• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

水稻花时调控机理与育种应用

苟亚军, 朱薪宇, 王海洋, 沈荣鑫

苟亚军, 朱薪宇, 王海洋, 等. 水稻花时调控机理与育种应用[J]. 华南农业大学学报, 2022, 43(6): 48-59. DOI: 10.7671/j.issn.1001-411X.202208056
引用本文: 苟亚军, 朱薪宇, 王海洋, 等. 水稻花时调控机理与育种应用[J]. 华南农业大学学报, 2022, 43(6): 48-59. DOI: 10.7671/j.issn.1001-411X.202208056
GOU Yajun, ZHU Xinyu, WANG Haiyang, et al. Regulation mechanism and breeding application of rice floret-opening-time[J]. Journal of South China Agricultural University, 2022, 43(6): 48-59. DOI: 10.7671/j.issn.1001-411X.202208056
Citation: GOU Yajun, ZHU Xinyu, WANG Haiyang, et al. Regulation mechanism and breeding application of rice floret-opening-time[J]. Journal of South China Agricultural University, 2022, 43(6): 48-59. DOI: 10.7671/j.issn.1001-411X.202208056

水稻花时调控机理与育种应用

基金项目: 国家自然科学基金(32172056,31921004)
详细信息
    作者简介:

    苟亚军,博士研究生,主要从事籼粳花时研究,E-mail: 2531993062@qq.com

    通讯作者:

    王海洋,教授,博士,主要从事植物发育生物学和光信号传导相关研究,E-mail: whyang@scau.edu.cn

    沈荣鑫,副教授,博士,主要从事水稻籼粳分化相关性状的遗传与分子机理研究,E-mail: shenrongxin@scau.edu.cn

  • 中图分类号: S511; S334

Regulation mechanism and breeding application of rice floret-opening-time

Article Text (iFLYTEK Translation)
  • 摘要:

    水稻为严格自花授粉作物。花时是水稻的重要农艺性状,受到内部因素(植物激素、遗传因子等)和外部环境因素(温度、光照、湿度、CO2浓度等)的复杂调控。合适的开花时间是水稻成功繁殖的重要保障。颖花过早开放会导致水稻易受低温、露水重引起的病虫害影响;而过晚开放易使水稻遭受高温胁迫,降低产量。此外,在杂交水稻制种过程中,确保父母本的花时一致是提高杂交水稻制种产量的重要条件之一。本文从控制水稻颖花开放的结构基础、生理基础、遗传基础以及分子机理等方面,系统总结了水稻花时调控的研究进展,提出了今后水稻花时研究应重点解决的问题,并讨论了花时性状的改良在水稻生产和籼粳亚种间杂交稻育种上的应用价值。

    Abstract:

    Rice (Oryza sativa L.) is a strictly autogamous crop. Floret-opening-time (FOT) is an important agronomic trait in rice, which is complicatedly regulated by internal factors (plant hormones, genetic factors, etc.) and external environmental factors (temperature, light, humidity, CO2 concentration, etc.). Floret opening at an appropriate time is very critical for the success of rice reproduction. If the floret opens too early in the morning, rice is vulnerable to pathogen infection caused by low temperature and heavy dew. In contrast, if the floret opens too late, the seed setting of rice would be severely affected by high temperature in the afternoon. Moreover, synchronized FOT between the male and female parents is a key requirement for successful production of hybrid seeds. In this review, we summarize the research progresses on the regulation of FOT in rice, mainly focusing on the aspects including the structural basis, physiological basis, genetic basis and molecular mechanism of controlling rice floret opening. We also present some important topics for future in-depth studies of FOT. Finally, we discuss the value of modulating FOT trait for improving rice production and indica-japonica inter-subspecies hybrid rice breeding.

  • 草地贪夜蛾Spodoptera frugiperda为鳞翅目夜蛾科灰翅夜蛾属,该虫源自北美,2019年1月入侵我国云南省,并迅速扩展到全国26个省份[-]。作为联合国粮农组织全球预警的跨国界迁飞性重大害虫,草地贪夜蛾具有寄主范围宽、适生区域广、增殖能力强、扩散速度快、突发危害重等特点[-]

    与其他鳞翅目昆虫一样,草地贪夜蛾主要在幼虫时期为害。目前草地贪夜蛾雌、雄幼虫为害行为性别差异的研究较少,因为缺乏幼虫性别鉴定的快速简便的手段。与许多鳞翅目昆虫一样,草地贪夜蛾在蛹和成虫时期不再取食,因此幼虫时期的取食量对其化蛹、羽化、产卵、迁飞等行为具有重要影响,不同性别的幼虫取食量存在差异。林玉英等[]对椰子织蛾Opisina arenosella 1龄幼虫取食量的研究表明,雌虫取食量显著大于雄虫,结合幼虫取食量可作为其龄期的判断依据之一,从而为制定椰子织蛾防控措施奠定基础;同时,大量研究表明,昆虫幼虫在抵抗高温、抗核型多角体病毒等方面有性别差异[-],成虫在感光、触角结构等方面也存在显著的性别差异[],昆虫在取食、感光、抗病等行为上的性别差异研究,可为农业害虫的精准防控提供理论支持。因此,性别鉴定可以作为研究昆虫雌、雄行为差异的一种便捷有效的工具,有助于制定更加精准高效的农业害虫防控治理策略。

    目前,草地贪夜蛾的性别主要是通过蛹期和成虫时期的外露生殖器及翅上的斑纹差异进行区分[-]。草地贪夜蛾入侵中国后,性信息素诱捕、高空灯诱捕在虫情预测预报中发挥了非常重要的作用。由于缺乏对幼虫形态学有效的判断标准,而田间捕捉的草地贪夜蛾成虫非常活跃,鳞羽容易掉落,给性别鉴定造成了困难,影响了测报结果的准确性。对于鳞羽掉落的草地贪夜蛾样本和未经过性别鉴定的DNA样本,也缺乏有效的性别鉴定手段。因此,根据雌、雄虫性信息素结合蛋白(Pheromone-binding protein, PBP)基因的序列差异,开发简便、准确的功能性分子标记,对鉴定幼虫期乃至成虫期的草地贪夜蛾的性别具有理论和实际应用意义。

    草地贪夜蛾为实验室饲养种群,饲养条件参考王世英等[]方法,温度为(26.0±0.5) ℃;相对湿度为 65%±5%;光周期为16 h光∶8 h暗。

    通过在线网站( https://pfam.xfam.org)寻找并下载PBP隐马尔科夫模型,使用Bio-Linux软件进行生物信息学分析得到草地贪夜蛾PBP基因家族的氨基酸序列,通过在线网站( http://www.omicsclass.com/article/681)手动确认每个蛋白的结构域,总共筛选得到21个PBP,使用Bio-Linux软件进行生物信息学分析获得对应蛋白的CDS序列等相关信息,所得序列与NCBI上已发表的PBP基因序列进行比对,比对结果为本研究的PBP基因的CDS序列与已发表的4个PBP基因(SfruPBP1SfruPBP2、SfruPBP3、SfruPBP4)[]的CDS序列不存在相似性(结果未显示)。对获得的各基因片段进行PCR测序,结果发现Sf-10911基因序列在雌、雄个体中存在较大差异。通过多个已知雌、雄样本检测后,确认该基因为性别差异基因,针对草地贪夜蛾雌、雄虫Sf-10911基因的差异区段设计了3对引物(表1),开发雌、雄性别鉴定的特异标记,引物设计见图1。利用设计合成的引物,对鉴别过已知性别的草地贪夜蛾虫蛹样本进行PCR扩增,筛选得到分子标记。

    表  1  引物序列表
    Table  1.  List of primer sequence
    引物名称1) Primer name 引物序列(5′→3′) Primer sequence
    Sf-F TAGCCGTGAGTTTGAATAGGGT
    Sf-female-R-1 CCTGCCAGTGCCTTATTAATTAA
    Sf-male-R-1 TTTTGGCAGTGCCTTATTGATTA
    Sf-female-R-2 CTCAGAGGTTTTTGATATGGTTT
    Sf-male-R-2 TGTATTCTTCTCAGTGCGAAGAC
    Sf-female-R-3 TTAACAACGCTCCATAATAACCT
    Sf-male-R-3 TAAGAACCAGTTCTTATAAACAC
     1) F、R分别表示正、反向引物
     1) F and R respectively represents forward and reverse primers
    下载: 导出CSV 
    | 显示表格
    图 1 草地贪夜蛾性别鉴定引物设计
    图  1  草地贪夜蛾性别鉴定引物设计
    深蓝色表示相同的核苷酸序列,浅蓝色表示差异位点,黑点表示缺失位点;Sf-male-R:雄虫基因差异区段;Sf-female-R:雌虫基因差异区段;Sf-F:正向引物;Sf-R:反向引物
    Figure  1.  Primers design for sexual identification of Spodoptera frugiperda
    Dark blue represents the same nucleotide sequence, light blue represents the differencial sites and black dots represent the missing sites; SF-male-R: Differential gene segment of male; Sf-female-R: Differential gene segment of female; Sf-F: Forward primer; Sf-R: Reverse primer

    根据草地贪夜蛾蛹期雌、雄虫形态差异区分出雌、雄后(图2),利用微量样品基因组DNA 提取试剂盒进行DNA的提取。采用雌、雄特异性引物对提取的DNA样本进行PCR扩增。扩增产物用琼脂糖凝胶电泳检测,筛选分子标记。PCR 扩增的体系为:PrimerSTAR Max 6.25 μL,上游和下游引物(10 μmol/L)各0.5 μL,模板0.5 μL,加 ddH2O至15 μL。PCR 扩增的反应程序为:98 ℃ 预变性2 min;98 ℃变性 10 s,58 ℃退火 30 s,72 ℃延伸 30 s,35 个循环;72 ℃延伸5 min。

    图 2 草地贪夜蛾蛹期雌、雄虫腹部末端差异对比
    图  2  草地贪夜蛾蛹期雌、雄虫腹部末端差异对比
    a:臀刺;b:肛门;c:第10腹节;d:第9腹节e:半圆形瘤状突起;f:第8腹节;g:产卵孔;h:生殖孔
    Figure  2.  Distinction between abdomen ends of male and female of Spodoptera frugiperda at pupal stage
    a: Buttocks stab; b: Anus; c: The 10th abdominal segment; d: The 9th abdominal segment; e: Semicircular tumor-like protrusion; f: The 8th abdominal segment; g: Spawning hole; h: Genital hole

    针对草地贪夜蛾雌、雄虫Sf-10911基因的性别差异区段设计了3对引物,开发性别鉴定的特异标记。利用设计合成的3对引物,对已知性别的草地贪夜蛾样本进行PCR扩增,筛选得到分子标记,该分子标记可以扩增出450 bp左右的条带。之后,利用筛选出的分子标记对经过形态鉴定的雌、雄虫样本再次进行PCR扩增。

    首先,利用3对标记引物扩增草地贪夜蛾的雌、雄虫DNA样本,所用样本为经过测序鉴定的雌、雄虫DNA样本;图3表明,引物Sf-female-R-1、Sf-male-R-3搭配Sf-F均不能扩增出特异条带;搭配引物Sf-F扩增时,其中雄性样本可以用雄性特异性引物Sf-male-R-2扩增得到特异条带,而雌性样本只有雌性特异性引物Sf-female-R-2可以扩增得到特异条带,与测序结果一致。因此,选择Sf-female-R-2和Sf-male-R-2作为草地贪夜蛾雌、雄虫特异性引物。

    图 3 3对引物对草地贪夜蛾雌、雄虫样本的扩增
    图  3  3对引物对草地贪夜蛾雌、雄虫样本的扩增
    M:2000 DNA marker; m1: Sf-F/ Sf-male-R-1; m2: Sf-F/Sf-male-R-2; m3: Sf-F/Sf-male-R-3; f1: Sf-F/Sf-female-R-1; f2: Sf-F/Sf-female-R-2; f3: Sf-F/Sf-female-R-3
    Figure  3.  Amplification of different sexual samples of Spodoptera frugiperdaby three pairs of primers

    为进一步验证筛选出的标记引物的准确性,对经过形态鉴定的雌、雄虫蛹进行PCR检测(图4)。从图4可以看出,利用雌虫标记引物Sf-female-R-2扩增雌、雄虫DNA样本时,只有雌虫才能扩增出450 bp左右的特异性条带;用雄虫标记引物Sf-male-R-2扩增雌、雄虫DNA样本时,只有雄虫才能扩增出450 bp左右的特异性条带。检测结果与形态鉴定结果一致,说明筛选出的引物适用于草地贪夜蛾的性别鉴定。

    图 4 基于PCR扩增对草地贪夜蛾雌、雄虫蛹性别鉴定
    图  4  基于PCR扩增对草地贪夜蛾雌、雄虫蛹性别鉴定
    F1~F5:雌虫蛹DNA;M1~M5:雄虫蛹DNA;a、c:雌虫标记引物对 Sf-F/Sf-female-R-2;b、d:雄虫标记引物对Sf- F/Sf-male-R-2
    Figure  4.  Sex identification of male and female pupae of Spodoptera frugiperdabased on PCR amplification
    F1−F5: DNA of female pupae; M1−M5: DNA of male pupae; a and c: Pair of female marker primers of Sf-F/Sf-female-R-2; b and d: Pair of male marker primers of Sf-F/Sf-male-R-2

    农业害虫的性别鉴定对于害虫的有效防治和农业生产具有重要意义。不同性别的昆虫在虫体形态上往往存在差异,甜菜夜蛾Spodoptera exigua Hübner、桉袋蛾Acanthopsyche subferalbata Hampson以及凤凰木夜蛾Pericyma cruegri在其蛹及成虫时期的形态存在明显的性别差异[-],利用这种形态上的差异,研究人员可以快速简便地鉴定雌、雄虫,及时为田间种群动态的监测和预测预报提供数据。

    利用雌、雄虫形态差异鉴定性别的方法虽然简单快捷,但却无法对一些不存在性别形态差异或是生长发育早期无形态差异的昆虫进行鉴定。牛宝龙等[]以棉铃虫Helicoverpa armigera雌、雄虫基因组DNA为模板,筛选了1条雌特异随机扩增多态性DNA(Random amplified polymorphic DNA,RAPD),根据该特异性分子标记的核苷酸序列设计雌性特异引物,并对棉铃虫基因组DNA进行PCR扩增,雌性棉铃虫可以扩增出目的条带,可将此标记用于棉铃虫幼虫乃至胚胎的性别鉴定;王慧超等[]也早在2004年运用RADP技术对家蚕Bombyx mori Linnaeus上得到的雌特异性片段设计引物并进行了PCR验证。此外,张利娜[]从外部形态学、血清生化指标建立了鳗鲡Anguilla japonica的性别判定函数,用SRAP分子标记获得F5R2雌性特异DNA序列,根据测序结果设计序列特定扩增区域(Sequence characterized amplified regions,SCAR)特异引物并进行性别鉴定;Masaru等[]用日本青鳉Oryzias latipes的雄性Y特异性DM结构域基因开发引物鉴定了弓背青鳉Oryzias curvinotus的遗传性别;中国大鲵Andrias davidianus、双须骨舌鱼Osteoglossum bicirrhosum的性别鉴定也利用雌、雄虫基因差异序列开发分子标记引物并进行了有效的验证[-]

    PBP在草地贪夜蛾的信息素识别过程中发挥着重要作用,雄虫通过触角感受雌虫性腺释放的性信息素,寻找合适的交配对象。PBP的功能特征决定了其基因序列以及表达模式在雌、雄虫之间必然存在差异,具有明显的性二型性[]。牛小慧[]对甜菜夜蛾的不同PBP进行RT-PCR检测发现,PBP在雌、雄虫之间的表达量存在显著差异;刘苏等[]通过对草地贪夜蛾4个PBP基因的克隆及表达模式分析发现,定位于成虫触角上的SfruPBP1和SfruPBP2蛋白在雄虫中具有更高的表达量。本研究发现草地贪夜蛾雌、雄虫中的PBP基因Sf-10911存在核苷酸序列差异,进而根据该差异设计了针对雌、雄虫扩增的引物对,通过琼脂糖凝胶电泳检测出450 bp左右的特异条带,作为其性别鉴定的分子标记,以期为研究草地贪夜蛾某些性状可能存在的性别差异提供快速有效的手段。

  • 图  1   水稻颖花结构及籼、粳稻花时对比

    a:水稻小穗,Bar = 0.5 cm,b:水稻颖花结构图,Bar = 1.0 mm;c:粳稻‘中花11’与籼稻‘天丰B’在09:30的开花对比图,Bar = 1.0 cm,d:粳稻‘中花11’与籼稻‘天丰B’在11:00的开花对比图,Bar = 1.0 cm

    Figure  1.   The rice floret structure and the comparison of floret-opening-time between indica and japonica

    a: Rice spikelet, bar = 0.5 cm; b: The structure of a rice floret, bar = 1.0 mm; c: Comparison of flowering between japonica ‘Zhonghua 11’ and indica ‘Tianfeng B’ at 09:30, bar = 1.0 cm; d: Comparison of flowering between japonica ‘Zhonghua 11’ and indica ‘Tianfeng B’ at 11:00, bar = 1.0 cm

    图  2   水稻开花前后不同时间点浆片吸水膨胀与失水萎缩过程

    a:水稻浆片形态,Bar = 1 mm;b:水稻颖花示意图;c:b图红色虚线对应的横切示意图,红色箭头表示浆片膨胀时张力方向

    Figure  2.   The process of lodicule swelling and shrinking in rice before and after floret-opening

    a: Dynamic morphology change of the rice lodicules during anthesis, bar = 1 mm; b: Schematic diagrams of rice florets during anthesis; c: Schematic diagrams of the cross-sections of florets as the red dash lines indicates in Fig. 2b, the red arrow indicates the direction of tension when the lodicule expanding

    图  3   茉莉酸合成、信号转导及生物学功能[46]

    Figure  3.   Jasmonic acid synthesis, signal transduction and biological function

    图  4   水稻颖花开放的调控模型

    Figure  4.   The regulatory model of floret opening in rice

    表  1   花时QTLs的详细信息

    Table  1   The details of floret-opening-time QTLs

    数量性状 基因座 QTL 亲本1)Parent 性状 Trait 染色体 Chromosome 定位区间 Mapping location 基因来源 Gene source 贡献率/% Contribution rate 文献 Reference
    qFBT-12 七山占 × 秋光 始花时 12 PSM420—RM247 秋光 10.33 [7]
    qVFT-1 七山占 × 秋光 盛花时 1 RM259—RM449 秋光 12.43 [7]
    qVFT-8 七山占 × 秋光 盛花时 8 RM477—PSM396 秋光 10.57 [7]
    qVFT-10 七山占 × 秋光 盛花时 10 RM269—RM222 七山占 26.95 [7]
    qFET-2 七山占 × 秋光 终花时 2 RM240—RM525 秋光 7.08 [7]
    qFET-10 七山占 × 秋光 终花时 7 RM82—RM420 七山占 10.11 [7]
    SOTb W630 × 日本晴 始花时 5 RM249—RM440 W630 27.21 [34]
    SOTb W630 × 日本晴 始花时 10 RM171—RM496 W630 28.55 [34]
    SOTm W630 × 日本晴 盛花时 4 RM303—RM255 W630 14.66 [34]
    SOTm W630 × 日本晴 盛花时 5 RM249 W630 20.50 [34]
    qFT1a WAB368-B-2-H2-HB × 六千辛 盛花时 1 RM580—RM8004 WAB368-B-2-H2-HB 7.50 [35]
    qFT1b WAB368-B-2-H2-HB × 六千辛 盛花时 1 RM7318—RM5497 WAB368-B-2-H2-HB 5.80 [35]
    qFT10 WAB368-B-2-H2-HB × 六千辛 盛花时 10 RM184—RM3773 WAB368-B-2-H2-HB 6.20 [35]
    qFT12 WAB368-B-2-H2-HB × 六千辛 盛花时 12 RM511—RM519 WAB368-B-2-H2-HB 11.30 [35]
    qEMF3 Oryza officinalis × 南京11 始花时 3 RM14407 O. officinalis 19.70 [36]
     1)籼稻:‘七山占’‘南京11’,粳稻:‘秋光’‘日本晴’‘WAB368-B-2-H2-HB’‘六千辛’,野生稻:‘W630’、Oryza officinalis  1) Indica: ‘Qishanzhan’ ‘Nanjing11’; Japonica: ‘Qiuguang’ ‘Ribenqing’ ‘WAB368-B-2-H2-HB’ ‘Liuqianxin’; Wild rice: ‘W630’, Oryza officinalis
    下载: 导出CSV
  • [1]

    FITZGERALD M A, MCCOUCH S R, HALL R D. Not just a grain of rice: The quest for quality[J]. Trends in Plant Science, 2009, 14(3): 133-139. doi: 10.1016/j.tplants.2008.12.004

    [2]

    PENG S, KHUSH G S, VIRK P, et al. Progress in ideotype breeding to increase rice yield potential[J]. Field Crops Research, 2008, 108(1): 32-38. doi: 10.1016/j.fcr.2008.04.001

    [3]

    CHENG S H, ZHUANG J Y, FAN Y Y, et al. Progress in research and development on hybrid rice: A super-domesticate in China[J]. Annals of Botany, 2007, 100(5): 959-966. doi: 10.1093/aob/mcm121

    [4] 孙凌飞, 李绍波, 官杰, 等. 亚洲栽培稻的籼粳分化[J]. 现代农业科技, 2008(22): 157-159.
    [5] 张桂权. 5G水稻的演变和发展[J]. 华南农业大学学报, 2019, 40(5): 211-216.
    [6] 张萌, 戴冬青, 李西明, 等. 水稻花时性状研究进展[J]. 核农学报, 2016, 30(2): 267-274.
    [7] 马作斌, 詹瞻, 徐海, 等. 籼粳稻杂交后代花时性状的QTL分析[J]. 植物生理学报, 2011, 47(8): 799-802.
    [8]

    YANG J, FEI K, CHEN J, et al. Jasmonates alleviate spikelet-opening impairment caused by high temperature stress during anthesis of photo-thermo-sensitive genic male sterile rice lines[J]. Food and Energy Security, 2020, 9(4): e233.

    [9] 徐乾坤, 任德勇, 李自壮, 等. 水稻小穗颖壳发育的研究进展[J]. 中国水稻科学, 2016, 30(1): 99-105.
    [10]

    TANAKA W, TORIBA T, HIRANO H Y. Flower development in rice[J]. Advances in Botanical Research, 2014, 72(8): 221-262.

    [11] 黄俊宝, 何永明, 曾晓春, 等. 水稻颖花开放前花器官茉莉酸水平变化及浆片茉莉酸信号基因表达分析[J]. 中国农业科学, 2015, 48(6): 1219-1227.
    [12]

    KOBAYASI K, MATSUI T, YOSHIMOTO M, et al. Effects of temperature, solar radiation, and vapor-pressure deficit on flower opening time in rice[J]. Plant Production Science, 2010, 13(1): 21-28. doi: 10.1626/pps.13.21

    [13] 田大成. 水稻异交栽培学: 杂交水稻高产制种原理与技术[M]. 成都: 四川科学技术出版社, 1991.
    [14] 曾晓春. 茉莉酸类对稻、高梁和果园草颖花开放的诱导效应[D]. 南京: 南京农业大学, 2000.
    [15] 仲维功, 李传国, 苏自强. 不同类型水稻品种花时特性的研究[J]. 江苏农业科学, 1990(1): 16-18.
    [16] 陆燕雯, 王冬翼, 顾庆华, 等. 粳型光温敏感雄性核不育系开花习性研究[J]. 上海农业学报, 2012, 28(3): 124-126.
    [17] 曾晓春, 周燮, 吴晓玉. 水稻颖花开放机理研究进展[J]. 中国农业科学, 2004, 37(2): 188-195.
    [18] 王忠, 顾蕴洁, 高煜珠. 水稻开颖机理的探讨: Ⅲ: 浆片的结构及其在开颖过程中内含物的变化[J]. 作物学报, 1991, 17(2): 96-101.
    [19]

    HESLOP-HARRISON Y, HESLOP-HARRISON J S. Lodicule function and filament extension in the grasses: Potassium ion movement and tissue specialization[J]. Annals of Botany, 1996: 573-582.

    [20] 王忠, 顾蕴洁. 水稻开闭颖过程及其影响因素[EB/OL]. 中国科技论文在线, [2022-09-03]. http://www.paper.edu.cn.
    [21] 王忠, 顾蕴洁, 高煜珠. 水稻开颖机理的探讨: Ⅴ: 不育系与可育系浆片和花丝结构的比较[J]. 作物学报, 1994, 20(1): 13-17.
    [22] 薛欣艳. 关于水稻浆片调节颖花开放机理的分子生物学基础研究[D]. 扬州: 扬州大学, 2010.
    [23] 刘娟. 一个水稻花时提前突变体的遗传分析与基因定位[D]. 成都: 四川农业大学, 2016.
    [24] 邹春梅, 何永明, 曾晓春. MeJA诱导水稻颖花开放作用机理的研究[G]. 2007年全国植物生长物质研讨会论文摘要汇编. 南昌: 中国植物生理学会, 2007.
    [25]

    QIN Y, YANG J, ZHAO J. Calcium changes and the response to methyl jasmonate in rice lodicules during anthesis[J]. Protoplasma, 2005, 225(1/2): 103-112.

    [26] 玉忠, 顾蕴洁, 高煜珠. 水稻开颖机理的探讨: Ⅱ: CO2对水稻开颖的效应[J]. 作物学报, 1989, 15(1): 59-66.
    [27]

    FRY S C, SMITH R C, RENWICK K F, et al. Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants[J]. The Biochemical Journal, 1992, 282(Pt 3): 821-828.

    [28]

    CARPITA N C, GIBEAUT D M. Structural models of primary cell walls in flowering plants: Consistency of molecular structure with the physical properties of the walls during growth[J]. The Plant Journal, 1993, 3(1): 1-30. doi: 10.1111/j.1365-313X.1993.tb00007.x

    [29] 付永琦, 向妙莲, 蒋海燕, 等. 水稻颖花开放前浆片转录组变化[J]. 中国农业科学, 2016, 49(6): 1017-1033.
    [30]

    SAKURAI J, ISHIKAWA F, YAMAGUCHI T, et al. Identification of 33 rice aquaporin genes and analysis of their expression and function[J]. Plant and Cell Physiology, 2005, 46(9): 1568-1577. doi: 10.1093/pcp/pci172

    [31] 何永明, 曾晓春, 向妙莲, 等. 水稻花时调控研究进展[J]. 湖北农业科学, 2014, 53(7): 1489-1492.
    [32]

    ZENG X C, ZHOU X, ZHANG W, et al. Opening of rice floret in rapid response to methyl jasmonate[J]. Journal of Plant Growth Regulation, 1999, 18(4): 153-158. doi: 10.1007/PL00007063

    [33] 李金军, 范国华, 张仁余, 等. 不同水稻品种开花时间的比较试验[J]. 浙江农业科学, 2007(1): 63-66.
    [34]

    PHAM T T, PHUONG D T P, ISHIKAWA R, et al. QTL analysis for flowering time using backcross population between Oryza sativa Nipponbare and O. rufipogon[J]. Genes & Genetic Systems, 2010, 85(4): 273-279.

    [35] 万国, 冯跃, 张凤娇, 等. 水稻花时性状的QTL定位[J]. 核农学报, 2013, 27(5): 562-567.
    [36]

    HIRABAYASHI H, SASAKI K, KAMBE T, et al. qEMF3, a novel QTL for the early-morning flowering trait from wild rice, Oryza officinalis, to mitigate heat stress damage at flowering in rice, O. sativa[J]. Journal of Experimental Botany, 2015, 66(5): 1227-1236. doi: 10.1093/jxb/eru474

    [37]

    SHEEHY J, ELMIDO A, CENTENO G, et al. Searching for new plants for climate change[J]. Journal of Agricultural Meteorology, 2005, 60(5): 463-468. doi: 10.2480/agrmet.463

    [38]

    SHEEHY J E, MABILANGAN A E, DIONORA M J A, et al. Time of day of flowering in wild species of the genus Oryza[J]. International Rice Research Notes, 2007, 32(1): 12-13.

    [39]

    XIAO H, WANG Y, LIU D, et al. Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference[J]. Plant Molecular Biology, 2003, 52(5): 957-966. doi: 10.1023/A:1025401611354

    [40]

    NAGASAWA N, MIYOSHI M, SANO Y, et al. SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice[J]. Development, 2003, 130(4): 705-718. doi: 10.1242/dev.00294

    [41]

    YADAV S R, PRASAD K, VIJAYRAGHAVAN U. Divergent regulatory OsMADS2 functions control size, shape and differentiation of the highly derived rice floret second-whorl organ[J]. Genetics, 2007, 176(1): 283-294. doi: 10.1534/genetics.107.071746

    [42]

    YAO S G, OHMORI S, KIMIZU M, et al. Unequal genetic redundancy of rice PISTILLATA orthologs, OsMADS2 and OsMADS4, in lodicule and stamen development[J]. Plant and Cell Physiology, 2008, 49(5): 853-857. doi: 10.1093/pcp/pcn050

    [43]

    WANG M, ZHU X, PENG G, et al. Methylesterification of cell-wall pectin controls the diurnal flower-opening times in rice[J]. Molecular Plant, 2022, 15(6): 956-972. doi: 10.1016/j.molp.2022.04.004

    [44]

    XU P, WU T, ALI A, et al. EARLY MORNING FLOWERING 1 (EMF1) regulates the floret opening time by mediating lodicule cell wall formation in rice[J]. Plant biotechnology journal, 2022, 20: 1441-1443. doi: 10.1111/pbi.13860

    [45]

    ZHAI Q, ZHANG X, WU F, et al. Transcriptional mechanism of jasmonate receptor COI1-mediated delay of flowering time in Arabidopsis[J]. Plant Cell, 2015, 27(10): 2814-2828.

    [46]

    SONG S, QI T, HUANG H, et al. Regulation of stamen development by coordinated actions of jasmonate, auxin, and gibberellin in Arabidopsis[J]. Molecular Plant, 2013, 6(4): 1065-1073. doi: 10.1093/mp/sst054

    [47]

    WASTERNACK C, STRNAD M. Jasmonates are signals in the biosynthesis of secondary metabolites: Pathways, transcription factors and applied aspects: A brief review[J]. New Biotechnology, 2019, 48: 1-11. doi: 10.1016/j.nbt.2017.09.007

    [48]

    CHINI A, FONSECA S, FERNÁNDEZ G, et al. The JAZ family of repressors is the missing link in jasmonate signaling[J]. Nature, 2007, 448(7154): 666-671. doi: 10.1038/nature06006

    [49]

    THINES B, KATSIR L, MELOTTO M, et al. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signaling[J]. Nature, 2007, 448(7154): 661-665. doi: 10.1038/nature05960

    [50]

    KATSIR L, CHUNG H S, KOO A J, et al. Jasmonate signaling: A conserved mechanism of hormone sensing[J]. Current Opinion in Plant Biology, 2008, 11(4): 428-435. doi: 10.1016/j.pbi.2008.05.004

    [51]

    GEERINCK J, PAUWELS L, DE JAEGER G, et al. Dissection of the one-MegaDalton JAZ1 protein complex[J]. Plant Signaling & Behavior, 2014, 5(8): 1039-1041.

    [52]

    WANG C, LIU Y, LI S S, et al. Insights into the origin and evolution of the plant hormone signaling machinery[J]. Plant Physiology, 2015, 167(3): 872-886. doi: 10.1104/pp.114.247403

    [53] 宋平, 夏凯, 吴传万, 等. 雄性不育和可育水稻开颖对茉莉酸甲酯响应的差异[J]. 植物学报, 2001, 43(5): 480-485.
    [54] 闫芝芬, 周燮, 马春红, 等. 冠毒素和茉莉酸甲酯对诱导小麦、黑麦和高羊茅草颖花开放的效应[J]. 中国农业科学, 2001, 34(3): 334-337.
    [55] 何永明, 林拥军, 曾晓春. 水稻颖花自然开放过程中茉莉酸(JA)生物合成的变化[J]. 作物学报, 2012, 38(10): 1891-1899.
    [56]

    XIAO Y, CHEN Y, CHARNIKHOVA T, et al. OsJAR1 is required for JA-regulated floret opening and anther dehiscence in rice[J]. Plant Molecular Biology, 2014, 86(1/2): 19-33.

    [57]

    LI X, WANG Y, DUAN E, et al. OPEN GLUME1: A key enzyme reducing the precursor of JA, participates in carbohydrate transport of lodicules during anthesis in rice[J]. Plant Cell Reports, 2018, 37(2): 329-346. doi: 10.1007/s00299-017-2232-y

    [58]

    HIBARA K I, ISONO M, MIMURA M, et al. Jasmonate regulates juvenile-adult phase transition in rice[J]. Development, 2016, 143(18): 3407-3416.

    [59] 闫志强, 徐海, 马作斌, 等. 籼稻与粳稻花时对茉莉酸甲酯(MeJA)响应的敏感性差异[J]. 中国农业科学, 2014, 47(13): 2529-2540.
    [60] 黄友明, 曾晓春. 环境因子和颖花构造对水稻颖花关闭的效应[J]. 江苏农业科学, 2021, 49(19): 94-100.
    [61]

    LIU L, ZOU Z, QIAN K, et al. Jasmonic acid deficiency leads to scattered floret opening time in cytoplasmic male sterile rice Zhenshan 97A[J]. Journal of Experimental Botany, 2017, 68(16): 4613-4625. doi: 10.1093/jxb/erx251

    [62] 杨天玲. 提高杂交水稻繁殖制种异交结实率的途经[J]. 种子科技, 2007(3): 51-53.
    [63] 夏原野, 杜志敏, 杨宇尘, 等. 喷施表油菜素内酯对籼稻和粳稻花时的影响[J]. 作物杂志, 2019(4): 139-147.
    [64] 闫志强, 徐海, 宫彦龙, 等. 籼粳稻的花时对乙烯利调控的响应及其敏感性差异[J]. 沈阳农业大学学报, 2015, 46(6): 641-647.
    [65] 丁超尘, 郑立平. 激素改变杂交水稻制种父本花时的试验初报[J]. 安徽农业科学, 1994, 22(4): 295-299.
    [66]

    HUANG Y, ZENG X, CAO H. Hormonal regulation of floret closure of rice (Oryza sativa)[J]. PLoS One, 2018, 13(6): e198828.

    [67]

    ZHAO Z, ZHANG Y, LIU X, et al. A role for a dioxygenase in auxin metabolism and reproductive development in rice[J]. Developmental Cell, 2013, 27(1): 113-122. doi: 10.1016/j.devcel.2013.09.005

    [68]

    ZHAO Z, WANG C, YU X, et al. Auxin regulates source-sink carbohydrate partitioning and reproductive organ development in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(36): e2121671119. doi: 10.1073/pnas.2121671119

    [69]

    JAGADISH S V K, BAHUGUNA R N, DJANAGUIRAMAN M, et al. Implications of high temperature and elevated CO2 on flowering time in plants[J]. Frontiers in Plant Science, 2016, 7: 913. doi: 10.3389/fpls.2016.00913.

    [70] 蒯建敏, 莫惠栋, 惠大丰. 水稻花时与气象因子的关系[J]. 中国水稻科学, 1994, 8(2): 79-84.
    [71] 王忠, 卢从明, 顾蕴洁, 等. 水稻开颖机理的探讨: Ⅰ: 温度对水稻开颖及花粉生活力的影响[J]. 作物学报, 1988, 14(1): 14-21.
    [72]

    JAGADISH S, CRAUFURD P, WHEELER T. High temperature stress and spikelet fertility in rice (Oryza sativa L.)[J]. Journal of Experimental Botany, 2007, 58(7): 1627-1635. doi: 10.1093/jxb/erm003

    [73]

    BISWAS K K O C, NEUMANN R, HAGA K, et al. Photomorphogenesis of rice seedlings: A mutant impaired in phytochrome-mediated inhibition of coleoptile growth[J]. Plant and Cell Physiology, 2003, 44(3): 242-254. doi: 10.1093/pcp/pcg040

    [74]

    NISHIYAMA I, BLANCO L. Artificial control of flower opening time during the day in rice plant: I: Preliminary experiments[J]. Japanese Journal of Crop Science, 1981, 50(1): 59-66. doi: 10.1626/jcs.50.59

    [75] 顾蕴洁, 王忠, 高煜珠. 环境因素对水稻颖花开闭影响的机理[J]. 植物生理学报, 1993, 19(4): 345-352.
    [76] 王忠, 何循宏. CO2促进小麦开花的效应[J]. 江苏农学院学报, 1991, 12(1): 46.
    [77] 许祥明, 王忠. 某些酸类物质对水稻开颖的效应[J]. 植物生理学报, 1998, 24(2): 124-130.
    [78]

    KOBAYASI K, SAKAI H, TOKIDA T, et al. Effects of free-air CO2 enrichment on flower opening time in rice[J]. Plant Production Science, 2019, 22(3): 367-373. doi: 10.1080/1343943X.2019.1569472

    [79] 王忠, 顾蕴洁, 高煜珠. CO2诱导水稻开花技术的应用[J]. 植物生理学报, 1993, 29(4): 282-287.
    [80]

    ISHIMARU T, HIRABAYASHI H, IDA M, et al. A genetic resource for early-morning flowering trait of wild rice Oryza officinalis to mitigate high temperature-induced spikelet sterility at anthesis[J]. Annals of Botany, 2010, 106(3): 515-520. doi: 10.1093/aob/mcq124

    [81] 徐伟东, 蔡金洋, 杨尧城. 水稻籼粳亚种间杂种优势利用研究现状与展望[J]. 中国稻米, 2016, 22(2): 1-7. doi: 10.3969/j.issn.1006-8082.2016.02.001
图(4)  /  表(1)
计量
  • 文章访问数:  224
  • HTML全文浏览量:  45
  • PDF下载量:  483
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-02
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2022-11-09

目录

Corresponding author: SHEN Rongxin, shenrongxin@scau.edu.cn

  1. On this Site
  2. On Google Scholar
  3. On PubMed

/

返回文章
返回