Regulatory mechanism of autophagy in formation of crop agronomic traits and potential application
-
摘要:
细胞自噬是真核生物在进化过程中高度保守的重要降解途径,通过将受损的蛋白或细胞器包裹到双层膜结构的自噬小泡后,进而转运至溶酶体(动物)或液泡(酵母和植物)中进行降解,最终完成细胞内容物的循环利用。随着自噬在动物和酵母中研究的不断深入,人们也越来越多地关注植物自噬,且相关研究正在从模式植物逐渐扩展到作物。为更好地了解自噬在作物产量、品质和抗逆性等方面的作用,本文综述了近年来作物自噬的研究进展,并对自噬在重要农艺性状形成过程中的调控机制进行了深入探讨,以期为进一步改良作物的农艺性状和提高农业生产效率等提供参考。
Abstract:Autophagy is a highly conserved and important degradation pathway in eukaryotes during evolution. Damaged proteins or organelles are wrapped into autophagic vesicles with bilayer membrane structure, they are then transported to lysosomes(animals) or vacuoles(yeast and plants) for degradation, and finally the recycling of cell contents is completed. With the in-depth study of autophagy in animals and yeast, people are paying more and more attention to plant autophagy, and the related research is gradually expanding from model plants to crops. To better understand the effects of autophagy in crop yield, quality and resistance, etc, we summarized the recent advances in autophagy in crop plants, and discussed the regulatory mechanism of autophagy in the formation of important agronomic traits in depth. This paper will provide references for further improving crop agronomic traits and agricultural production efficiency.
-
Keywords:
- Autophagy /
- Regulatory mechanism /
- Agronomic trait /
- Crop
-
立地质量是影响林分生长的关键因素,准确评价立地质量是科学经营森林的前提和基础[1-2]。在“碳达峰碳中和”的战略背景下,科学的立地质量评价对提高林分生长收获预估准确性、优化抚育经营设计、提升森林碳汇经营水平以及森林生态系统应对气候变化能力具有极其重要的意义[3]。林分生产力的立地质量评价方法分为生物因子法和地理因子法2大类,其中,生物因子法的地位级和立地指数是立地质量评价最常用的指标。采用不同方法评价立地质量各有优缺点[4-5]。地理因子法易于分类,却缺乏立地条件影响林分生长的生物学解释。地位级法简便易行,但其精度和准确性低于立地指数的。立地指数的无偏估计要求准确的年龄测量值。相较基于年龄和树高的地位级和立地指数而言,已有研究者[6-8]提出了立地形(Site form)的方法,即用基准胸径时林分优势高表示立地质量,回避林分年龄,对混交异龄林具有较好的评价效果,但胸径和树高的关系也受林分的竞争程度影响[9-11]。
林业生产实践中树龄数据往往不准确或缺失,而林分胸径准确数据通过测量即可获取,理论上能修正由于树龄误差而导致的立地质量评价偏差。全国林分的情况复杂多样,天然林与人工林、混交林与纯林、异龄林与同龄林等差异会进一步影响立地质量评价方法的选择和评价结果的准确性[12],缺乏统一的评价模型也导致同一树种各区域间立地质量评价结果不具可比性。采用胸径与树高关系评价森林立地质量在一定程度上减少了其他评价方法的限制条件,同时在森林资源连续清查和森林资源规划设计调查中均有相应的因子调查要求,因此在实际生产管理中应用更便捷[13-15]。建立覆盖全国范围的主要针叶林分类型的胸径与树高模型,并编制指数模型表,不仅是森林经营管理的基础性工作[16],也能为建立大区域尺度的森林立地质量评价体系提供科学参考。
1. 材料与方法
1.1 数据来源及描述性统计
数据来源于全国森林资源连续清查第6次(1999—2003年)、第7次(2004—2008年)、第8次(2009—2013年)和第9次(2014—2018年)结果。根据全国主要针叶林分样地数量,划分为16个针叶树种组。每种树种中样本数量足够的单列,不够的合并为其他,优势树种组中的3种混交类型未纳入主要针叶林分立地形指数模型。主要针叶林分立地形指数模型研建数据描述性统计分析见表1。其中,数量最多的是马尾松林分样地,共
15430 块,数量最少的是铁杉林分样地,共182块。林分胸径均值为10.6~32.8 cm,林分树高均值为6.1~19.8 m,样地数量及规格均能满足建模和检验要求。表 1 立地形指数模型研建数据描述性统计Table 1. Descriptive statistics of model establishment data for site form index林分类型 Stand types 样地数量
Number of plots林分胸径/cm Stand DBH 林分树高/m Stand height 区间 Range 均值 Mean 标准差 SD 区间 Range 均值 Mean 标准差 SD 冷杉 Abies fabri 4363 6.5~77.1 32.8 11.05 2.8~43.7 19.8 5.95 云杉 Picea asperata 11869 5.0~60.0 27.2 10.61 1.7~41.5 17.0 6.11 铁杉 Tsuga chinensis 182 6.9~58.0 29.9 9.61 4.0~29.0 16.6 4.42 油杉 Keteleeria fortunei 217 6.9~27.1 13.0 4.18 2.8~18.3 7.2 2.97 落叶松 Larix gmelinii 9105 5.0~69.7 16.4 9.19 2.0~36.2 13.5 5.00 红松 Pinus koraiensis 290 5.0~58.9 17.5 10.52 1.5~29.2 12.1 5.83 樟子松 Pinus sylvestris 563 5.4~43.2 16.9 7.13 2.8~26.7 11.6 4.78 赤松 Pinus densiflora 296 5.3~23.1 10.6 3.55 1.8~16.7 6.1 3.06 黑松 Pinus thunbergii 346 5.3~20.0 10.8 3.13 2.2~16.0 6.3 2.46 油松 Pinus tabuliformis 4525 5.0~35.0 13.2 5.16 1.5~23.0 7.7 3.27 华山松 Pinus armandii 1029 5.0~34.3 13.9 5.60 1.5~25.0 9.3 3.83 马尾松 Pinus massoniana 15430 5.0~39.9 12.9 4.90 1.5~28.5 9.2 3.58 云南松 Pinus yunnanensis 3510 5.0~43.0 14.6 6.58 2.2~30.0 9.6 4.48 思茅松 Pinus kesiya var. langbianensis 478 5.7~33.4 16.5 5.14 2.9~27.2 12.4 4.13 高山松 Pinus densata 5125 5.3~40.0 27.9 6.53 2.0~28.0 17.8 4.41 其他松类1) Other pines 1350 5~27.4 12.8 4.44 2.5~18.7 8.1 3.06 1) 其他松类指样地数量较少的针叶林分类型。
1) Other pines indicate stand types with less sample plots.1.2 地位级指数模型构建及编表
1.2.1 导向曲线拟合
导向曲线的选择直接影响模型对立地质量评价的准确性,因此,导向曲线的形式既需要符合树高生长的生物学规律,又要能对数据进行最优化的拟合。良好的导向曲线应该呈平滑的“S”型,且具有上限渐近线。本文采用Richards、Logistic和Korf 3个胸径−树高生长模型拟合径阶中值和林分树高均值,如公式(1)~(3)所示。根据决定系数(Coefficient of determination,R2)、标准估计误差(Standard estimation error,SEE)和曲线形式等选择导向曲线模型。
$$ {H_{\mathrm{S}}} = 1.3 + a {\left( {1 - {{\text{e}}^{ - b {{\mathrm{DBH}}_{\mathrm{S}}}}}} \right)^c} \text{,} $$ (1) $$ {H_{\mathrm{S}}} = {{1.3 + a} \mathord{\left/ {\vphantom {{1.3 + a} {\left( {1 + b {{\text{e}}^{c {{\mathrm{DBH}}_{\mathrm{S}}}}}} \right)}}} \right. } {\left( {1 + b {{\text{e}}^{c {{\mathrm{DBH}}_{\mathrm{S}}}}}} \right)}} \text{,} $$ (2) $$ {H_{\mathrm{S}}} = 1.3 + a {{\text{e}}^{\frac{b}{{{\mathrm{DB}}{{\mathrm{H}}_{\mathrm{S}}}^c}}}} \text{,} $$ (3) $$ {R^2} = 1 - \sum {\frac{{{{\left( {{y_i} - {{\hat y}_i}} \right)}^2}}}{{{{\left( {{y_i} - {{\bar y}_i}} \right)}^2}}}} \text{,} $$ (4) $$ {{\mathrm{SEE}}} = \sqrt {\frac{{\displaystyle\sum {{{\left( {{y_i} - {{\hat y}_i}} \right)}^2}} }}{{ {n - p} }}} \text{,} $$ (5) 式中,HS为林分树高,DBHS为林分平均胸径,a、b、c为待求解参数,
$ {y_i} $ 为实际观测值,$ {\hat y_i} $ 为模型预估值,$ \bar y_i $ 为样本平均值,n为样本单元数,p为参数个数。1.2.2 基准胸径确定
基准胸径对立地形指数模型编表具有十分显著的影响,基准胸径选择不恰当会造成立地质量评价结果的偏差。在确定基准胸径时,本研究利用大量样地历史调查监测数据分析树高的生长过程,同时计算各径阶的树高变异系数及变化幅度,并绘制曲线图,根据曲线图中树高生长趋于平缓且能灵敏反映立地质量的原则确定基准胸径。
1.2.3 指数表编制
适宜的编表方法取决于树种、编表数据量等,编表方法不当会造成较大误差。本文利用林分树高生长及树高标准差曲线,依据 ± 2倍标准差原则确定立地形级的上、下限曲线,根据上、下限曲线所夹的面积及预定的5个指数级,采用相对系数法确定各指数级上、下限,编制全国主要针叶林分立地形表。该方法按照一定比例将胸径−树高生长曲线平移,在确定导向曲线模型后,将林分胸径代入模型,得到理论树高,将基准胸径代入模型得到树高理论值,调整系数和各指数级树高计算公式如下:
$$ {K_j} = \frac{{{H_{0j}}}}{{{H_{0k}}}} \times 100{\text{%}} \text{,} $$ (6) $$ {H_{ij}} = {K_j} \times {H_{ik}} \text{,} $$ (7) 式中,Kj为立地形曲线簇调整系数,H0j为基准胸径各指数级树高,H0k为基准胸径导向曲线树高,Hij为各指数级树高,Hik为导向曲线树高。
1.3 模型统计检验
为了检验立地形指数模型对全国针叶林分立地质量评价的准确性和适用性,对编制的立地形表进行落点检验和适用性检验。
1.3.1 落点检验
将林分平均胸径−树高数据作成散点图,并绘制到立地形曲线簇中,算出散点落在曲线簇内的概率,即立地形表能够解释林分平均树高生长的概率。一般认为,落点检验值大于90%时,新编的立地形表满足使用要求。否则,应进行必要的调整。
1.3.2 适用性检验
采用连续的调查监测数据对新编的立地形表进行适用性检验。根据林分平均胸径及树高由立地形指数表确定其立地形等级,然后,比较多期调查数据下林分立地形等级有无跳级的现象,并统计出跳级个数占总个数的百分比。一般认为,跳级个数小于5%时,新编的立地形表满足使用要求。
2. 结果与分析
2.1 立地形指数模型拟合结果
由表2可知,Richards模型拟合所有针叶树种决定系数均值为0.96,标准估计误差均值为0.98;Logistic模型拟合所有针叶树种决定系数均值为0.96,标准估计误差均值为1.10;Korf模型拟合所有针叶树种决定系数均值为0.96,标准估计误差均值为1.00。Richards模型的普遍适用性更强,但油杉和高山松2个优势树种林分的上限渐近线参数均超过45,与Richards模型参数所反映的林分生物学规律存在差异,即林分平均树高的上限水平应不超过45 m。油杉和高山松2个优势树种林分的Korf模型拟合参数也出现了偏离合理值的情况,因此这2个优势树种林分应选择Logistic模型作为导向曲线。
表 2 主要针叶林分胸径和树高模型参数Table 2. Model parameters of DBH and height for major coniferous stands林分
Stand typesRichards Logistic Korf a b c R2 SEE a b c R2 SEE a b c R2 SEE 冷杉 34.9304 0.0278 1.2032 0.94 2.08 29.7918 6.2168 − 0.0711 0.92 2.25 71.0181 − 8.2024 0.5228 0.94 2.07 云杉 35.0515 0.0292 1.2862 0.99 0.83 27.6166 7.9591 − 0.0872 0.98 1.12 104.1793 − 7.7122 0.4304 0.99 0.82 铁杉 42.7731 0.0100 0.7756 0.84 2.36 25.0287 4.3132 − 0.0612 0.81 2.52 228.4099 − 6.1365 0.2395 0.84 2.35 油杉 49.4001 0.0217 1.5328 0.96 0.94 17.6832 15.4880 − 0.1514 0.95 0.96 356.5069 − 9.6653 0.3327 0.96 0.94 落叶松 21.7763 0.0825 1.6565 0.92 1.54 21.4231 5.7592 − 0.1286 0.91 1.63 24.4672 − 16.0920 1.1943 0.91 1.63 红松 23.7699 0.0706 1.9944 0.95 1.54 22.4409 9.9858 − 0.1324 0.95 1.64 31.3234 − 15.3821 0.9800 0.95 1.60 樟子松 23.1622 0.0573 1.6375 0.97 1.07 19.8216 9.2197 − 0.1350 0.96 1.27 69.4325 − 7.1841 0.4718 0.97 1.06 赤松 11.2997 0.1945 5.7997 0.89 1.32 10.6562 48.3629 − 0.3444 0.92 1.14 15.2157 − 32.2581 1.4462 0.88 1.43 黑松 32.0888 0.0315 1.4875 0.97 0.60 13.1164 14.9074 − 0.2020 0.98 0.49 646.3492 − 8.9301 0.2569 0.97 0.62 油松 34.1642 0.0217 1.2051 0.99 0.28 17.6943 9.4751 − 0.1219 0.99 0.49 474.2441 − 8.0463 0.2431 0.99 0.26 华山松 23.2458 0.0527 1.5916 0.99 0.59 17.9922 10.4218 − 0.1496 0.98 0.68 69.1080 − 7.7007 0.4897 0.99 0.59 马尾松 20.7730 0.0585 1.4939 0.99 0.28 17.5935 8.1581 − 0.1427 0.99 0.55 41.5400 − 7.4772 0.5971 0.99 0.24 云南松 32.6336 0.0345 1.4617 0.99 0.38 22.9034 10.6239 − 0.1183 0.99 0.67 182.4129 − 7.9799 0.3567 0.99 0.38 思茅松 23.3830 0.0688 1.8721 0.97 0.87 19.5171 10.3107 − 0.1589 0.96 1.01 42.3634 − 10.2905 0.7343 0.98 0.84 高山松 47.8737 0.0196 1.2483 0.99 0.71 25.0354 10.2222 − 0.1076 0.98 0.89 378.0811 − 8.2583 0.2902 0.99 0.71 其他松类1) 15.6588 0.0804 1.7907 0.99 0.35 13.0084 10.8083 − 0.1960 0.99 0.28 36.7931 − 7.3685 0.5885 0.99 0.40 1) 其他松类指样地数量较少的针叶林分类型。
1) Other pines indicate stand types with less sample plots.导向曲线的选择不仅需要考虑模型的拟合决定系数和参数范围,同时也需要考虑导向曲线的良好形式,尤其是幼龄林阶段。拟合的导向曲线应能反映逻辑合理性,即林分胸径为0 cm,林分树高应为1.3 m,模型形式需要反映出此特征。大区域尺度的调查数据中,不同径阶段的样地数量呈现正态分布,导致小径阶林分的调查数据较少,也无法全面反映小径阶林分的生长情况,各针叶树种在小径阶的标准差范围也较小,如图1所示。其中,油杉、赤松、黑松、油松、华山松、马尾松、云南松、思茅松、高山松和其他松类胸径建模数据未超过60 cm,这也导致林分胸径−树高拟合曲线未出现明显的生长平缓阶段,这就意味着生产实践中应尽可能对中龄林、近熟林和成熟林进行评价,减少采用小径阶林分评价森林立地质量,从而避免出现跳级现象和评价结果的不确定。
2.2 立地形指数模型检验结果
根据主要针叶林分立地形指数模型曲线簇落点检验结果(图2)可知,冷杉林分落点检验值为95.67%、云杉林分落点检验值为97.42%、铁杉林分落点检验值为96.70%、油杉林分落点检验值为95.39%、落叶松林分落点检验值为97.90%、红松林分落点检验值为94.48%、樟子松林分落点检验值为96.80%、赤松林分落点检验值为92.23%、黑松林分落点检验值为97.69%、油松林分落点检验值为96.40%、华山松林分落点检验值为96.11%、马尾松林分落点检验值为99.16%、云南松林分落点检验值为97.55%、思茅松林分落点检验值为94.98%、高山松林分落点检验值为98.97%、其他松林分落点检验值为97.93%。落点检验值均大于90%,均值达96.59%,表明可以在实际生产中使用。此外,基于落点检验曲线簇分析可知,由于森林资源连续清查数据能获取准确的林分胸径数据,因而大区域尺度立地形指数模型相较于地位级指数模型具有更好的检验效果。
2.3 林分立地质量动态变化分析
根据主要针叶林分立地形等级占比动态分析结果(图3)可知,2003年16个针叶树种组立地形等级占比均值为Ⅰ级8.09%、Ⅱ级23.87%、Ⅲ级38.28%、Ⅳ级24.51%、Ⅴ级5.25%,2008年16个针叶树种组立地形等级占比均值为Ⅰ级8.51%、Ⅱ级24.56%、Ⅲ级36.70%、Ⅳ级25.19%、Ⅴ级5.04%,2013年16个针叶树种组立地形等级占比均值为Ⅰ级8.76%、Ⅱ级25.41%、Ⅲ级37.21%、Ⅳ级23.96%、Ⅴ级4.67%,2018年16个针叶树种组立地形等级占比均值为Ⅰ级9.64%、Ⅱ级29.91%、Ⅲ级34.79%、Ⅳ级21.55%、Ⅴ级4.12%。4次森林资源连续清查期间,针叶林分Ⅰ级和Ⅱ级占比均值合计增长了7.60个百分点,Ⅲ级均值合计减少了3.50个百分点,Ⅳ级和Ⅴ级均值合计减少了4.10个百分点。基于立地形等级的评价方法,20年间中国针叶林分立地质量表现为较好的改善趋势,比较典型的针叶林分包括冷杉林、云杉林、油杉林、落叶松林、油松林、华山松林、马尾松林、云南松林、高山松林和思茅松林,其中,马尾松林分有
15430 个样地,样本量大使得立地形等级变化趋势规律更加明显。铁杉林、油杉林、红松林、樟子松林、赤松林、黑松林和其他松类林则出现波动情况,以红松立地形Ⅲ级为例,2003、2008、2013和2018年的占比分别为60.00%、20.00%、40.00%和30.00%,出现了明显的跳跃,是因为小样本量分析导致的,20年间仅有10个样地未发生优势树种的变化,整体可用于立地形等级占比变化分析。3. 讨论与结论
3.1 讨论
不同区域间的气候差异导致林木生长速率差异,进而对林龄−树高关系产生影响,因此,采用林龄−树高关系评价立地质量主要受树种、气候、土壤肥力等主导因素的交互作用,无法建立统一的大尺度立地质量评价模型。相较于传统的立地指数和地位级法,胸径−树高关系在不同气候区域和林龄结构中具备一定的稳定性[17],常用于不同遗传种源林木的基因表观评估[18],受树种、土壤肥力和林分密度等主导因素的交互作用影响,这就为相同树种不同区域建立统一的立地质量评价模型提供了前提条件[19-20]。本文16个林分类型胸径−树高关系的拟合决定系数(均值0.96)大于林龄−树高关系的(均值0.94),以冷杉林为例,林龄−树高和胸径−树高关系的拟合决定系数分别为0.86和0.93。统一的胸径−树高立地质量评价模型使不同地区的相同林分评价结果具有可比性,但在实际应用过程中仍存在挑战,难以排除经营措施对林分密度等竞争指标的影响[21],导致胸径−树高关系评价立地质量偏差的不确定性增加,从而出现跳级现象,这也是后续研究中需要重点关注的环节。
在实际林业生产实践中,作为森林立地质量的关键因素,土壤类型、厚度、质地、养分的状况在无人为干扰的情况下,将在较长时间内维持在比较稳定的水平[1,22],因此,立地质量在一定周期内具有稳定性。与此同时,长期积累和分解的森林凋落物可以增加土壤中的速效磷、速效氮等养分含量,促进森林立地质量的改善;不合理的经营措施导致土壤有机物持续减少、土壤养分流失,也可能导致森林立地质量的恶化,因此,在一定周期内立地质量也具有波动性。胸径−树高关系评价森林立地质量的优势是简便和动态,劣势则是灵敏的动态变化可能是人为干扰(如采伐、补植)或气候变化(如降雨、有效积温增加)等综合因素导致,而非真实的立地质量改善[23-24],同时其也受建模评价样本量的影响,本文中样地数量小于500的铁杉林、油杉林、红松林、赤松林、黑松林和思茅松林均出现了不同程度的跳跃现象,即小样本分析导致的不确定性结果。因此,在林业生产实践中,应综合利用多种方法进行比较分析[7],全面、准确、客观和科学地反映森林立地质量及动态变化,这也是本文后续需要持续完善的地方。
3.2 结论
本研究中Richards、Logistic和Korf模型拟合导向曲线决定系数均值均大于0.95,结合模型形式和参数分析结果可用于建立全国主要针叶林分立地形指数模型,建立的立地形指数模型落点检验值均大于90%,均值达96.59%,可以在实际生产中使用。基于胸径−树高关系建立全国统一的立地质量评价模型具有可行性和合理性,通过减少气候差异导致基于树龄的生长速率对立地质量评价的影响偏差,使不同地区相同林分的评价结果具有可比性,在大尺度水平具有较好的适用性,但仍然需要警惕经营措施和小样本数据导致的评价结果不确定。
-
-
[1] MIZUSHIMA N. A brief history of autophagy from cell biology to physiology and disease[J]. Nature Cell Biology, 2018, 20(5): 521-527. doi: 10.1038/s41556-018-0092-5
[2] WARBURTON D, BELLUSCI S. Normal lung development needs self-eating[J]. The Journal of Clinical Investigation, 2019, 129(7): 2658-2659. doi: 10.1172/JCI129442
[3] KLIONSKY D J. Autophagy revisited: A conversation with Christian de Duve[J]. Autophagy, 2008, 4(6): 740-743. doi: 10.4161/auto.6398
[4] TAKESHIGE K, BABA M, TSUBOI S, et al. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction[J]. The Journal of Cell Biology, 1992, 119(2): 301-311. doi: 10.1083/jcb.119.2.301
[5] KLIONSKY D J, CREGG J M, DUNN W A JR, et al. A unified nomenclature for yeast autophagy-related genes[J]. Developmental Cell, 2003, 5(4): 539-545. doi: 10.1016/S1534-5807(03)00296-X
[6] MATSUURA A, TSUKADA M, WADA Y, et al. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae[J]. Gene, 1997, 192(2): 245-250. doi: 10.1016/S0378-1119(97)00084-X
[7] FUKUDA T, EBI Y, SAIGUSA T, et al. Atg43 tethers isolation membranes to mitochondria to promote starvation-induced mitophagy in fission yeast[J]. eLife, 2020, 9: e61245. doi: 10.7554/eLife.61245
[8] 杨娇, 胡荣贵. 牺牲局部、成就整体的细胞自噬: 2016年度诺贝尔生理学或医学奖成果简介[J]. 科技导报, 2016, 34(24): 39-43. [9] 陈俊慧, 谷有全, 姚利和, 等. 分子伴侣介导的自噬在阿尔茨海默病中作用的研究进展[J]. 上海交通大学学报(医学版), 2021, 41(11): 1529-1534. [10] REHMAN N U, ZENG P, MO Z, et al. Conserved and diversified mechanism of autophagy between plants and animals upon various stresses[J]. Antioxidants, 2021, 10(11): 1736. doi: 10.3390/antiox10111736
[11] ZHANG Z, YANG X, SONG Y, et al. Autophagy in Alzheimer’s disease pathogenesis: Therapeutic potential and future perspectives[J]. Ageing Research Reviews, 2021, 72: 101464. doi: 10.1016/j.arr.2021.101464
[12] VAN DOORN W G, PAPINI A. Ultrastructure of autophagy in plant cells: A review[J]. Autophagy, 2013, 9(12): 1922-1936. doi: 10.4161/auto.26275
[13] BASSHAM D C, LAPORTE M, MARTY F, et al. Autophagy in development and stress responses of plants[J]. Autophagy, 2006, 2(1): 2-11. doi: 10.4161/auto.2092
[14] OKU M, SAKAI Y. Three distinct types of microautophagy based on membrane dynamics and molecular machineries[J]. Bioessays, 2018, 40(6): 1800008. doi: 10.1002/bies.201800008
[15] 蔡霞, 方晓艾, 田兰婷, 等. 显微镜技术在植物细胞自噬研究中的应用[J]. 电子显微学报, 2016, 35(2): 180-185. doi: 10.3969/j.issn.1000-6281.2016.02.013 [16] SIENKO K, POORMASSALEHGOO A, YAMADA K, et al. Microautophagy in plants: Consideration of its molecular mechanism[J]. Cells, 2020, 9(4): 887. doi: 10.3390/cells9040887
[17] KAUSHIK S, CUERVO A M. The coming of age of chaperone-mediated autophagy[J]. Nature Reviews Molecular Cell Biology, 2018, 19(6): 365-381. doi: 10.1038/s41580-018-0001-6
[18] BU F, YANG M, GUO X, et al. Multiple functions of ATG8 family proteins in plant autophagy[J]. Frontiers in Cell and Developmental Biology, 2020, 8: 466. doi: 10.3389/fcell.2020.00466
[19] BOURDENX M, MARTIN-SEGURA A, SCRIVO A, et al. Chaperone-mediated autophagy prevents collapse of the neuronal metastable proteome[J]. Cell, 2021, 184(10): 2696-2714. doi: 10.1016/j.cell.2021.03.048
[20] CABALLERO B, BOURDENX M, LUENGO E, et al. Acetylated tau inhibits chaperone-mediated autophagy and promotes tau pathology propagation in mice[J]. Nature Communications, 2021, 12(1): 2238. doi: 10.1038/s41467-021-22501-9
[21] VAN DOORN W G, WOLTERING E J. What about the role of autophagy in PCD?[J]. Trends in Plant Science, 2010, 15(7): 361-362. doi: 10.1016/j.tplants.2010.04.009
[22] SUTTANGKAKUL A, LI F, CHUNG T, et al. The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis[J]. The Plant Cell, 2011, 23(10): 3761-3779. doi: 10.1105/tpc.111.090993
[23] BAENA-GONZALEZ E, ROLLAND F, THEVELEIN J M, et al. A central integrator of transcription networks in plant stress and energy signalling[J]. Nature, 2007, 448(7156): 938-942. doi: 10.1038/nature06069
[24] HAN C, LIU Y, SHI W, et al. KIN10 promotes stomatal development through stabilization of the SPEECHLESS transcription factor[J]. Nature Communications, 2020, 11(1): 4214. doi: 10.1038/s41467-020-18048-w
[25] SOTO-BURGOS J, BASSHAM D C. SnRK1 activates autophagy via the TOR signaling pathway in Arabidopsis thaliana[J]. PLoS One, 2017, 12(8): e0182591. doi: 10.1371/journal.pone.0182591
[26] CHEN L, SU Z Z, HUANG L, et al. The AMP-activated protein kinase KIN10 is involved in the regulation of autophagy in Arabidopsis[J]. Frontiers in Plant Science, 2017, 8: 1201. doi: 10.3389/fpls.2017.01201
[27] HUANG X, ZHENG C, LIU F, et al. Genetic analyses of the Arabidopsis ATG1 kinase complex reveal both kinase-dependent and independent autophagic routes during fixed-carbon starvation[J]. The Plant Cell, 2019, 31(12): 2973-2995. doi: 10.1105/tpc.19.00066
[28] 孟彦彦, 张楠, 熊延. 植物TOR激酶响应上游信号的研究进展[J]. 植物学报, 2022, 57(1): 1-11. doi: 10.11983/CBB21183 [29] ALBERT V, HALL M N. mTOR signaling in cellular and organismal energetics[J]. Current Opinion in Cell Biology, 2015, 33: 55-66. doi: 10.1016/j.ceb.2014.12.001
[30] WANG Q, HOU S. The emerging roles of ATG1/ATG13 kinase complex in plants[J]. Journal of Plant Physiology, 2022, 271: 153653. doi: 10.1016/j.jplph.2022.153653
[31] SON O, KIM S, KIM D, et al. Involvement of TOR signaling motif in the regulation of plant autophagy[J]. Biochemical and Biophysical Research Communications, 2018, 501(3): 643-647. doi: 10.1016/j.bbrc.2018.05.027
[32] KRAFT C, KIJANSKA M, KALIE E, et al. Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy[J]. The EMBO Journal, 2012, 31(18): 3691-3703. doi: 10.1038/emboj.2012.225
[33] WANG Q, QIN Q, SU M, et al. Type one protein phosphatase regulates fixed-carbon starvation-induced autophagy in Arabidopsis[J]. The Plant Cell, 2022: koac251. doi: 10.1093/plcell/koac251
[34] QI H, LI J, XIA F N, et al. Arabidopsis SINAT proteins control autophagy by mediating ubiquitylation and degradation of ATG13[J]. The Plant Cell, 2020, 32(1): 263-284. doi: 10.1105/tpc.19.00413
[35] QI H, XIA F N, XIE L J, et al. TRAF family proteins regulate autophagy dynamics by modulating AUTOPHAGY PROTEIN6 stability in Arabidopsis[J]. The Plant Cell, 2017, 29(4): 890-911. doi: 10.1105/tpc.17.00056
[36] BHATI K K, LUONG A M, BATOKO H. VPS34 complexes in plants: Untangled enough?[J]. Trends in Plant Science, 2021, 26(4): 303-305. doi: 10.1016/j.tplants.2021.02.001
[37] HURLEY J H, SCHULMAN B A. Atomistic autophagy: The structures of cellular self-digestion[J]. Cell, 2014, 157(2): 300-311. doi: 10.1016/j.cell.2014.01.070
[38] PANKIV S, ALEMU E A, BRECH A, et al. FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport[J]. The Journal of Cell Biology, 2010, 188(2): 253-269. doi: 10.1083/jcb.200907015
[39] XIONG Y, CONTENTO A L, BASSHAM D C. AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana[J]. The Plant Journal, 2005, 42(4): 535-546. doi: 10.1111/j.1365-313X.2005.02397.x
[40] ZHUANG X, CHUNG K P, CUI Y, et al. ATG9 regulates autophagosome progression from the endoplasmic reticulum in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(3): E426-E435.
[41] LAI L, YU C, WONG J, et al. Subnanometer resolution cryo-EM structure of Arabidopsis thaliana ATG9[J]. Autophagy, 2020, 16(3): 575-583. doi: 10.1080/15548627.2019.1639300
[42] 王燕, 刘玉乐. 植物细胞自噬研究进展[J]. 中国细胞生物学学报, 2010, 32(5): 677-689. [43] CHUNG T, PHILLIPS A R, VIERSTRA R D. ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A and ATG12B loci[J]. The Plant Journal, 2010, 62(3): 483-493. doi: 10.1111/j.1365-313X.2010.04166.x
[44] HANADA T, NODA N N, SATOMI Y, et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy[J]. The Journal of Biological Chemistry, 2007, 282(52): 37298-37302. doi: 10.1074/jbc.C700195200
[45] ROMANOV J, WALCZAK M, IBIRICU I, et al. Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation[J]. The EMBO Journal, 2012, 31(22): 4304-4317. doi: 10.1038/emboj.2012.278
[46] KIRISAKO T, ICHIMURA Y, OKADA H, et al. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway[J]. The Journal of Cell Biology, 2000, 151(2): 263-276. doi: 10.1083/jcb.151.2.263
[47] ZHUANG X, WANG H, LAM S K, et al. A BAR-domain protein SH3P2, which binds to phosphatidylinositol 3-phosphate and ATG8, regulates autophagosome formation in Arabidopsis[J]. The Plant Cell, 2013, 25(11): 4596-4615. doi: 10.1105/tpc.113.118307
[48] GAO C, ZHUANG X, CUI Y, et al. Dual roles of an Arabidopsis ESCRT component FREE1 in regulating vacuolar protein transport and autophagic degradation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(6): 1886-1891. doi: 10.1073/pnas.1421271112
[49] SUN S, FENG L, CHUNG K P, et al. Mechanistic insights into an atypical interaction between ATG8 and SH3P2 in Arabidopsis thaliana[J]. Autophagy, 2022, 18(6): 1350-1366. doi: 10.1080/15548627.2021.1976965
[50] SURPIN M, ZHENG H, MORITA M T, et al. The VTI family of SNARE proteins is necessary for plant viability and mediates different protein transport pathways[J]. The Plant Cell, 2003, 15(12): 2885-2899. doi: 10.1105/tpc.016121
[51] KATSIARIMPA A, KALINOWSKA K, ANZENBERGER F, et al. The deubiquitinating enzyme AMSH1 and the ESCRT-III subunit VPS2.1 are required for autophagic degradation in Arabidopsis[J]. The Plant Cell, 2013, 25(6): 2236-2252. doi: 10.1105/tpc.113.113399
[52] SVENNING S, LAMARK T, KRAUSE K, et al. Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1[J]. Autophagy, 2011, 7(9): 993-1010. doi: 10.4161/auto.7.9.16389
[53] XIE Q, TZFADIA O, LEVY M, et al. hfAIM: A reliable bioinformatics approach for in silico genome-wide identification of autophagy-associated Atg8-interacting motifs in various organisms[J]. Autophagy, 2016, 12(5): 876-887. doi: 10.1080/15548627.2016.1147668
[54] BEHRENDS C, SOWA M E, GYGI S P, et al. Network organization of the human autophagy system[J]. Nature, 2010, 466(7302): 68-76. doi: 10.1038/nature09204
[55] NODA N N, OHSUMI Y, INAGAKI F. Atg8-family interacting motif crucial for selective autophagy[J]. FEBS Letters, 2010, 584(7): 1379-1385. doi: 10.1016/j.febslet.2010.01.018
[56] HOFMANN K, FALQUET L. A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems[J]. Trends in Biochemical Sciences, 2001, 26(6): 347-350. doi: 10.1016/S0968-0004(01)01835-7
[57] MARSHALL R S, HUA Z, MALI S, et al. ATG8-binding UIM proteins define a new class of autophagy adaptors and receptors[J]. Cell, 2019, 177(3): 766-781. doi: 10.1016/j.cell.2019.02.009
[58] FLOYD B E, MORRISS S C, MACINTOSH G C, et al. What to eat: Evidence for selective autophagy in plants[J]. Journal of Integrative Plant Biology, 2012, 54(11): 907-920.
[59] 曹嘉健, 周杰. 植物自噬的功能及其农业应用展望[J/OL]. [2022-08-25] 中国科学: 生命科学, 2022: 1-18. https://kns.cnki.net/kcms/detail/11.5840.Q.20220629.1007.002.html [60] 杨小龙, 李漾漾, 刘玉凤, 等. 植物细胞选择性自噬研究进展[J]. 园艺学报, 2017, 44(10): 2015-2028. [61] LIU W, LIU Z, MO Z, et al. ATG8-interacting motif: Evolution and function in selective autophagy of targeting biological processes[J]. Frontiers in Plant Science, 2021, 12: 783881. doi: 10.3389/fpls.2021.783881
[62] WADA S, HAYASHIDA Y, IZUMI M, et al. Autophagy supports biomass production and nitrogen use efficiency at the vegetative stage in rice[J]. Plant Physiology, 2015, 168(1): 60-73. doi: 10.1104/pp.15.00242
[63] LI F Q, CHUNG T, PENNINGTON J G, et al. Autophagic recycling plays a central role in maize nitrogen remobilization[J]. The Plant Cell, 2015, 27(5): 1389-1408. doi: 10.1105/tpc.15.00158
[64] CAO J J, ZHENG X L, XIE D L, et al. Autophagic pathway contributes to low-nitrogen tolerance by optimizing nitrogen uptake and utilization in tomato[J]. Horticulture Research, 2022, 9: uhac068. doi: 10.1093/hr/uhac068
[65] SUN X, JIA X, HUO L, et al. MdATG18a overexpression improves tolerance to nitrogen deficiency and regulates anthocyanin accumulation through increased autophagy in transgenic apple[J]. Plant Cell and Environment, 2018, 41(2): 469-480. doi: 10.1111/pce.13110
[66] MAGHIAOUI A, GOJON A, BACH L. NRT1.1-centered nitrate signaling in plants[J]. Journal of Experimental Botany, 2020, 71(20): 6226-6237. doi: 10.1093/jxb/eraa361
[67] WANG H, HAN C, WANG J G, et al. Regulatory functions of cellular energy sensor SnRK1 for nitrate signalling through NLP7 repression[J]. Nature Plants, 2021, 8(9): 1094-1107.
[68] 程建峰, 戴廷波, 曹卫星, 等. 不同氮收获指数水稻基因型的氮代谢特征[J]. 作物学报, 2007, 33(3): 497-502. doi: 10.3321/j.issn:0496-3490.2007.03.022 [69] 李微微. 谷子自噬相关基因SiATG8a调控植物低氮胁迫响应的功能分析[D]. 哈尔滨: 哈尔滨师范大学, 2017. [70] 王丹, 王宁宁. 大豆自噬关键基因GmATG8c在氮高效、高产转基因新品种培育中的应用研究[J]. 大豆科技, 2019(5): 44-47. doi: 10.3969/j.issn.1674-3547.2019.05.011 [71] HASHIMI S M, WU N N, RAN J, et al. Silencing autophagy-related gene 2 (ATG2) results in accelerated senescence and enhanced immunity in soybean[J]. International Journal of Molecular Sciences, 2021, 22(21): 11749. doi: 10.3390/ijms222111749
[72] WANG H, SCHIPPERS J. The role and regulation of autophagy and the proteasome during aging and senescence in plants[J]. Genes, 2019, 10(4): 267. doi: 10.3390/genes10040267
[73] MAIR A, PEDROTTI L, WURZINGER B, et al. SnRK1-triggered switch of bZIP63 dimerization mediates the low-energy response in plants[J]. eLife, 2015, 4: e05828. doi: 10.7554/eLife.05828
[74] KLEINOW T, HIMBERT S, KRENZ B, et al. NAC domain transcription factor ATAF1 interacts with SNF1-related kinases and silencing of its subfamily causes severe developmental defects in Arabidopsis[J]. Plant Science, 2009, 177(4): 360-370. doi: 10.1016/j.plantsci.2009.06.011
[75] LOZANO-DURAN R, MACHO A P, BOUTROT F, et al. The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth[J]. eLife, 2013, 2 e00983.
[76] ZHANG Z Z, ZHU J Y, ROH J, et al. TOR signaling promotes accumulation of BZR1 to balance growth with carbon availability in Arabidopsis[J]. Current Biology, 2016, 26(14): 1854-1860. doi: 10.1016/j.cub.2016.05.005
[77] CHIBA A, ISHIDA H, NISHIZAWA N K, et al. Exclusion of ribulose-1, 5-bisphosphate carboxylase/oxygenase from chloroplasts by specific bodies in naturally senescing leaves of wheat[J]. Plant and Cell Physiology, 2003, 44(9): 914-921. doi: 10.1093/pcp/pcg118
[78] ISHIDA H, YOSHIMOTO K, IZUMI M, et al. Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process[J]. Plant Physiology, 2008, 148(1): 142-155. doi: 10.1104/pp.108.122770
[79] MICHAELI S, HONIG A, LEVANONY H, et al. Arabidopsis ATG8-interacting protein 1 is involved in autophagy-dependent vesicular trafficking of plastid proteins to the vacuole[J]. The Plant Cell, 2014, 26(10): 4084-4101. doi: 10.1105/tpc.114.129999
[80] OTEGUI M S. Vacuolar degradation of chloroplast components: Autophagy and beyond[J]. Journal of Experimental Botany, 2018, 69(4): 741-750. doi: 10.1093/jxb/erx234
[81] XIE Q J, MICHAELI S, PELED-ZEHAVI H, et al. Chloroplast degradation: One organelle, multiple degradation pathways[J]. Trends in Plant Science, 2015, 20(5): 264-265. doi: 10.1016/j.tplants.2015.03.013
[82] HTWE N, YUASA T, ISHIBASHI Y, et al. Leaf senescence of soybean at reproductive stage is associated with induction of autophagy-related genes, GmATG8c, GmATG8i and GmATG4[J]. Plant Production Science, 2011, 14(2): 141-147. doi: 10.1626/pps.14.141
[83] ZENG Z X, WANG C M, ZHAO Y T, et al. Molecular characterization of leaf senescence-associated autophagy genes in postharvest Chinese flowering cabbage and identifying their transcriptional activator BrMYB108[J]. Postharvest Biology and Technology, 2022, 185: 111785. doi: 10.1016/j.postharvbio.2021.111785
[84] RIGAULT M, CITERNE S, MASCLAUX-DAUBRESSE C, et al. Salicylic acid is a key player of Arabidopsis autophagy mutant susceptibility to the necrotrophic bacterium Dickeya dadantii[J]. Scientific Reports, 2021, 11(1): 3624. doi: 10.1038/s41598-021-83067-6
[85] FENG X, LIU L, LI Z, et al. Potential interaction between autophagy and auxin during maize leaf senescence[J]. Journal of Experimental Botany, 2021, 72(10): 3554-3568. doi: 10.1093/jxb/erab094
[86] 蒯本科. 植物衰老关乎器官发育和作物产量与品质性状的形成[J]. 植物生理学报, 2014, 50(9): 1265-1266. doi: 10.13592/j.cnki.ppj.2014.1026 [87] MININA E A, MOSCHOU P N, VETUKURI R R, et al. Transcriptional stimulation of rate-limiting components of the autophagic pathway improves plant fitness[J]. Journal of Experimental Botany, 2018, 69(6): 1415-1432. doi: 10.1093/jxb/ery010
[88] 王凌志. 水稻产量构成因子及抽穗期QTL定位[D]. 贵阳: 贵州大学, 2021. [89] HAYAMA R, YOKOI S, TAMAKI S, et al. Adaptation of photoperiodic control pathways produces short-day flowering in rice[J]. Nature, 2003, 422(6933): 719-722. doi: 10.1038/nature01549
[90] DOI K, IZAWA T, FUSE T, et al. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1[J]. Genes and Development, 2004, 18(8): 926-936. doi: 10.1101/gad.1189604
[91] SHIM J S, JANG G. Environmental signal-dependent regulation of flowering time in rice[J]. International Journal of Molecular Sciences, 2020, 21(17): E6155. doi: 10.3390/ijms21176155
[92] ZHOU S, ZHU S, CUI S, et al. Transcriptional and post-transcriptional regulation of heading date in rice[J]. The New Phytologist, 2021, 230(3): 943-956. doi: 10.1111/nph.17158
[93] WU W, ZHENG X M, LU G, et al. Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(8): 2775-2780. doi: 10.1073/pnas.1213962110
[94] 张硕. RID1招募组蛋白修饰因子调控水稻成花转换的分子机理研究[D]. 武汉: 华中农业大学, 2021. [95] 王婧莹, 赵广欣, 邱冠凯, 等. 水稻抽穗期途径基因的磷酸化、泛素化研究进展[J]. 中国水稻科学, 2022, 36(3): 215-226. [96] YANO M, KATAYOSE Y, ASHIKARI M, et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS[J]. The Plant Cell, 2000, 12(12): 2473-2484. doi: 10.1105/tpc.12.12.2473
[97] HU Z, YANG Z, ZHANG Y, et al. Autophagy targets Hd1 for vacuolar degradation to regulate rice flowering[J]. Molecular Plant, 2022, 15(7): 1137-1156. doi: 10.1016/j.molp.2022.05.006
[98] 宋露, 唐佳琦, 田晓杰, 等. UDT1/TDR基因过表达对水稻育性的影响[J]. 土壤与作物, 2022, 11(2): 150-158. doi: 10.11689/j.issn.2095-2961.2022.02.004 [99] KURUSU T, KOYANO T, HANAMATA S, et al. OsATG7 is required for autophagy-dependent lipid metabolism in rice postmeiotic anther development[J]. Autophagy, 2014, 10(5): 878-888. doi: 10.4161/auto.28279
[100] FUJIKI Y, YOSHIMOTO K, OHSUMI Y. An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination[J]. Plant Physiology, 2007, 143(3): 1132-1139. doi: 10.1104/pp.106.093864
[101] QIN G, MA Z, ZHANG L, et al. Arabidopsis AtBECLIN 1/AtAtg6/AtVps30 is essential for pollen germination and plant development[J]. Cell Research, 2007, 17(3): 249-263. doi: 10.1038/cr.2007.7
[102] LEE Y, KIM E S, CHOI Y, et al. The Arabidopsis phosphatidylinositol 3-kinase is important for pollen development[J]. Plant Physiology, 2008, 147(4): 1886-1897. doi: 10.1104/pp.108.121590
[103] XU N, GAO X Q, ZHAO X Y, et al. Arabidopsis AtVPS15 is essential for pollen development and germination through modulating phosphatidylinositol 3-phosphate formation[J]. Plant Molecular Biology, 2011, 77(3): 251-260. doi: 10.1007/s11103-011-9806-9
[104] YAN H, ZHUANG M, XU X, et al. Autophagy and its mediated mitochondrial quality control maintain pollen tube growth and male fertility in Arabidopsis[J]. Autophagy, 2022. doi: 10.1080/15548627.2022.2095838.
[105] YU J, ZHEN X, LI X, et al. Increased autophagy of rice can increase yield and nitrogen use efficiency (NUE)[J]. Frontiers in Plant Science, 2019, 10: 584. doi: 10.3389/fpls.2019.00584
[106] ZHEN X, LI X, YU J, et al. OsATG8c-mediated increased autophagy regulates the yield and nitrogen use efficiency in rice[J]. International Journal of Molecular Sciences, 2019, 20(19): 4956. doi: 10.3390/ijms20194956
[107] 王玉. 番茄生长发育和逆境响应中自噬的作用及其调控机制[D]. 杭州: 浙江大学, 2017. [108] GOU W, LI X, GUO S, et al. Autophagy in plant: A new orchestrator in the regulation of the phytohormones homeostasis[J]. International Journal of Molecular Sciences, 2019, 20(12): 2900. doi: 10.3390/ijms20122900
[109] LI X, WU P, LU Y, et al. Synergistic interaction of phytohormones in determining leaf angle in crops[J]. International Journal of Molecular Sciences, 2020, 21(14): 5052. doi: 10.3390/ijms21145052
[110] ZHU T, ZOU L, LI Y, et al. Mitochondrial alternative oxidase-dependent autophagy involved in ethylene-mediated drought tolerance in Solanum lycopersicum[J]. Plant Biotechnology Journal, 2018, 16(12): 2063-2076. doi: 10.1111/pbi.12939
[111] PU Y, LUO X, BASSHAM D C. TOR-dependent and -independent pathways regulate autophagy in Arabidopsis thaliana[J]. Frontiers in Plant Science, 2017, 8: 1204. doi: 10.3389/fpls.2017.01204
[112] FAN T, YANG W, ZENG X, et al. A rice autophagy gene OsATG8b is involved in nitrogen remobilization and control of grain quality[J]. Frontiers in Plant Science, 2020, 11: 588. doi: 10.3389/fpls.2020.00588
[113] XIA T, XIAO D, LIU D, et al. Heterologous expression of ATG8c from soybean confers tolerance to nitrogen deficiency and increases yield in Arabidopsis[J]. PLoS One, 2012, 7(5): e37217. doi: 10.1371/journal.pone.0037217
[114] 李鑫, 甄晓溪, 于金磊, 等. 过表达OsATG8a基因提高转基因拟南芥对低氮的耐受性和产量[J]. 植物生理学报, 2019, 55(1): 69-79. doi: 10.13592/j.cnki.ppj.2018.0309 [115] 甄晓溪, 刘浩然, 李鑫, 等. 异源过表达OsATG8b基因提高转基因拟南芥的氮/碳胁迫耐受性和产量[J]. 植物学报, 2019, 54(1): 23-36. doi: 10.11983/CBB18064 [116] 朱爱科. 水稻垩白粒率QTL qPGWC-1的遗传分析及定位[D]. 北京: 中国农业科学院, 2018. [117] FITZGERALD M A, MCCOUCH S R, HALL R D. Not just a grain of rice: The quest for quality[J]. Trends in Plant Science, 2009, 14(3): 133-139. doi: 10.1016/j.tplants.2008.12.004
[118] NAKATA M, FUKAMATSU Y, MIYASHITA T, et al. High temperature-induced expression of rice α-amylases in developing endosperm produces chalky grains[J]. Frontiers in Plant Science, 2017, 8: 2089. doi: 10.3389/fpls.2017.02089
[119] SERA Y, HANAMATA S, SAKAMOTO S, et al. Essential roles of autophagy in metabolic regulation in endosperm development during rice seed maturation[J]. Scientific Reports, 2019, 9(1): 18544. doi: 10.1038/s41598-019-54361-1
[120] YAN F J, SUN Y J, XU H, et al. Effects of wheat straw mulch application and nitrogen management on rice root growth, dry matter accumulation and rice quality in soils of different fertility[J]. Paddy and Water Environment, 2018, 16(3): 507-518. doi: 10.1007/s10333-018-0643-1
[121] 翟于菲. 辣椒CaATG8c基因抗逆功能研究与自噬相关基因的全基因组鉴定及表达分析[D]. 杨凌: 西北农林科技大学, 2016. [122] ZHOU J, WANG J, CHENG Y, et al. NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses[J]. PLoS Genetics, 2013, 9(1): e1003196. doi: 10.1371/journal.pgen.1003196
[123] ZHOU J, WANG J, YU J Q, et al. Role and regulation of autophagy in heat stress responses of tomato plants[J]. Frontiers in Plant Science, 2014, 5: 174.
[124] 贾昕. 苹果自噬相关基因MdATG5-1和MdATG5-2在干旱、高温逆境中的功能分析[D]. 杨凌: 西北农林科技大学, 2018. [125] HUO L, SUN X, GUO Z, et al. MdATG18a overexpression improves basal thermotolerance in transgenic apple by decreasing damage to chloroplasts[J]. Horticulture Research, 2020, 7: 21. doi: 10.1038/s41438-020-0243-2
[126] 王琪. 自噬基因MdATG4a在苹果响应干旱和盐胁迫中的功能分析[D]. 杨凌: 西北农林科技大学, 2021. [127] THIRUMALAIKUMAR V P, GORKA M, SCHULZ K, et al. Selective autophagy regulates heat stress memory in Arabidopsis by NBR1-mediated targeting of HSP90 and ROF1[J]. Autophagy, 2021, 17(9): 2184-2199. doi: 10.1080/15548627.2020.1820778
[128] JUNG H, LEE H N, MARSHALL R S, et al. Arabidopsis cargo receptor NBR1 mediates selective autophagy of defective proteins[J]. Journal of Experimental Botany, 2020, 71(1): 73-89. doi: 10.1093/jxb/erz404
[129] ZHOU J, WANG Z, WANG X T, et al. Dicot-specific ATG8-interacting ATI3 proteins interact with conserved UBAC2 proteins and play critical roles in plant stress responses[J]. Autophagy, 2018, 14(3): 487-504. doi: 10.1080/15548627.2017.1422856
[130] NOLAN T M, BRENNAN B, YANG M R, et al. Selective autophagy of BES1 mediated by DSK2 balances plant growth and survival[J]. Developmental Cell, 2017, 41(1): 33-46. doi: 10.1016/j.devcel.2017.03.013
[131] LI X, LIU Q W, FENG H, et al. Dehydrin MtCAS31 promotes autophagic degradation under drought stress[J]. Autophagy, 2020, 16(5): 862-877. doi: 10.1080/15548627.2019.1643656
[132] HACHEZ C, VELJANOVSKI V, REINHARDT H, et al. The Arabidopsis abiotic stress-induced tspo-related protein reduces cell-surface expression of the aquaporin pip2;7 through protein-protein interactions and autophagic degradation[J]. The Plant Cell, 2014, 26(12): 4974-4990. doi: 10.1105/tpc.114.134080
[133] 林思琪, 刘沁松. 细胞自噬在植物高温及干旱胁迫响应中的作用机制[J]. 植物生理学报, 2021, 57(5): 1031-1038. -
期刊类型引用(2)
1. 王殿伟,邵业韬,刘晓杰. AMF和DSE联合芦苇对4种重金属污染底泥的修复效应. 环境科学与技术. 2025(02): 40-49 . 百度学术
2. 封成玲,周永萍,田海燕,刘旭,张海娜. 棉种引发的研究进展. 农学学报. 2023(11): 17-22 . 百度学术
其他类型引用(1)