101/gr.227116.117
[96] CHOI K, ZHAO X H, TOCK A J, et al. Nucleosomes and DNA methylation shape meiotic DSB frequency in Arabidopsis thaliana transposons and gene regulatory regions[J]. Genome Research, 2018, 28(4): 532-546. doi: 10.1101/gr.225599.117
[97] LIAN Q C, SOLIER V, WALKEMEIER B, et al. The megabase-scale crossover landscape is largely independent of sequence divergence[J]. Nature Communications, 2022, 13(1): 3828. doi: 10.1038/s41467-022-31509-8.
[98] YELINA N E, LAMBING C, HARDCASTLE T J, et al. DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in Arabidopsis[J]. Genes & Development, 2015, 29(20): 2183-2202.
[99] CHOI K, ZHAO X, KELLY K A, et al. Arabidopsis meiotic crossover hot spots overlap with H2A. Z nucleosomes at gene promoters[J]. Nature Genetics, 2013, 45(11): 1327-1336. doi: 10.1038/ng.2766
[100] MARAND A P, JANSKY S H, ZHAO H N, et al. Meiotic crossovers are associated with open chromatin and enriched with Stowaway transposons in potato[J]. Genome Biology, 2017, 18: 203. doi: 10.1186/s13059-017-1326-8.
[101] KIANIAN P M A, WANG M, SIMONS K, et al. Highresolution crossover mapping reveals similarities and differences of male and female recombination in maize[J]. Nature Communications, 2018, 9: 2370. doi: 10.1038/s41467-018-04562-5.
[102] TOCK A J, HOLLAND D M, JIANG W, et al. Crossover-active regions of the wheat genome are distinguished by DMC1, the chromosome axis, H3K27me3, and signatures of adaptation[J]. Genome Research, 2021, 31(9): 1614-1628. doi: 10.1101/gr.273672.120
[103] YELINA N E, CHOI K, CHELYSHEVA L, et al. Epigenetic remodeling of meiotic crossover frequency in Arabidopsis thaliana DNA methyltransferase mutants[J]. PLoS Genetics, 2012, 8(8): e1002844. doi: 10.1371/journal.pgen.1002844.
[104] PONT C, LEROY T, SEIDEL M, et al. Tracing the ancestry of modern bread wheats[J]. Nature Genetics, 2019, 51(5): 905-911. doi: 10.1038/s41588-019-0393-z
[105] ROWAN B A, HEAVENS D, FEUERBORN T R, et al. An ultra high-density Arabidopsis thaliana crossover map that refines the influences of structural variation and epigenetic features[J]. Genetics, 2019, 213(3): 771-787. doi: 10.1534/genetics.119.302406
[106] MARTÍN A C, SHAW P, PHILLIPS D, et al. Licensing MLH1 sites for crossover during meiosis[J]. Nature Communications, 2014, 5: 4580. doi: 10.1038/ncomms5580.
[107] TAM S M, HAYS J B, CHETELAT R T. Effects of suppressing the DNA mismatch repair system on homeologous recombination in tomato[J]. Theoretical and Applied Genetics, 2011, 123(8): 1445-1458. doi: 10.1007/s00122-011-1679-4
[108] ZHANG L, PICKERING R, MURRAY B. Direct measurement of recombination frequency in interspecific hybrids between Hordeum vulgare and H. bulbosum using genomic in situ hybridization [J]. Heredity, 1999, 83 ( Pt 3): 304-309.
[109] BLACKWELL A R, DLUZEWSKA J, SZYMANSKA-LEJMAN M, et al. MSH2 shapes the meiotic crossover landscape in relation to interhomolog polymorphism in Arabidopsis[J]. The EMBO Journal, 2020, 39(21): e104858. doi: 10.15252/embj.2020104858.
[110] GOODWILLIE C, KALISZ S, ECKERT C G, The evolutionary Enigma of mixed mating systems in plants: Occurrence, theoretical explanations, and empirical evidence [J]. Annual Review of Ecology, Evolution, and Systematics, 2005, 36(1): 47-79.
[111] MONNAHAN P, KOLÁŘ F, BADUEL P, et al. Pervasive population genomic consequences of genome duplication in Arabidopsis arenosa[J]. Nature Ecology & Evolution, 2019, 3(3): 457-468.
[112] BAUDAT F, BUARD J, GREY C, et al. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice[J]. Science, 2010, 327(5967): 836-840. doi: 10.1126/science.1183439
[113] SMAGULOVA F, GREGORETTI I V, BRICK K, et al. Genome-wide analysis reveals novel molecular features of mouse recombination hotspots[J]. Nature, 2011, 472(7343): 375-378. doi: 10.1038/nature09869
[114] SHILO S, MELAMED-BESSUDO C, DORONE Y, et al. DNA crossover motifs associated with epigenetic modifications delineate open chromatin regions in Arabidopsis[J]. The Plant Cell, 2015, 27(9): 2427-2436. doi: 10.1105/tpc.15.00391
[115] LIU S Z, YEH C T, JI T M, et al. Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome[J]. PLoS Genetics, 2009, 5(11): e1000733. doi: 10.1371/journal.pgen.1000733.
[116] SAINTENAC C, FAURE S, REMAY A, et al. Variation in crossover rates across a 3-Mb contig of bread wheat (Triticum aestivum) reveals the presence of a meiotic recombination hotspot[J]. Chromosoma, 2011, 120(2): 185-198. doi: 10.1007/s00412-010-0302-9
[117] DEMIRCI S, VAN DIJK A D J, SANCHEZ PEREZ G, et al. Distribution, position and genomic characteristics of crossovers in tomato recombinant inbred lines derived from an interspecific cross between Solanum lycopersicum and Solanum pimpinellifolium[J]. The Plant Journal, 2017, 89(3): 554-564. doi: 10.1111/tpj.13406
[118] HENDERSON I R. Control of meiotic recombination frequency in plant genomes[J]. Current Opinion in Plant Biology, 2012, 15(5): 556-561. doi: 10.1016/j.pbi.2012.09.002
[119] KUO P, DA INES O, LAMBING C. Rewiring meiosis for crop improvement[J]. Frontiers in Plant Science, 2021, 12: 708948. doi: 10.3389/fpls.2021.708948.
[120] UNDERWOOD C J, MERCIER R. Engineering apomixis: Clonal seeds approaching the fields[J]. Annual Review of Plant Biology, 2022, 73: 201-225. doi: 10.1146/annurev-arplant-102720-013958
[121] BERCHOWITZ L E, FRANCIS K E, BEY A L, et al. The role of AtMUS81 in interference-insensitive crossovers in A. thaliana[J]. PLoS Genetics, 2007, 3(8): e132. doi: 10.1371/journal.pgen.0030132.
[122] HARTUNG F, SUER S, PUCHTA H. Two closely related RecQ helicases have antagonistic roles in homologous recombination and DNA repair in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(47): 18836-18841. doi: 10.1073/pnas.0705998104
[123] SÉGUÉLA-ARNAUD M, CHOINARD S, LARCHEVÊQUE C, et al. RMI1 and TOP3α limit meiotic CO formation through their C-terminal domains[J]. Nucleic Acids Research, 2017, 45(4): 1860-1871.
[124] SÉGUÉLA-ARNAUD M, CRISMANI W, LARCHEVÊQUE C, et al. Multiple mechanisms limit meiotic crossovers: TOP3α and two BLM homologs antagonize crossovers in parallel to FANCM[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(15): 4713-4718. doi: 10.1073/pnas.1423107112
[125] GIRARD C, CHELYSHEVA L, CHOINARD S, et al. Correction: AAA-ATPase FIDGETIN-LIKE 1 and helicase FANCM antagonize meiotic crossovers by distinct mechanisms[J]. PLoS Genetics, 2015, 11(9): e1005448. doi: 10.1371/journal.pgen.1005448.
[126] BLARY A, GONZALO A, EBER F, et al. FANCM limits meiotic crossovers in Brassica crops[J]. Frontiers in Plant Science, 2018, 9: 368. doi: 10.3389/fpls.2018.00368.
[127] DESJARDINS S D, SIMMONDS J, GUTERMAN I, et al. FANCM promotes class I interfering crossovers and suppresses class II non-interfering crossovers in wheat meiosis[J]. Nature Communications, 2022, 13(1): 3644. doi: 10.1038/s41467-022-31438-6.
[128] MIEULET D, AUBERT G, BRES C, et al. Unleashing meiotic crossovers in crops[J]. Nature Plants, 2018, 4(12): 1010-1016. doi: 10.1038/s41477-018-0311-x
[129] RAZ A, DAHAN-MEIR T, MELAMED-BESSUDO C, et al. Redistribution of meiotic crossovers along wheat chromosomes by virus-induced gene silencing[J]. Frontiers in Plant Science, 2021, 11: 635139. doi: 10.3389/fpls.2020.635139.
[130] LI X, YU M S, BOLAÑOS-VILLEGAS P, et al. Fanconi anemia ortholog FANCM regulates meiotic crossover distribution in plants[J]. Plant Physiology, 2021, 186(1): 344-360. doi: 10.1093/plphys/kiab061
[131] ARRIETA M, MACAULAY M, COLAS I, et al. An induced mutation in HvRECQL4 increases the overall recombination and restores fertility in a barley HvMLH3 mutant background[J]. Frontiers in Plant Science, 2021, 12: 706560. doi: 10.3389/fpls.2021.706560.
[132] DE MUYT A, ZHANG L R, PIOLOT T, et al. E3 ligase Hei10: A multifaceted structure-based signaling molecule with roles within and beyond meiosis[J]. Genes & Development, 2014, 28(10): 1111-1123.
[133] SERRA H, LAMBING C, GRIFFIN C H, et al. Massive crossover elevation via combination of HEI10 and recq4a recq4b during Arabidopsis meiosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(10): 2437-2442. doi: 10.1073/pnas.1713071115
[134] TAAGEN E, BOGDANOVE A J, SORRELLS M E. Counting on crossovers: Controlled recombination for plant breeding[J]. Trends in Plant Science, 2020, 25(5): 455-465. doi: 10.1016/j.tplants.2019.12.017
[135] MELAMED-BESSUDO C, LEVY A A. Deficiency in DNA methylation increases meiotic crossover rates in euchromatic but not in heterochromatic regions in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): E981-E988. doi: 10.1073/pnas.1120742109.
[136] LIU C L, CAO Y W, HUA Y F, et al. Concurrent disruption of genetic interference and increase of genetic recombination frequency in hybrid rice using CRISPR/Cas9[J]. Frontiers in Plant Science, 2021, 12: 757152. doi: 10.3389/fpls.2021.757152.
[137] WANG K J, WANG C, LIU Q, et al. Increasing the genetic recombination frequency by partial loss of function of the synaptonemal complex in rice[J]. Molecular Plant, 2015, 8(8): 1295-1298. doi: 10.1016/j.molp.2015.04.011
[138] NAGESWARAN D C, KIM J, LAMBING C, et al. HIGH CROSSOVER RATE1 encodes PROTEIN PHOSPHATASE X1 and restricts meiotic crossovers in Arabidopsis[J]. Nature Plants, 2021, 7(4): 452-467. doi: 10.1038/s41477-021-00889-y
[139] HOCHHOLDINGER F, BALDAUF J A. Heterosis in plants[J]. Current Biology, 2018, 28(18): R1089-R1092. doi: 10.1016/j.cub.2018.06.041
[140] SPILLANE C, CURTIS M D, GROSSNIKLAUS U. Apomixis technology development: Virgin births in farmers’ fields?[J]. Nature Biotechnology, 2004, 22(6): 687-691. doi: 10.1038/nbt976
[141] WANG C, LIU Q, SHEN Y, et al. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes[J]. Nature Biotechnology, 2019, 37(3): 283-286. doi: 10.1038/s41587-018-0003-0
[142] MARIMUTHU M P A, JOLIVET S, RAVI M, et al. Synthetic clonal reproduction through seeds[J]. Science, 2011, 331(6019): 876. doi: 10.1126/science.1199682.
[143] D'ERFURTH I, JOLIVET S, FROGER N, et al. Turning meiosis into mitosis[J]. PLoS Biology, 2009, 7(6): e1000124. doi: 10.1371/journal.pbio.1000124.
[144] MIEULET D, JOLIVET S, RIVARD M, et al. Turning rice meiosis into mitosis[J]. Cell Research, 2016, 26(11): 1242-1254. doi: 10.1038/cr.2016.117
[145] CROMER L, HEYMAN J, TOUATI S, et al. OSD1 promotes meiotic progression via APC/C inhibition and forms a regulatory network with TDM and CYCA1;2/TAM[J]. PLoS Genetics, 2012, 8(7): e1002865. doi: 10.1371/journal.pgen.1002865.
[146] RAVI M, MARIMUTHU M P A, SIDDIQI I. Gamete formation without meiosis in Arabidopsis[J]. Nature, 2008, 451(7182): 1121-1124.
[147] HSU P D, LANDER E S, ZHANG F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6): 1262-1278. doi: 10.1016/j.cell.2014.05.010
[148] RÖNSPIES M, DORN A, SCHINDELE P, et al. CRISPR-Cas-mediated chromosome engineering for crop improvement and synthetic biology[J]. Nature Plants, 2021, 7(5): 566-573. doi: 10.1038/s41477-021-00910-4
[149] SARNO R, VICQ Y, UEMATSU N, et al. Programming sites of meiotic crossovers using Spo11 fusion proteins[J]. Nucleic Acids Research, 2017, 45(19): e164. doi: 10.1093/nar/gkx739.
[150] YELINA N E, HOLLAND D, GONZALEZ-JORGE S, et al. Coexpression of MEIOTIC-TOPOISOMERASE VIB-dCas9 with guide RNAs specific to a recombination hotspot is insufficient to increase crossover frequency in Arabidopsis[J]. G3 (Genes Genomes Genetics), 2022, 12(7): jkac105. doi: 10.1093/g3journal/jkac105.
[151] MANCERA E, BOURGON R, BROZZI A, et al. High-resolution mapping of meiotic crossovers and non-crossovers in yeast[J]. Nature, 2008, 454(7203): 479-485. doi: 10.1038/nature07135
[152] WANG Y Z, VAN RENGS W M J, ZAIDAN M W A M, et al. Meiosis in crops: From genes to genomes[J]. Journal of Experimental Botany, 2021, 72(18): 6091-6109. doi: 10.1093/jxb/erab217
[153] FILLER HAYUT S, MELAMED BESSUDO C, LEVY A A. Targeted recombination between homologous chromosomes for precise breeding in tomato[J]. Nature Communications, 2017, 8: 15605. doi: 10.1038/ncomms15605.
[154] KOURANOV A, ARMSTRONG C, SHRAWAT A, et al. Demonstration of targeted crossovers in hybrid maize using CRISPR technology[J]. Communications Biology, 2022, 5(1): 53. doi: 10.1038/s42003-022-03004-9.
[155] BEYING N, SCHMIDT C, PACHER M, et al. CRISPR-Cas9-mediated induction of heritable chromosomal translocations in Arabidopsis[J]. Nature Plants, 2020, 6(6): 638-645. doi: 10.1038/s41477-020-0663-x
[156] SCHMIDT C, FRANSZ P, RÖNSPIES M, et al. Changing local recombination patterns in Arabidopsis by CRISPR/Cas mediated chromosome engineering[J]. Nature Communications, 2020, 11(1): 4418. doi: 10.1038/s41467-020-18277-z.
[157] SCHWARTZ C, LENDERTS B, FEIGENBUTZ L, et al. CRISPR-Cas9-mediated 75.5-Mb inversion in maize[J]. Nature Plants, 2020, 6(12): 1427-1431. doi: 10.1038/s41477-020-00817-6
[158] GALLEGO-BARTOLOMÉ J, GARDINER J, LIU W L, et al. Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(9): E2125-E2134. doi: 10.1073/pnas.1716945115.
[159] GALLEGO-BARTOLOMÉ J, LIU W L, KUO P H, et al. Co-targeting RNA polymerases IV and V promotes efficient de novo DNA methylation in Arabidopsis[J]. Cell, 2019, 176(5): 1068-1082.e19. doi: 10.1016/j.cell.2019.01.029
[160] DIRKS R, VAN DUN K, DE SNOO C B, et al. Reverse breeding: A novel breeding approach based on engineered meiosis[J]. Plant Biotechnology Journal, 2009, 7(9): 837-845. doi: 10.1111/j.1467-7652.2009.00450.x
[161] WIJNKER E, DEURHOF L, VAN DE BELT J, et al. Hybrid recreation by reverse breeding in Arabidopsis thaliana[J]. Nature Protocols, 2014, 9(4): 761-772. doi: 10.1038/nprot.2014.049
[162] WIJNKER E, VAN DUN K, DE SNOO C B, et al. Reverse breeding in Arabidopsis thaliana generates homozygous parental lines from a heterozygous plant[J]. Nature Genetics, 2012, 44(4): 467-470. doi: 10.1038/ng.2203
[163] CALVO‐BALTANÁS V, WIJNEN C L, YANG C, et al. Meiotic crossover reduction by virus‐induced gene silencing enables the efficient generation of chromosome substitution lines and reverse breeding in Arabidopsis thaliana[J]. The Plant Journal, 2020, 104(5): 1437-1452. doi: 10.1111/tpj.14990