• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

植物氮磷营养的长距离信号转导

王晓甜, 王威, 陈嘉俊, 储成才

王晓甜, 王威, 陈嘉俊, 等. 植物氮磷营养的长距离信号转导[J]. 华南农业大学学报, 2022, 43(6): 78-86. DOI: 10.7671/j.issn.1001-411X.202208058
引用本文: 王晓甜, 王威, 陈嘉俊, 等. 植物氮磷营养的长距离信号转导[J]. 华南农业大学学报, 2022, 43(6): 78-86. DOI: 10.7671/j.issn.1001-411X.202208058
WANG Xiaotian, WANG Wei, CHEN Jiajun, et al. Long-distance signal transduction of nitrogen and phosphorus in plants[J]. Journal of South China Agricultural University, 2022, 43(6): 78-86. DOI: 10.7671/j.issn.1001-411X.202208058
Citation: WANG Xiaotian, WANG Wei, CHEN Jiajun, et al. Long-distance signal transduction of nitrogen and phosphorus in plants[J]. Journal of South China Agricultural University, 2022, 43(6): 78-86. DOI: 10.7671/j.issn.1001-411X.202208058

植物氮磷营养的长距离信号转导

基金项目: 广东省基础与应用基础研究重大项目(2019B030302006)
详细信息
    作者简介:

    王晓甜,博士,主要从事氮营养信号转导研究,E-mail: wangxiaotian1216@foxmail.com

    通讯作者:

    储成才,教授,博士,主要从事作物资源高效利用研究,E-mail: ccchu@scau.edu.cn

  • 中图分类号: Q945

Long-distance signal transduction of nitrogen and phosphorus in plants

  • 摘要:

    植物应对土壤多变的营养环境需整合和协调地上部和根系的养分感知信息,通过精细而复杂的信号转导机制,调控植物养分应答和生长发育进程。长距离信号转导机制的实现需经由维管系统进行信号分子的长距离运输(故称长距离信号)。在众多矿质营养元素中,氮和磷是限制植物生产力的主要元素。研究表明,蛋白质、小肽和microRNAs等多种分子均可作为长距离信号分子参与调控系统性氮磷信号转导。本文总结了目前鉴定到的氮磷营养长距离信号分子及相关信号转导机制,概述了光对氮磷长距离信号转导的影响,并对长距离信号未来研究方向进行了展望。

    Abstract:

    In response to varied nutrient availability in soil, plants exhibit high physiological and developmental plasticity to integrate and coordinate the information of nutrient sensing between shoots and roots, and systematically regulate the whole-plant nutrient response and growth and development. This signal transduction process largely relies on the transportation of signal molecules via vascular systems, so-called long-distance signaling. Although plants require numerous mineral elements from the soil, the major nutrients that limit plant productivity are nitrogen (N) and phosphorus (P). Recent studies have elucidated that various mobile signals, such as small proteins, peptides, and microRNAs, are responsible for long-distance signaling of N and P. Here, we summarize the long-distance signal molecules identified in N and P nutrition and their related signal transduction mechanisms, provide an overview of the influence of light signals on the long-distance signal of N and P, and also discuss the future research direction of long-distance signals.

  • 褐飞虱Nilaparvata lugens属同翅目Homoptera飞虱科Delphacidae,食性专一,只危害水稻、野生稻等稻类[1],具有迁飞性、发生量大、种群增长迅速、易暴发成灾、持续时间长、防治难度大等特点。常见的褐飞虱防治方法包括化学防治和生物防治,其中高效广谱的化学防治占据主要地位,但农药对害虫的天敌也同样存在致死作用。此外,长期、大量、不合理的农药使用已使褐飞虱对化学杀虫剂产生了广谱抗药性[2]。根据近几年来的抗性监测结果[3],褐飞虱已对有机磷、有机氯、氨基甲酸酯类、烟碱类、苯基吡唑类及新烟碱类等多种类型的杀虫剂产生了不同程度的抗性,且抗药性发展迅速。目前已知的稻飞虱对各类杀虫剂的抗性机制包括水解酶(酯酶)、谷胱甘肽、细胞色素P450s等解毒代谢酶活性提高,乙酰胆碱酯酶等靶标部位敏感度降低等[4-5]。因此,为延缓褐飞虱抗药性的发展,可选择无交互抗性的防控药剂和在杀虫剂中添加增效剂[6]

    噻虫嗪是一种广谱的新烟碱类杀虫剂,能有效防治同翅目、鳞翅目、鞘翅目和缨翅目害虫,且对同翅目害虫有特效[7]。从1991年起,噻虫嗪被广泛运用于亚洲各稻区稻飞虱的防控。近年来,稻飞虱对噻虫嗪的田间抗性在抗性强度和地理分布上呈现出极大的增强趋势,肖汉祥等[8]发现广东田间褐飞虱种群对噻虫嗪已达高水平抗药性(61.0~517.8倍)。但因防治成本较低和对褐飞虱仍具有较好的防效,且褐飞虱抗噻虫嗪种群尚未对其他杀虫剂表现出明显的交互抗性,噻虫嗪仍为防控褐飞虱的重要药剂品种之一。为了解噻虫嗪对褐飞虱的解毒代谢酶活性的影响,本研究采用稻苗浸渍法,对四川农业大学水稻所温室褐飞虱种群和敏感种群进行增效剂试验及酶活性测定,以期为褐飞虱的抗性治理提供理论依据。

    褐飞虱室内敏感品系由华中农业大学李建洪教授课题组于2017年提供,褐飞虱田间种群2017年采集于四川农业大学水稻所温室。试验用水稻为感虫品种TN1。

    实验室饲养温度为(27±1)℃,相对湿度为70%±10%,光周期为14 h光∶10 h暗。

    φ为98%吡虫啉原药(江苏威耳化工有限公司);φ为98%噻虫嗪原药(河北德瑞化工有限公司);φ为98%噻嗪酮原药(山东华阳农药化工集团有限公司);φ为98%毒死蜱原药(湖北沙隆达股份有限公司);φ为10%三氟苯嘧啶乳油(美国杜邦公司);φ为95.9%氟啶虫胺腈原药(美国陶氏益农公司)。

    胡椒基丁醚(PBO)、马来酸二乙酯(DEM)、磷酸三苯酯(TPP)、乙二胺四乙酸(EDTA)、二硫苏糖醇(DTT)、苯基硫脲(PTU)、α−苯基磺酰氟(PMSF)、考马斯亮蓝G250、牛血清蛋白、还原型辅酶II钠盐(NADPH)、2,4−二硝基氯苯(CDNB)、还原型谷胱甘肽(GSH)、α−乙酸萘酯(α-Na)、显色固蓝BB盐、对硝基苯酚、对硝基苯甲醚、磷酸二氢钠、磷酸氢二钠、毒扁豆碱、十二烷基硫酸钠(SDS)、β−乙酸奈酯(β-NA),均为分析纯。

    采用稻苗浸渍法进行毒力测定,方法参照文献[9-10]。将杀虫剂原药用丙酮溶解作为母液,然后用0.1% (φ)Triton X-100水溶液将母液稀释成5个浓度梯度的药液;选取室内培养的TN1水稻幼苗,每组15株,在阴凉处干燥至表面无水痕,将稻苗按药液质量浓度由低到高的顺序浸泡30 s,以0.1% (φ) Triton X-100水溶液为对照组;取出后晾干30 min至稻茎上无明水,以浸湿的脱脂棉包住稻株根部放入培养杯中;挑取龄期一致的3龄若虫放入培养杯中,每杯15头,剔除机械死伤供试虫,每处理重复3次,处理96 h后检查死亡虫数。采用SAS软件计算褐飞虱抗性种群及敏感种群3龄若虫对2种新型杀虫剂的毒力。常规药剂抗性倍数参照文献[11]中所提出的褐飞虱敏感基线计算,对2种新型杀虫剂的抗性倍数(Resistance ratio,RR)参照褐飞虱室内敏感品系毒力测定结果计算得出。

    RR=田间种群LC50/敏感品系LC50

    抗性水平分级标准为:敏感(RR≤5.0);低水平抗性(5.0<RR≤10.0);中等水平抗性(10.0<RR≤100.0);高水平抗性(RR>100.0)。

    参照文献[10]的方法,采用稻苗浸渍法。首先用DEM 200 μg/mL、PBO 20 μg/mL和TPP 80 μg/mL与噻虫嗪复配后处理稻苗。取生长一致的褐飞虱3龄若虫置于处理后的稻苗上,每杯15头试虫,每个处理3次重复,以单独使用杀虫剂处理为对照组。根据1.3.1确定的调查时间,统计各处理的死亡虫数,并按照公式计算增效倍数或增效系数(Synergism ratio,SR)。

    SR=单剂对试虫的LC50/单剂+增效剂对试虫的LC50

    羧酸酯酶测定参照Wang等[12]的方法。取不同处理的褐飞虱成虫各20头,加入1 mL预先冷却的0.04 mol/L磷酸盐缓冲液(pH 7.0)中,将混合物在冰浴下充分匀浆,10 400 r/min、4 ℃离心15 min,取上清液作为粗酶,冰浴备用。在每个试管中依次加入450 µL磷酸缓冲液、1.8 mL 3×10−4 mol/L的α-NA溶液(含有3×10−4 mol/ L毒扁豆碱)和50 µL稀释后的酶液。混匀后于30 ℃恒温水浴中反应15 min,然后立即加入900 µL显色液(ρ为1%的固蓝BB盐溶液和ρ为5% SDS溶液体积比为2∶5,现配现用),终止反应后再向对照组溶液中加入酶液50 µL,摇匀后静置2 min,于600 nm(α-NA)/555 nm(β-NA)下测吸光度。试验各处理设3次重复,每次重复平行测定3次。按照公式计算羧酸酯酶的活性。

    谷胱甘肽S−转移酶活性测定参照Wang等[12]的方法。加入预冷的0.1 mol/L、pH 6.5的磷酸盐缓冲液[含1.0 mmol/L乙二胺四乙酸(EDTA)],将混合物在冰浴下充分匀浆,10 400 r/min、4 ℃离心15 min,取上清液作为粗酶,冰浴备用。以2,4−二硝基氯苯(CDNB)为底物,在酶催化下形成谷胱甘肽S−芳基复合体,在340 nm处出现最大吸收峰。比色皿中依次加入790 µL 0.1 mol/L pH 6.5磷酸缓冲液、30 µL 15 mmol/L CDNB、50 µL粗酶液和30 µL 30 mmol/L GSH(还原型谷胱甘肽),反应总体积为0.9 mL,迅速混匀后,在340 nm下用时间驱动程序监测其吸光度在2 min内的变化,计算反应速度。每个处理设3次重复,每重复平行测定3次。按照公式计算谷胱甘肽S−转移酶的活性。

    细胞色素P450s酶活性测定参照Rose等[13]的方法。取不同处理的褐飞虱成虫各40头,加2 mL预冷的磷酸盐缓冲液[0.11 mol/L,pH 7.6,含0.11 mmol/L DTT、0.11 mmol/L EDTA、0.11 mmol/L PMSF、0.11 mmol/L PTU和20% (φ)甘油]冰上匀浆,匀浆液于4 ℃10 000 r/min离心10 min,取上清液为酶液低温储存备用;在酶标板中加入100 μL对硝基苯甲醚(2×10−3 mol/L)和90 μL酶液,27 ℃条件下振荡温育3 min,再加入10 μL NADPH(9.6×10−3 mol/L)开始反应,测定D405 nm,每20 s读取数据1次,持续2 min,根据公式计算细胞色素P450s酶活性。

    结果(图1)表明,温室种群的P450s酶比活力最高,4.70×10−3 IU/mg,是敏感种群的2.13倍,而经PBO处理后P450s活性被明显著抑制,仅为1.25×10−3 IU/mg(图1C)。室内敏感品系和温室抗性种群经TPP和DEM处理后,其羧酸酯酶(图1A)和谷胱甘肽S−转移酶(图1B)活性变化不大。因此,P450s活性增强对褐飞虱温室种群的抗药性形成起着较为重要的作用。

    图  1  不同增效剂处理下褐飞虱的解毒代谢酶活力
    图中S、G分别为敏感和温室种群;TPP、DEM、PBO分别为磷酸三苯酯、马来酸二乙酯和胡椒基丁醚
    Figure  1.  Detoxification enzyme activities of Nilaparvata lugens under different synergists
    S: Sensitive population, G: Greenhouse population; TPP: Triphenyl  phosphate; DEM: Diethyl  maleate; PBO: Piperonyl  butoxide

    结果(表1)表明,温室种群对新烟碱类杀虫剂吡虫啉、噻虫嗪、噻嗪酮均达到高抗水平,分别为1 902.55、277.92和856.06倍;对毒死蜱的抗性为低水平,为9.65倍,对三氟苯嘧啶及氟啶虫胺腈都表现为敏感。三氟苯嘧啶与吡虫啉、噻虫嗪、噻嗪酮无交互抗性(敏感品系和温室种群的毒力LC50的95%置信区间有重叠,差异不显著),与氟啶虫胺腈则表现出交互抗性(敏感种群和温室种群的毒力LC50的95%置信区间无重叠,差异显著)。

    表  1  6种杀虫剂对褐飞虱的毒力
    Table  1.  The toxicities of six insecticides on Nilaparvata lugens
    药剂名称
    Insecticide
    处理种群
    Population
    斜率±标准误
    Slope±SE
    LC50/
    (μg·mL−1)
    95%置信区间1)/(μg·mL−1)
    95% confidence interval
    χ2 (df) 抗性倍数
    Resistance ratio
    毒死蜱
    Chlorpyrifos
    敏感基线[10]
    Sensitive baseline
    4.259±3.144 1.721 1.400~12.810 1.00
    温室种群
    Greenhouse population
    3.148±0.614 16.613 11.841~20.580 13.74(16) 9.65
    吡虫啉
    Imidacloprid
    敏感基线[10]
    Sensitive baseline
    6.677±1.512 0.078 0.050~0.100 1.00
    温室种群
    Greenhouse population
    2.666±0.332 148.399 118.147~180.048 11.35(13) 1 902.55
    噻虫嗪
    Thiamethoxam
    敏感基线[10]
    Sensitive baseline
    7.134±2.184 0.105 0.090~0.120 1.00
    温室种群
    Greenhouse population
    2.895±0.353 29.182 23.613~35.186 10.30(13) 277.92
    噻嗪酮
    Buprofezin
    敏感基线[10]
    Sensitive baseline
    10.019±4.248 0.066 0.060~0.070 1.00
    温室种群
    Greenhouse population
    2.006±0.291 56.500 43.570~73.084 10.50(13) 856.06
    三氟苯嘧啶
    Triflumezopyrim
    敏感品系
    Susceptible strain
    1.668±0.308 0.111 0.060~0.155 7.23(13) 1.00
    温室种群
    Greenhouse population
    1.778±0.300 0.205 0.118~0.287 11.02(13) 1.85
    氟啶虫胺腈
    Sulfoxaflor
    敏感品系
    Susceptible strain
    3.115±0.391 1.013 0.834~1.175 10.34(16) 1.00
    温室种群
    Greenhouse population
    4.154±0.741 3.293 2.564~3.844 10.28(13) 3.25
     1)LC50值95%置信区间不重叠视为差异显著
     1) LC50 values are considered significantly different when the 95% confidence intervals do not overlap
    下载: 导出CSV 
    | 显示表格

    结果(表2)表明,增效剂DEM、PBO和TPP作用于敏感品系对噻虫嗪的增效倍数分别为1.07、1.14和1.04倍,对温室种群的增效倍数分别为1.40、1.99和1.28倍,因此PBO作用于温室种群对噻虫嗪的增效最明显。

    表  2  3种增效剂对噻虫嗪的增效作用
    Table  2.  Synergistic effects of three synergists on thiamethoxam
    处理种群
    Population
    处理
    Treatment
    斜率±标准误
    Slope±SE
    LC50 /
    (μg·mL−1)
    95%置信区间1)/(μg·mL−1)
    95% confidence interval
    χ2 (df) 增效倍数
    Synergism ratio
    敏感品系
    Susceptible strain
    噻虫嗪
    Thiamethoxam
    2.930±0.280 2.589 2.201~3.030 6.36(16) 1.00
    噻虫嗪+TPP
    Thiamethoxam+TPP
    2.269±0.228 2.410 1.994~2.898 14.39(16) 1.07
    噻虫嗪+PBO
    Thiamethoxam+PBO
    2.900±0.277 2.262 1.921~2.653 8.71(16) 1.14
    噻虫嗪+DEM
    Thiamethoxam+DEM
    2.871±0.275 2.489 2.114~2.920 7.34(16) 1.04
    温室种群
    Greenhouse population
    噻虫嗪
    Thiamethoxam
    2.745±0.391 27.073 20.467~33.345 13.3(13) 1.00
    噻虫嗪+TPP
    Thiamethoxam+TPP
    2.499±0.249 19.357 15.400~23.925 21.6(16) 1.40
    噻虫嗪+PBO
    Thiamethoxam+PBO
    2.271±0.259 13.575 10.601~16.666 13.4(16) 1.99
    噻虫嗪+DEM
    Thiamethoxam+DEM
    2.590±0.297 21.128 17.025~25.394 13.19(16) 1.28
     1)LC50值95%置信区间不重叠视为差异显著
     1)LC50 values are considered significantly different when the 95% confidence intervals do not overlap
    下载: 导出CSV 
    | 显示表格

    近年来已有大量关于褐飞虱对各类杀虫剂产生抗药性的报道,Zhang等[14]采用稻茎浸渍法测定了8个褐飞虱稻田种群的抗药性,结果表明种群对吡虫啉和噻嗪酮均表现为高水平抗性,抗性倍数分别为233.3~2 029.0和147.0~1 222.0倍,对噻虫嗪为中、高水平抗性(25.9~159.2倍),对毒死蜱仍处于低、中等水平抗性(7.4~30.7倍)。本研究结果表明,吡虫啉、噻虫嗪、噻嗪酮对温室褐飞虱种群均达到高抗水平,对毒死蜱仍处于低水平抗性,与肖汉祥等[8]对田间褐飞虱种群的抗性监测结果较为接近,但新型防控药剂氟啶虫胺腈与三氟苯嘧啶均表现敏感。因此,新型防控药剂氟啶虫胺腈和三氟苯嘧啶轮换使用,可有效防控褐飞虱的发生。

    昆虫对农药产生抗药性主要体现在杀虫剂作用靶标敏感性降低以及昆虫解毒酶代谢能力增强2个方面[15]。范银君等[16]研究发现细胞色素P450s在昆虫对新烟碱类杀虫剂的抗药性中起主要作用。庄安祥[17]通过qRT- PCR测定了吡虫啉LD50剂量处理对褐飞虱P450s基因表达量的影响,认为褐飞虱抗新烟碱类杀虫剂主要与P450s活性增强有关,其次与乙酰胆碱酯酶的敏感度降低有关。张平艳等[18]研究发现,室内选育建立的桃蚜Myzus persicae抗噻虫嗪种群的羧酸酯酶及多功能氧化酶(MFO)O−脱甲基的比活力分别是敏感品系的6.12和2.03倍。Gao等[19]采用PBO和TPP处理抗噻虫嗪的西花蓟马Frankliniella occidentalis种群后,对噻虫嗪有很高的增效作用,DEM对噻虫嗪没有协同作用,说明西花蓟马对噻虫嗪的抗药性主要与羧酸酯酶以及细胞色素P450s酶活性增强有关。本研究通过对褐飞虱增效剂及3种解毒代谢酶活力测定发现,PBO表现出明显的增效作用和对细胞色素P450s活性显著的抑制作用,说明细胞色素P450s酶参与了褐飞虱对噻虫嗪的抗药性机理,该结果与毛旭连[20]就灰飞虱Laodelphax striatellus对噻虫嗪及噻嗪酮抗药性机理作出的研究结果相近。Sun等[21]研究表明,P450s基因CYP6ER1参与了褐飞虱对噻虫嗪的解毒代谢,但是也发现有另外6个未明确作用的调控P450s的基因(CYP408A1V2CYP427A1CYP6CS1CYP4C76CYP4DD1CYP417A1V2)高度表达。Pang等[22]的研究表明CYP6ER1基因也涉及褐飞虱对吡虫啉的抗药性机理,此外Zhang等[23]研究发现有其他的P450s基因,如CYP6AY1CYP4CE1CYP6CW1等也参与褐飞虱对吡虫啉的抗药性发展。以上研究说明细胞色素P450s在褐飞虱对新烟碱类杀虫剂抗药性机理中的作用值得进一步研究。

    本试验采用稻苗浸渍法,通过对褐飞虱敏感品系和温室种群的毒力及酶活性测定,初步明确了褐飞虱对噻虫嗪的代谢抗药性主要受细胞色素P450s活性增强影响,使用该杀虫剂时可添加增效剂PBO从而抑制P450s酶活性。由于本研究仅在生物化学水平初步探究了噻虫嗪对褐飞虱的毒力及解毒代谢酶活性的影响,其抗药性是否与靶标突变及体壁穿透下降等有关还需进行深入研究。

  • 图  1   植物长距离氮信号

    植物氮营养长距离信号途径主要包括CEP-CEPD、CEPDL2、细胞分裂素、HY5等组分介导的信号转导途径;对豆科植物而言,还包括由CEP1-CRA2介导的促进结瘤通路和CLE-RS-SHAR1-miR2111-TML抑制结瘤通路

    Figure  1.   Long-distance N signaling in plants

    Long-distance nitrogen signaling in plants mainly include the pathways mediated by CEP-CEPD, CEPDL2, cytokinin, and HY5; For leguminous plants, it also includes the promoting pathway of nodulation mediated by CEP1-CRA2 and the inhibition pathway of nodulation mediated by CLE-RS-SHAR1-miR2111-TML

    图  2   植物长距离磷信号

    植物通过miRNA399、植物激素SLs、小肽CLE33以及转录因子HY5等长距离信号分子介导的信号转导途径调控植物整体磷稳态

    Figure  2.   Long-distance phosphorus signaling in plants

    The overall phosphorus (P) homeostasis of plants can be achieved through long-distance signal transduction pathways mediated by miRNA399, plant hormones SLs, small peptide CLE33, transcription factor HY5 and so on

  • [1]

    HO C H, LIN S H, HU H C, et al. CHL1 functions as a nitrate sensor in plants[J]. Cell, 2009, 138(6): 1184-1194. doi: 10.1016/j.cell.2009.07.004

    [2]

    DONG J, MA G, SUI L, et al. Inositol pyrophosphate InsP8 acts as an intracellular phosphate signal in Arabidopsis[J]. Molecular Plant, 2019, 12(11): 1463-1473. doi: 10.1016/j.molp.2019.08.002

    [3]

    WILD R, GERASIMAITE R, JUNG J Y, et al. Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains[J]. Science, 2016, 352(6288): 986-990. doi: 10.1126/science.aad9858

    [4]

    ZHU J, LAU K, PUSCHMANN R, et al. Two bifunctional inositol pyrophosphate kinases/phosphatases control plant phosphate homeostasis[J]. eLife, 2019, 8: e43582. doi: 10.7554/eLife.43582

    [5]

    DUBEAUX G, NEVEU J, ZELAZNY E, et al. Metal sensing by the IRT1 transporter-receptor orchestrates its own degradation and plant metal nutrition[J]. Molecular Cell, 2018, 69(6): 953-964. doi: 10.1016/j.molcel.2018.02.009

    [6]

    XU G, FAN X, MILLER A J. Plant nitrogen assimilation and use efficiency[J]. Annual Review of Plant Biology, 2012, 63(1): 153-182. doi: 10.1146/annurev-arplant-042811-105532

    [7]

    ZHANG H, FORDE B G. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture[J]. Science, 1998, 279(5349): 407-409. doi: 10.1126/science.279.5349.407

    [8]

    OLDROYD G E D, LEYSER O. A plant’s diet, surviving in a variable nutrient environment[J]. Science, 2020, 368(6486): eaba0196. doi: 10.1126/science.aba0196

    [9]

    RUFFEL S, KROUK G, RISTOVA D, et al. Nitrogen economics of root foraging: Transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. demand[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(45): 18524-18529. doi: 10.1073/pnas.1108684108

    [10]

    OHKUBO Y, TANAKA M, TABATA R, et al. Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition[J]. Nature Plants, 2017, 3(4): 17029. doi: 10.1038/nplants.2017.29

    [11]

    TABATA R, SUMIDA K, YOSHII T, et al. Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling[J]. Science, 2014, 346(6207): 343-346. doi: 10.1126/science.1257800

    [12]

    CHAPMAN K, IVANOVICI A, TALESKI M, et al. CEP receptor signalling controls root system architecture in Arabidopsis and Medicago[J]. New Phytologist, 2020, 226(6): 1809-1821. doi: 10.1111/nph.16483

    [13]

    ARAYA T, MIYAMOTO M, WIBOWO J, et al. CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(5): 2029-2034. doi: 10.1073/pnas.1319953111

    [14]

    OTA R, OHKUBO Y, YAMASHITA Y, et al. Shoot-to-root mobile CEPD-like 2 integrates shoot nitrogen status to systemically regulate nitrate uptake in Arabidopsis[J]. Nature Communications, 2020, 11(1): 641. doi: 10.1038/s41467-020-14440-8

    [15]

    ROY S, LIU W, NANDETY R S, et al. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation[J]. The Plant Cell, 2020, 32: 15-41. doi: 10.1105/tpc.19.00279

    [16]

    GAUTRAT P, LAFFONT C, FRUGIER F. Compact Root Architecture 2 promotes root competence for nodulation through the miR2111 systemic effector[J]. Current Biology, 2020, 30(7): 1339-1345. doi: 10.1016/j.cub.2020.01.084

    [17]

    HUAULT E, LAFFONT C, WEN J, et al. Local and systemic regulation of plant root system architecture and symbiotic nodulation by a receptor-like kinase[J]. PLoS Genetics, 2014, 10(12): e1004891. doi: 10.1371/journal.pgen.1004891

    [18]

    MOHD-RADZMAN N A, LAFFONT C, IVANOVICI A, et al. Different pathways act downstream of the CEP peptide receptor CRA2 to regulate lateral root and nodule development[J]. Plant Physiology, 2016, 171(4): 2536-2548. doi: 10.1104/pp.16.00113

    [19]

    GAUTRAT P, LAFFONT C, FRUGIER F, et al. Nitrogen systemic signaling: From symbiotic nodulation to root acquisition[J]. Trends in Plant Science, 2021, 26(4): 392-406. doi: 10.1016/j.tplants.2020.11.009

    [20]

    LIN J S, LI X, LUO Z, et al. NIN interacts with NLPs to mediate nitrate inhibition of nodulation in Medicago truncatula[J]. Nature Plants, 2018, 4(11): 942-952. doi: 10.1038/s41477-018-0261-3

    [21]

    NISHIDA H, TANAKA S, HANDA Y, et al. A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis in Lotus japonicus[J]. Nature Communications, 2018, 9(1): 499. doi: 10.1038/s41467-018-02831-x

    [22]

    OKAMOTO S, TABATA R, MATSUBAYASHI Y. Long-distance peptide signaling essential for nutrient homeostasis in plants[J]. Current Opinion in Plant Biology, 2016, 34: 35-40. doi: 10.1016/j.pbi.2016.07.009

    [23]

    TSIKOU D, YAN Z, HOLT D B, et al. Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA[J]. Science, 2018, 362(6411): 233-236. doi: 10.1126/science.aat6907

    [24]

    SASAKI T, SUZAKI T, SOYANO T, et al. Shoot-derived cytokinins systemically regulate root nodulation[J]. Nature Communications, 2014, 5(1): 4983. doi: 10.1038/ncomms5983

    [25]

    MOREAU C, GAUTRAT P, FRUGIER F. Nitrate-induced CLE35 signaling peptides inhibit nodulation through the SUNN receptor and miR2111 repression[J]. Plant Physiology, 2021, 185(3): 1216-1228. doi: 10.1093/plphys/kiaa094

    [26]

    SAKAKIBARA H. Cytokinins: Activity, biosynthesis, and translocation[J]. Annual Review of Plant Biology, 2006, 57: 431-449. doi: 10.1146/annurev.arplant.57.032905.105231

    [27]

    TAKEI K, SAKAKIBARA H, TANIGUCHI M, et al. Nitrogen-dependent accumulation of cytokinins in toot and the translocation to leaf: Implication of cytokinin species that induces gene expression of maize response regulator[J]. Plant and Cell Physiology, 2001, 42(1): 85-93. doi: 10.1093/pcp/pce009

    [28]

    TAKEI K, UEDA N, AOKI K, et al. AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis[J]. Plant and Cell Physiology, 2004, 45(8): 1053-1062. doi: 10.1093/pcp/pch119

    [29]

    KO D, KANG J, KIBA T, et al. Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(19): 7150-7155. doi: 10.1073/pnas.1321519111

    [30]

    ZHANG K, NOVAK O, WEI Z, et al. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins[J]. Nature Communications, 2014, 5(1): 3274. doi: 10.1038/ncomms4274

    [31]

    GORDON S P, CHICKARMANE V S, OHNO C, et al. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(38): 16529-16534. doi: 10.1073/pnas.0908122106

    [32]

    LANDREIN B, FORMOSA-JORDAN P, MALIVERT A, et al. Nitrate modulates stem cell dynamics in Arabidopsis shoot meristems through cytokinins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(6): 1382-1387. doi: 10.1073/pnas.1718670115

    [33]

    OSUGI A, KOJIMA M, TAKEBAYASHI Y, et al. Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots[J]. Nature Plants, 2017, 3(8): 17112. doi: 10.1038/nplants.2017.112

    [34]

    POITOUT A, CRABOS A, PETŘíK I, et al. Responses to systemic nitrogen signaling in Arabidopsis roots involve trans-zeatin in shoots[J]. The Plant Cell, 2018, 30(6): 1243-1257. doi: 10.1105/tpc.18.00011

    [35]

    KAMADA-NOBUSADA T, MAKITA N, KOJIMA M, et al. Nitrogen-dependent regulation of de novo cytokinin biosynthesis in rice: The role of glutamine metabolism as an additional signal[J]. Plant and Cell Physiology, 2013, 54(11): 1881-1893. doi: 10.1093/pcp/pct127

    [36]

    LEJAY L, WIRTH J, PERVENT M, et al. Oxidative pentose phosphate pathway-dependent sugar sensing as a mechanism for regulation of root ion transporters by photosynthesis[J]. Plant Physiology, 2008, 146(4): 2036-2053. doi: 10.1104/pp.107.114710

    [37]

    CHAPMAN K, TALESKI M, OGILVIE H A, et al. CEP-CEPR1 signalling inhibits the sucrose-dependent enhancement of lateral root growth[J]. Journal of Experimental Botany, 2019, 70(15): 3955-3967. doi: 10.1093/jxb/erz207

    [38]

    DELAY C, IMIN N, DJORDJEVIC M A. CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants[J]. Journal of Experimental Botany, 2013, 64(17): 5383-5394. doi: 10.1093/jxb/ert332

    [39]

    WANG H, HAN C, WANG J G, et al. Regulatory functions of cellular energy sensor SnRK1 for nitrate signalling through NLP7 repression[J]. Nature Plants, 2021, 8(9): 1094-1107.

    [40]

    GANGAPPA S N, BOTTO J F. The multifaceted roles of HY5 in plant growth and development[J]. Molecular Plant, 2016, 9(10): 1353-1365. doi: 10.1016/j.molp.2016.07.002

    [41]

    XIAO Y T, CHU L, ZHANG Y M, et al. HY5: A pivotal regulator of light-dependent development in higher plants[J]. Frontiers in Plant Science, 2022, 12: 800989. doi: 10.3389/fpls.2021.800989

    [42]

    CHEN X, YAO Q, GAO X, et al. Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition[J]. Current Biology, 2016, 26(5): 640-646. doi: 10.1016/j.cub.2015.12.066

    [43]

    CHIOU T J, LIN S I. Signaling network in sensing phosphate availability in plants[J]. Annual Review of Plant Biology, 2011, 62(1): 185-206. doi: 10.1146/annurev-arplant-042110-103849

    [44]

    WILLIAMSON L C, RIBRIOUX S P C P, FITTER A H, et al. Phosphate availability regulates root system architecture in Arabidopsis[J]. Plant Physiology, 2001, 126(2): 875-882. doi: 10.1104/pp.126.2.875

    [45]

    THIBAUD M C, ARRIGHI J F, BAYLE V, et al. Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis[J]. The Plant Journal, 2010, 64(5): 775-789. doi: 10.1111/j.1365-313X.2010.04375.x

    [46]

    BUHTZ A, SPRINGER F, CHAPPELL L, et al. Identification and characterization of small RNAs from the phloem of Brassica napus[J]. The Plant Journal, 2008, 53(5): 739-749. doi: 10.1111/j.1365-313X.2007.03368.x

    [47]

    GAI Y P, ZHAO H N, ZHAO Y N, et al. MiRNA-seq-based profiles of miRNAs in mulberry phloem sap provide insight into the pathogenic mechanisms of mulberry yellow dwarf disease[J]. Scientific Reports, 2018, 8(1): 812. doi: 10.1038/s41598-018-19210-7

    [48]

    LU S, SUN Y H, SHI R, et al. Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis[J]. The Plant Cell, 2005, 17(8): 2186-2203. doi: 10.1105/tpc.105.033456

    [49]

    VARKONYI-GASIC E, GOULD N, SANDANAYAKA M, et al. Characterisation of microRNAs from apple (Malus domestica ‘Royal Gala’) vascular tissue and phloem sap[J]. BMC Plant Biology, 2010, 10: 159. doi: 10.1186/1471-2229-10-159

    [50]

    YOO B C, KRAGLER F, VARKONYI-GASIC E, et al. A systemic small RNA signaling system in plants[J]. The Plant Cell, 2004, 16(8): 1979-2000. doi: 10.1105/tpc.104.023614

    [51]

    BARI R, PANT B D, STITT M, et al. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants[J]. Plant Physiology, 2006, 141(3): 988-999. doi: 10.1104/pp.106.079707

    [52]

    CHIOU T J, AUNG K, LIN S I, et al. Regulation of phosphate homeostasis by microRNA in Arabidopsis[J]. The Plant Cell, 2006, 18(2): 412-421. doi: 10.1105/tpc.105.038943

    [53]

    BUHTZ A, PIERITZ J, SPRINGER F, et al. Phloem small RNAs, nutrient stress responses, and systemic mobility[J]. BMC Plant Biology, 2010, 10: 64. doi: 10.1186/1471-2229-10-64

    [54]

    LIN S I, CHIANG S F, LIN W Y, et al. Regulatory network of microRNA399 and PHO2 by systemic signaling[J]. Plant Physiology, 2008, 147(2): 732-746. doi: 10.1104/pp.108.116269

    [55]

    LIU F, WANG Z, REN H, et al. OsSPX1 suppresses the function of OsPHR2 in the regulation of expression of OsPT2 and phosphate homeostasis in shoots of rice[J]. The Plant Journal, 2010, 62(3): 508-517. doi: 10.1111/j.1365-313X.2010.04170.x

    [56]

    VALDÉS-LÓPEZ O, ARENAS-HUERTERO C, RAMíREZ M, et al. Essential role of MYB transcription factor: PvPHR1 and microRNA: PvmiR399 in phosphorus-deficiency signalling in common bean roots[J]. Plant, Cell & Environment, 2008, 31(12): 1834-1843.

    [57]

    ZHANG Z, ZHENG Y, HAM B K, et al. Vascular-mediated signalling involved in early phosphate stress response in plants[J]. Nature Plants, 2016, 2(4): 16033. doi: 10.1038/nplants.2016.33

    [58]

    HAM B K, BRANDOM J L, XOCONOSTLE-CÁZARES B, et al. A polypyrimidine tract binding protein, pumpkin RBP50, forms the basis of a phloem-mobile ribonucleoprotein complex[J]. The Plant Cell, 2009, 21(1): 197-215. doi: 10.1105/tpc.108.061317

    [59]

    ZHANG Z, ZHENG Y, HAM B, et al. Plant lncRNAs are enriched in and move systemically through the phloem in response to phosphate deficiency[J]. Journal of Integrative Plant Biology, 2019, 61(4): 492-508. doi: 10.1111/jipb.12715

    [60]

    CHIU C H, PASZKOWSKI U. Mechanisms and impact of symbiotic phosphate acquisition[J] Cold Spring Harbor Perspectives in Biology, 2019, 11(6): a034603.

    [61]

    BEVERIDGE C A. Axillary bud outgrowth: Sending a message[J]. Current Opinion in Plant Biology, 2006, 9(1): 35-40. doi: 10.1016/j.pbi.2005.11.006

    [62]

    AKIYAMA K, MATSUZAKI K I, HAYASHI H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi[J]. Nature, 2005, 435(7043): 824-827. doi: 10.1038/nature03608

    [63]

    KOHLEN W, CHARNIKHOVA T, LIU Q, et al. Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis[J]. Plant Physiology, 2011, 155(2): 974-987. doi: 10.1104/pp.110.164640

    [64]

    UMEHARA M, HANADA A, MAGOME H, et al. Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice[J]. Plant and Cell Physiology, 2010, 51(7): 1118-1126. doi: 10.1093/pcp/pcq084

    [65]

    MüLLER L M, FLOKOVA K, SCHNABEL E, et al. A CLE-SUNN module regulates strigolactone content and fungal colonization in arbuscular mycorrhiza[J]. Nature Plants, 2019, 5(9): 933-939. doi: 10.1038/s41477-019-0501-1

    [66]

    GE S, HE L, JIN L, et al. Light-dependent activation of HY5 promotes mycorrhizal symbiosis in tomato by systemically regulating strigolactone biosynthesis[J]. New Phytologist, 2022, 233(4): 1900-1914. doi: 10.1111/nph.17883

    [67]

    SAKURABA Y, KANNO S, MABUCHI A, et al. A phytochrome-B-mediated regulatory mechanism of phosphorus acquisition[J]. Nature Plants, 2018, 4(12): 1089-1101. doi: 10.1038/s41477-018-0294-7

    [68]

    NOTAGUCHI M, KUROTANI K I, SATO Y, et al. Cell-cell adhesion in plant grafting is facilitated by β-1, 4-glucanases[J]. Science, 2020, 369(6504): 698-702. doi: 10.1126/science.abc3710

  • 期刊类型引用(6)

    1. 常向前,吕亮,郑正安,王晶,邓颍骏,杨小林,王佐乾,张舒. 四种助剂对防治褐飞虱的植物源农药1%印楝素水分散粒剂毒力的影响. 昆虫学报. 2024(04): 490-497 . 百度学术
    2. 赵云霞,张学峰,唐艺婷,张凯,曹凯歌,付佑胜,周长勇,陈澄宇. 常用化学药剂对稻飞虱的室内毒力测定及田间药效试验. 农药科学与管理. 2024(04): 43-48 . 百度学术
    3. 张鹏,张宗俭,田迎迎,孙才权,张彦英,张春华. 第二代新烟碱类农药噻虫嗪研究及应用进展. 现代农药. 2022(01): 15-22 . 百度学术
    4. 高青环,路朝阳,李俊玲,袁竹青,盛治喻,祝捷. 高效液相色谱法测定悬浮种衣剂40%溴酰·噻虫嗪. 河南化工. 2022(04): 55-57 . 百度学术
    5. 颜延宁,陆正清. 高效液相色谱法测定噻虫嗪和功夫菊酯有效成分含量的研究. 安徽农业科学. 2021(07): 157-159 . 百度学术
    6. 石鑫,李莎,王志敏,付开赟,付文君,姜卫华. 新疆马铃薯甲虫对噻虫嗪的抗性监测及其细胞色素P450基因表达分析. 中国农业科学. 2021(14): 3004-3016 . 百度学术

    其他类型引用(7)

图(2)
计量
  • 文章访问数:  705
  • HTML全文浏览量:  23
  • PDF下载量:  528
  • 被引次数: 13
出版历程
  • 收稿日期:  2022-09-11
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2022-11-09

目录

/

返回文章
返回