• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

细菌3–酮脂酰ACP还原酶的研究现状与展望

王海洪, 胡喆

王海洪, 胡喆. 细菌3–酮脂酰ACP还原酶的研究现状与展望[J]. 华南农业大学学报, 2022, 43(6): 148-159. DOI: 10.7671/j.issn.1001-411X.202208055
引用本文: 王海洪, 胡喆. 细菌3–酮脂酰ACP还原酶的研究现状与展望[J]. 华南农业大学学报, 2022, 43(6): 148-159. DOI: 10.7671/j.issn.1001-411X.202208055
WANG Haihong, HU Zhe. Research status and prospect on bacterial 3-oxoacyl-ACP-reductase[J]. Journal of South China Agricultural University, 2022, 43(6): 148-159. DOI: 10.7671/j.issn.1001-411X.202208055
Citation: WANG Haihong, HU Zhe. Research status and prospect on bacterial 3-oxoacyl-ACP-reductase[J]. Journal of South China Agricultural University, 2022, 43(6): 148-159. DOI: 10.7671/j.issn.1001-411X.202208055

细菌3–酮脂酰ACP还原酶的研究现状与展望

基金项目: 国家自然科学基金(31671987,31972232);粤港澳大湾区国际科技创新中心建设–国际科学研究合作项目(2022309042)
详细信息
    作者简介:

    王海洪,教授,博士,主要从事细菌代谢研究,E-mail: wanghh36@scau.edu.cn
    王海洪,教授,华南农业大学生命科学学院副院长,广东省农业生物蛋白质功能与调控重点实验室副主任。长期从事细菌代谢研究,主要研究方向包括:细菌功能基因组学、细菌脂肪酸合成多样性和脂肪酸合成代谢调控机理、细菌生理生化、革兰阴性细菌群体感应与脂肪酸合成代谢关系等。主持国家重点基础研究发展计划(973)子课题、国家自然科学基金、教育部高等学校博士学科点专项科研基金、广东省自然科学基金等项目。近年来以通信作者在《mBio》《Molecular Plant Pathology》《Journal of Biological Chemistry》《Frontiers in Microbiology》《Molecular Plant-Microbe Interactions》《Applied and Environmental Microbiology》《BMC Microbiology》等学术刊物上发表论文40余篇

  • 中图分类号: Q933

Research status and prospect on bacterial 3-oxoacyl-ACP-reductase

  • 摘要:

    3–酮脂酰ACP还原酶属于短链醇脱氢酶/还原酶(SDR)超家族蛋白,参与细菌脂肪酸及相关物质合成,负责催化3–酮脂酰ACP还原为3–羟脂酰ACP。3–酮脂酰ACP还原酶在细菌中广泛存在,且氨基酸序列较为保守,然而其生物学功能却展现出多样性。本文对近年来细菌3–酮脂酰ACP还原酶的结构特性、生物学功能和抑制剂等方面的研究进展进行综述,为加深对3–酮脂酰ACP还原酶的理解和抗菌药物的开发提供有益的借鉴。

    Abstract:

    3-oxoacyl-ACP-reductase, a member of short chain dehydrogenase/reductase(SDR) super family, participates in the biothsythesis of bacterial fatty acid and derivatives by catalyzing the reduction of 3-oxoacyl-ACP to 3-hydroxyacyl-ACP. 3-oxoacyl-ACP-reductase is ubiquitously exsit in bacterial and highly conversed in amino acid sequence, however, it has diverse biological functions. In this review, we summerize the advance of structures, biological functions and inhibitors of 3-oxoacyl-ACP-reductase in recent years. This paper will provide useful references for further understanding of 3-oxoacyl-ACP-reductase and antibacterial drug design.

  • 自两系不育系被发现以来,两系法杂交已在水稻生产上得到应用,并显示出广阔的应用前景[1]。两系不育系育性不稳定,育性敏感期受外界环境的严重制约,如果该时期遇到异常天气,可能导致繁种失败。已经推广应用的两系不育系起点温度由于温度漂变,制种风险增加[2-3],使得两系不育系的生产推广受到严重制约。此外,配合力不够理想也是其推广受阻的重要原因之一[4]。配合力包括一般配合力和特殊配合力,一般配合力指一个自交系和品种或其他一系列其他自交系和品种所产生的杂种一代的产量平均值;特殊配合力指在某个特定的杂交组合中2个自交系杂交产生的杂种一代的产量表现。一般配合力是评价亲本优良特性的重要依据,可通过一般配合力了解某亲本在杂交后代中的平均表现,特殊配合力是特定杂交组合中基因通过显性、上位性作用及与环境互作使后代表现相关优良性状的潜在能力。研究亲本的配合力对水稻杂交育种具有重要的指导意义,通过配合力评价种质资源在育种中的作用,可以充分利用水稻杂种优势,促进杂交水稻的发展[5]。若某亲本产量性状的一般配合力高,杂交组合的特殊配合力也较高,表明该亲本具有广泛的适用性,易选育高产优质的杂交组合[6]。遗传力反映亲本性状遗传给子代的能力[7],为了探究性状的遗传力,可以把全部基因型方差占表现型方差的百分比作为广义遗传力(hB2),把加性方差占表现型方差的百分比作为狭义遗传力(hN2),用狭义遗传力度量性状的遗传力更可靠[8]。本研究对大穗型两系不育系‘M20S’主要穗部性状的配合力和遗传力进行研究,从生产实践出发,选用生产上广泛应用的7个优良杂交稻亲本进行不完全双列杂交(Incomplete diallel cross,NCⅡ)设计组配[9],通过一般配合力、特殊配合力及遗传力分析,明确该不育系和恢复系在穗部性状上配合力的强弱,为优质高产杂交稻组合的选配提供参考依据。

    光温敏核不育系:‘望S’、‘深08S’、‘Y58S’以及华南农业大学国家植物航天育种工程技术研究中心新选育的‘M20S’;恢复系:‘航恢1173’、‘航恢91’和‘航恢24’;4个不育系和3个恢复系配制的12个杂交组合,共计19份材料。

    试验在华南农业大学国家植物航天育种工程技术研究中心水稻育种试验田(N23°,E113°)进行。2017年早季以4个光温敏核不育系为母本和3个恢复系为父本,按照NCⅡ设计配制12个杂交组合;2017年晚季种植F1代,7月22日播种,8月7日水稻幼苗长到四叶一心时插秧,完全随机区组设计,3次重复,每个小区按照6×6规格种植,共36株,单本种植,田间管理措施与常规大田生产管理相同。完熟期时,从每个小区中选取3株有代表性的单株,用烘干机于45 ℃条件下干燥处理24 h,干燥后用量程40 cm的直尺测量穗长,用水稻数字化考种机YTS-5D考种并记录总粒数、结实率、千粒质量、单穗质量、一次枝梗数和着粒密度(每10 cm稻穗着生的水稻籽粒总粒数)。

    数据分析采用SPSS 19.0和Microsoft Excel 2007进行,统计分析参照文献[10]的方法进行,配合力和遗传力分析按照文献[11-12]进行。根据固定模型估算试验材料的配合力效应,根据随机模型估算群体配合力方差和遗传参数。

    考察各杂交组合F1代的穗部性状,统计分析各性状的平均值,结果见表1。‘M20S’配制的组合与‘望S’配制的组合相比,一次枝梗数、总粒数、单穗质量和着粒密度呈正向优势;与‘深08S’配制的组合相比,穗长、一次枝梗数、总粒数和着粒密度呈正向优势;与‘Y58S’配制的组合相比,一次枝梗数、总粒数、结实率、单穗质量和着粒密度基本呈正向优势。

    表  1  12个杂交组合F1代穗部性状表型值
    Table  1.  Phenotypic values of panicle traits in F1 generations of 12 hybrid combinations
    杂交组合
    Hybrid combination
    穗长/cm
    Panicle
    length
    一次枝梗数
    Primary branch number
    总粒数
    Total grain number
    结实率/%
    Seed setting rate
    单穗质量/g
    Single panicle weight
    千粒质量/g
    1 000-grain weight
    着粒密度
    Grain
    density
    望 S/航恢 1173
    Wang S/Hanghui 1173
    29.54 16.67 2 009.00 0.76 29.60 18.02 67.90
    望 S/航恢 91
    Wang S/Hanghui 91
    27.50 12.00 1 437.33 0.85 30.31 24.21 52.30
    望 S/航恢 24
    Wang S/Hanghui 24
    29.17 13.33 2 459.33 0.88 48.31 23.44 84.56
    平均值 Mean value 28.74 14.00 1 968.56 0.83 36.08 21.89 68.25
    深 08S/航恢 1173
    Deep 08S/Hanghui 1173
    27.74 14.00 2 352.33 0.81 38.97 18.59 85.01
    深 08S/航恢 91
    Deep 08S/Hanghui 91
    26.94 12.33 2 134.67 0.86 47.33 23.90 79.34
    深 08S/航恢 24
    Deep 08S/Hanghui 24
    26.67 12.67 1 908.00 0.91 37.92 23.71 71.73
    平均值 Mean value 27.12 13.00 2 131.67 0.86 41.41 22.07 78.69
    Y58S/航恢 1173
    Y58S/Hanghui 1173
    29.67 19.00 2 573.00 0.78 38.60 14.38 86.69
    Y58S/航恢 91
    Y58S/Hanghui 91
    28.81 11.00 1 256.67 0.76 21.95 22.56 43.69
    Y58S/航恢 24
    Y58S/Hanghui 24
    26.84 11.33 1 442.00 0.81 27.25 23.01 53.62
    平均值 Mean value 28.44 13.78 1 757.22 0.78 29.27 19.98 61.33
    M20S/航恢 1173
    M20S/Hanghui 1173
    30.36 17.00 2 382.33 0.89 24.62 19.40 78.49
    M20S/航恢 91
    M20S/Hanghui 91
    27.67 18.00 3 810.00 0.78 35.69 11.82 137.57
    M20S/航恢 24
    M20S/Hanghui 24
    25.56 16.00 3 581.00 0.79 54.74 18.98 141.00
    平均值 Mean value 27.86 17.00 3 257.78 0.82 38.35 16.73 119.02
    下载: 导出CSV 
    | 显示表格

    7个穗部性状的配合力方差分析结果如表2所示,7个性状区间差异均不显著,组间差异均达极显著水平,说明不同杂交组合的基因型效应间存在真实的遗传差异。不育系母本中,穗长的一般配合力方差差异显著,一次枝梗数等其他6个性状的一般配合力方差差异极显著;恢复性父本中,总粒数和着粒密度的一般配合力方差差异显著,穗长等其他5个性状的一般配合力方差差异极显著;母本/父本组合中,穗长的特殊配合力方差差异显著,其他6个性状的特殊配合力方差差异极显著。表明杂交组合中7个性状均同时受亲本的一般配合力和杂交组合的特殊配合力的影响,即受基因的加性效应和非加性效应共同影响。

    表  2  穗部性状配合力方差分析1)
    Table  2.  Variance analysis of panicle trait combining ability
    方差来源
    Source of variation
    穗长
    Panicle
    length
    一次枝梗数
    Primary branch number
    总粒数
    Total grain number
    结实率
    Seed setting rate
    单穗质量
    Single panicle weight
    千粒质量
    1 000-grain weight
    着粒密度
    Grain
    density
    区间 Interplot 1.45 3.11 6 140.11 0.00 11.18 0.02 32.96
    组间 Intergroup 6.38** 22.87** 823.60** 0.01** 307.15** 48.99** 2 750.49**
    母本 Female parent 4.61* 27.78** 4 045 022.10** 0.01** 239.36** 55.19** 5 991.79**
    父本 Male parent 16.33** 44.45** 128 764.19* 0.01** 303.20** 67.79** 318.64*
    母本/父本 Female/Male 3.95* 13.22** 1 364 410.82** 0.01** 342.36** 39.61** 1 940.45**
    误差 Error 1.36 1.96 36 785.08 0.00 11.03 0.98 67.00
     1)“*”和“**”分别表示达 0.05 和 0.01 显著水平
     1) “*” and “**” indicated significance at 0.05 and 0.01 levels, respectively
    下载: 导出CSV 
    | 显示表格

    4个不育系和3个恢复系亲本的7个性状的一般配合力分析结果如表3所示。相同性状不同亲本和不同性状相同亲本材料间的一般配合力效应不同,表明不同亲本不同性状的遗传基因效应复杂。

    表  3  穗部性状一般配合力效应值
    Table  3.  The effect value of general combining ability of panicle trait %
    亲本
    Parent
    穗长
    Panicle
    length
    一次枝梗数
    Primary branch number
    总粒数
    Total grain number
    结实率
    Seed setting
    rate
    单穗质量
    Single panicle weight
    千粒质量
    1 000-grain weight
    着粒密度
    Grain
    density
    望 S Wang S 2.49 −3.08 −13.61 0.67 −0.55 8.54 −16.54
    深 08S Deep 08S −3.30 −10.00 −6.46 4.58 14.15 9.41 −3.89
    Y58S 1.44 −4.62 −22.89 −4.99 −19.32 −0.91 −24.92
    M20S −0.63 17.69 42.96 −0.27 5.72 −17.03 45.35
    航恢 1173 Hanghui 1173 4.60 15.38 2.21 −1.75 −9.18 −12.75 −2.71
    航恢 91 Hanghui 91 −1.10 −7.69 −5.23 −1.15 −6.76 2.25 −4.29
    航恢 24 Hanghui 24 −3.50 −7.69 3.02 2.90 15.94 10.50 7.00
    下载: 导出CSV 
    | 显示表格

    ‘M20S’在一次枝梗数、总粒数和着粒密度性状上一般配合力最佳,明显高于其他不育系,单穗质量一般配合力表现为正值,穗长、结实率和千粒质量表现为负值,一般配合力好的性状较多,表明该不育系能通过提高一次枝梗数和着粒密度来提高总粒数,从而提高库容量,与优势互补的恢复系进行配组,易选育出产量潜力高的品种。在3个恢复系中,‘航恢24’在总粒数、结实率、单穗质量、千粒质量和着粒密度性状上一般配合力具佳,优势比较明显,可以与‘M20S’优势互补。

    不同杂交组合的7个性状的特殊配合力分析结果如表4所示,相同性状不同组合间及相同组合不同性状间的特殊配合力效应值存在明显差异,表明基因互作具多样性。从单穗质量上看,‘Y58S’/‘航恢1173’特殊配合力效应值最高,‘深08S’/‘航恢24’最低,特殊配合力效应值的变幅在–25.54~34.89之间。从经济学产量相关性状上看,‘望S’/‘航恢24’、‘深08S’/‘航恢91’、‘Y58S’/‘航恢1173’、和‘M20S’/‘航恢24’的特殊配合力效应较好;‘M20S’配制的3个组合中,‘M20S’/‘航恢24’一次枝梗数、总粒数、单穗质量、千粒质量和着粒密度这5个经济性状的特殊配合力表现为正效应,特别是总粒数、单穗质量和着粒密度这3个性状的特殊配合力效应值较高,该杂交组合在以‘M20S’为母本的3个组合中最符合大穗型育种的要求。

    表  4  穗部性状特殊配合力的效应值
    Table  4.  The effect value of special combining ability of panicle trait %
    杂交组合
    Hybrid combination
    穗长
    Panicle
    length
    一次枝梗数
    Primary branch number
    总粒数
    Total grain number
    结实率
    Seed setting rate
    单穗质量
    Single panicle weight
    千粒质量
    1 000-grain weight
    着粒密度
    Grain
    density
    望 S/航恢 1173
    Wang S/Hanghui 1173
    −1.72 3.08 −0.44 −6.74 −8.67 −6.44 2.47
    望 S/航恢 91
    Wang S/Hanghui 91
    −3.30 −6.15 −18.08 3.98 −9.13 9.24 −15.21
    望 S/航恢 24
    Wang S/Hanghui 24
    5.03 3.08 18.52 2.76 17.80 −2.80 12.74
    深 08S/航恢 1173
    Deep 08S/Hanghui 1173
    −2.38 −8.46 7.47 −4.58 2.45 −4.47 10.39
    深 08S/航恢 91
    Deep 08S/Hanghui 91
    0.47 3.08 5.36 1.28 23.09 6.83 5.16
    深 08S/航恢 24
    Deep 08S/Hanghui 24
    1.91 5.38 −12.83 3.30 −25.54 −2.36 −15.55
    Y58S/航恢 1173
    Y58S/Hanghui 1173
    −0.20 20.77 33.59 0.94 34.89 −15.06 33.74
    Y58S/航恢 91
    Y58S/Hanghui 91
    2.42 −11.54 −16.74 −1.68 −13.40 10.54 −17.41
    Y58S/航恢 24
    Y58S/Hanghui 24
    −2.22 −9.23 −16.85 0.74 −21.49 4.52 −16.33
    M20S/航恢 1173
    M20S/Hanghui 1173
    4.31 −15.38 −40.63 10.38 −23.68 25.97 −46.60
    M20S/航恢 91
    M20S/Hanghui 91
    0.42 14.62 29.46 −3.57 −5.56 −26.61 27.46
    M20S/航恢 24
    M20S/Hanghui 24
    −4.72 0.77 11.17 −6.81 29.24 0.64 19.14
    下载: 导出CSV 
    | 显示表格

    此外,对亲本一般配合力效应和杂交组合特殊配合力效应进行比较,发现亲本一般配合力效应与杂交组合特殊配合力效应似乎是相对独立的,亲本一般配合力高的,杂交组合特殊配合力不一定高,亲本一般配合力低的,杂交组合特殊配合力不一定低。

    估算穗部各性状的一般配合力和特殊配合力基因型方差,可以更深入地了解双亲及其互作对杂种后代性状的影响,估算结果见表5,通过σ122σ12+σ22以及VgVs对比可知,总粒数、结实率、千粒质量、着粒密度和单穗质量的σ1-22>σ12+σ22,且Vs>Vg,表明这些性状以受亲本互作非加性效应的影响为主。穗长和一次枝梗数的σ1-22<σ12+σ22Vs<Vg,表明这2个性状以受亲本基因加性效应影响为主。通过σe2σG2对比可知,所有性状的σG2>σe2,表明亲本各性状受遗传的影响为主,受环境影响占次要地位,F1的各个性状受遗传与环境共同影响。

    表  5  穗部性状配合力的基因型方差及贡献率1)
    Table  5.  Genotypic variance and contribution rate of combining ability of panicle trait
    性状 Trait σ12 σ22 σ1-22 σe2 σ12+σ22
    穗长 Panicle length 0.055 0 1.375 6 0.861 7 1.364 9 1.430 6
    一次枝梗数 Primary branch number 1.213 0 3.469 1 3.754 2 2.477 3 4.682 1
    总粒数 Total grain number 223 384.270 0 −137 294.100 0 442 541.910 0 36 785.081 0 86 090.203 0
    结实率 Seed setting rate 0 −0.000 5 0.002 1 0.002 8 −0.000 4
    单穗质量 Single panicle weight −8.583 3 −4.351 1 110.443 5 11.029 6 −12.934 4
    千粒质量 1 000-grain weight 337.611 7 −180.201 1 624.485 0 0.978 2 157.410 6
    着粒密度 Grain density 1.298 3 3.131 1 12.877 3 0.978 2 4.429 4
    性状 Trait σG2 σP2 Vg/% Vs/%
    穗长 Panicle length 2.292 3 3.657 1 62.41 37.59
    一次枝梗数 Primary branch number 8.436 3 1 091.360 0 55.50 44.50
    总粒数 Total grain number 528 632.120 0 565 417.200 0 16.29 83.71
    结实率 Seed setting rate 0.001 7 0.004 6 −25.73 125.73
    单穗质量 Single panicle weight 97.509 0 108.538 6 −13.26 113.26
    千粒质量 1 000-grain weight 781.895 6 782.873 8 20.13 79.87
    着粒密度 Grain density 17.306 7 18.284 9 25.59 74.41
     1) σ12:P1(一套n1=4的不育系亲本)的一般配合力基因型方差;σ22:P2(一套n2=3的恢复系亲本)的一般配合力基因型方差;σ1-22:P1-2(亲本互作)的特殊配合力基因型方差,又叫显性方差;σe2:环境方差;σ12+σ22:一般配合力加性基因型方差;σG2:总基因型方差;σP2:表现型方差;Vg:一般配合力方差,反映加性效应;Vs:特殊配合力方差,反映非加性效应
     1) σ12: P1 (a set of n1=4 male sterile parents) general gratification genotype variance; σ22: P2 (a set of n2=3 restorative parents) general gratification genotype variance; σ1-22: P1-2 (parent interaction) special combining ability genotype variance (also called dominant variance); σe2: environmental variance; σ12+σ22: General combining ability additive genotype variance: σG2: Total genotype variance; σP2: Phenotypic variance; Vg : General combining force variance; Vs: Special combining force variance, reflecting non-additive effect
    下载: 导出CSV 
    | 显示表格

    7个穗部性状的遗传力如表6所示。广义遗传力从大到小依次为:千粒质量、着粒密度、总粒数、单穗质量、一次枝梗数、穗长和结实率。所有性状的广义遗传力均比较大,除了结实率广义遗传力为37.49%,其余性状的广义遗传力都在60%以上,其中千粒质量和总粒数的广义遗传力达90%以上,说明这些性状很大程度上受遗传效应的影响。狭义遗传力从大到小依次为:一次枝梗数、穗长、着粒密度、千粒质量、总粒数、结实率和单穗质量,这些性状的狭义遗传力都在45%以下,遗传稳定性一般,性状的遗传力较弱,特别是结实率和单穗质量的狭义遗传力均小于0,影响非常显著,后代遗传稳定性差,亲本性状容易与自然环境、栽培方式等因素互作,对组合性状表现有直接影响。

    表  6  各性状遗传力的估算1)
    Table  6.  Estimation of heritability of each trait %
    性状 Trait hB2 hN2
    穗长 Panicle length 62.68 39.12
    一次枝梗数 Primary branch number 77.30 42.90
    总粒数 Total grain number 93.49 15.23
    结实率 Seed setting number 37.49 −9.65
    单穗质量 Single panicle weight 89.84 −11.92
    千粒质量 1 000-grain weight 99.88 20.11
    着粒密度 Grain density 94.65 24.22
     1) hB2:广义遗传力;hN2:狭义遗传力
     1) hB2: Generalized heritability; hN2: Narrow heritability
    下载: 导出CSV 
    | 显示表格

    穗部性状的一般配合力和特殊配合力方差差异均达显著或极显著水平,说明这些性状的遗传是受加性效应和非加性效应共同控制的。这些性状的配合力方差分析结果表明一次枝梗数和穗长的一般配合力方差较大,说明这2个性状受加性效应的影响较大;总粒数、结实率、千粒质量、着粒密度以及单穗质量的特殊配合力方差较大,说明这些性状主要受非加性效应的影响。此外,对亲本一般配合力效应和杂交组合特殊配合力效应进行比较,发现亲本的一般配合力效应与杂交组合的特殊配合力效应似乎是相对独立的,与前人研究情况不完全相同[13-14],亲本一般配合力高的,组合的特殊配合力不一定高,亲本一般配合力低的,组合的特殊配合力不一定低,与前人研究一致[15-17]。由穗部性状广义遗传力分析可知,总粒数、千粒质量、着粒密度和单穗质量表现突出,受遗传效应的作用极大。在优质杂交稻亲本的改良中,一次枝梗数、穗长等狭义遗传力高的性状,可在杂交早代选择,以提高育种效率。

    在亲本选配的过程中,需要综合考虑亲本的一般配合力与杂交组合的特殊配合力才能获得优良组合[18-19],根据研究分析,‘M20S’在总粒数、一次枝梗数、着粒密度性状上一般配合力最突出,单穗质量上一般配合力也是正值,表现良好,该不育系是一个大穗型的不育系,而穗型的大小是通过总粒数来分类的,总粒数的一般配合力达到了42.96%,远远超过其他亲本,说明‘M20S’的大穗性状不但能通过杂交遗传给后代,而且该不育系可以通过提高一次枝梗数来提高总粒数,从而提高经济学产量,是一个优良的亲本。对于杂交组合‘M20S/航恢24’,总粒数、着粒密度和单穗质量的特殊配合力较高,其中单穗质量的特殊配合力较大,为29.24%,其他性状特殊配合力效应较好,表明‘M20S/航恢24’在‘M20S’组配的3个组合中是最符合大穗型育种要求的组合。

  • 图  1   细菌脂肪酸合成途径(A)与OAR催化反应机制(B)

    Figure  1.   The pathway of fatty acid biosynthesis in bacterial (A) and the reduction of 3-oxoacyl-ACP catalyzed by 3-oxoacyl-ACP reductase (B)

    图  2   不同细菌中的脂肪酸合成基因簇与OAR编码基因

    Figure  2.   The fatty acid biosynthesis gene cluster and gene enconding 3-oxoacyl-ACP reductase in different bacteria

    图  3   大肠埃希菌FabG的单体(A)和四聚体(B)晶体结构

    Figure  3.   The crystal structures of Escherichia coli FabG monomer (A) and tetramer (B)

    图  4   大肠埃希菌FabG假定催化机制(A)与突变体蛋白重建脂肪酸合成反应(B)

    Figure  4.   The postulated catalytic mechanism of Escherichia coli FabG (A) and reconstruction of fatty acid by mutant protein (B)

    图  5   苜蓿中华根瘤菌NodG具有OAR活性并参与苜蓿结瘤

    A:苜蓿根瘤菌FabG与NodG具有OAR活性;1:C8:0-ACP,2:EcFabG,3:苜蓿根瘤菌FabG,4:苜蓿根瘤菌NodG,5:不添加FabG蛋白,6:C8:0-ACP。B:NodG相关菌株结瘤效率;S. meliloti 1021/pSRK-Gm:野生型菌株携带空质粒,LF1:苜蓿根瘤菌nodG突变菌株,LF2:苜蓿根瘤菌nodG/fabG双突变菌株携带苜蓿根瘤菌nodG质粒,LF3:苜蓿根瘤菌nodG/fabG双突变菌株携带苜蓿根瘤菌fabG质粒, “*”“**”分别表示0.05和0.01水平差异显著[43],每个试验有8个重复

    Figure  5.   The Sinorhizobium meliloti NodG maintains OAR activity and involves in alfalfa nodulation

    A: Sinorhizobium meliloti FabG and NodG maintain the OAR activity; 1: C8:0-ACP, 2: Product of EcFabG, 3: Product of SmFabG, 4: Product of SmNodG, 5: No FabG addition, 6: C8:0-ACP. B: Nodulation efficiency of Sinorhizobium meliloti mutant strains; S. meliloti 1021/pSRK-Gm: Wild type strain carrying plasmid pSRK-Gm, LF1: Sinorhizobium meliloti nodG mutant strain, LF2: Sinorhizobium meliloti nodG/fabG double mutant strain carrying SmnodG ecoding plasmid, LF3: Sinorhizobium meliloti nodG/fabG double mutant strain carrying SmfabG ecoding plasmid, “*” and “**”indicate significant differences at levels of 0.05 and 0.01, respectively, Every experiment has eight replicates

    图  6   XccfabG2互补OAR突变菌株及参与Xcc DSF类信号分子合成

    A:XccfabG2互补大肠埃希菌fabG温度敏感突变菌株CL104;EcfabG:质粒携带有大肠埃希菌fabG基因,Vector:空质粒载体,fabG2:质粒携带有XccfabG2基因,AasS:质粒携带有哈氏弧菌aasS基因,AasS+ fabG:质粒携带有哈氏弧菌aasSXccfabG2基因。B:XccfabG2互补XccfabG1突变菌株;WT:Xcc野生型,∆fabG1+pfabG2XccfabG1突变菌株携带有XccfabG2表达质粒。C: XccfabG2突变菌株的DSF类信号分子产量;DSF:11−甲基−顺−2−月桂酰烯酸,BDSF:顺−2−月桂酰烯酸,空柱:Xcc野生型,黑柱:XccfabG2突变菌株,灰柱:XccfabG2突变菌株携带有XccfabG2表达质粒,条状柱:XccfabG2突变菌株携带有XccfabG1表达质粒

    Figure  6.   XccfabG2 complements OAR mutant strain and invovles in DSF signal synthesis in Xcc

    A: XccfabG2 complement E. coli fabG temperature sensitive strain CL104; EcfabG: CL104 carrying plasmid expressing EcfabG, Vector: CL104 carrying empty plasmid, fabG2: CL104 carrying plasmid expressing XccfabG2, AasS: CL104 carrying plasmid expressing Vibrio harzii aasS, AasS+ fabG2: CL104 carrying plasmid expressing Vibrio harzii aasS and XccfabG2. B: XccfabG2 complement XccfabG1 mutant strain; WT: Wild type X. campestris pv. campestris strain, ∆fabG1+pfabG2: XccfabG1 mutant strain carrying XccfabG2 expressing plasmid. C: The DSFs production of XccfabG2 mutant strains; DSF: cis-11-methyl-2-dodecenoic acid, BDSF: cis-2-dodecenoic acid, White column: Wild-type X. campestris pv. campestris strain, Black column: XccfabG2 mutant strain, Gray column: XccfabG2 mutant strain carrying a plasmid encoding XccfabG2, Stippled column: XccfabG2 mutant strain carrying a plasmid encoding XccfabG1

    图  7   XccfabG3互补CL104并参与菌黄素合成

    A:XccfabG3互补大肠埃希菌fabG温度敏感突变菌株CL104;EcfabG:质粒携带有大肠埃希菌fabG基因,fabG1:质粒携带有XccfabG1基因,Vector:空质粒载体,fabG3:质粒携带有XccfabG3基因,CL104:无外源质粒。B: XccfabG3突变菌株的菌黄素产量;Xcc WT:Xcc野生型,Xcc YH1:XccfabG3突变菌株,Xcc YH2:XccfabG3突变菌株携带有XccfabG3表达质粒,Xcc YH6:XccfabG3突变菌株携带有XccfabG1表达质粒,Xcc YH10:XccfabG3突变菌株携带有XccfabG2表达质粒,Xcc YH7:XccfabG3突变菌株携带有EcfabG表达质粒,Xcc YH1+3-HBA:XccfabG3突变菌株添加3−羟基丁酸

    Figure  7.   XccfabG3 complements CL104 and invovles in xanthomonadin synthesis in Xcc

    A: XccfabG3 complement Escherichia coli fabG temperature sensitive strain CL104; EcfabG: CL104 carrying plasmid expressing EcfabG, fabG1: CL104 carrying plasmid expressing XccfabG1, Vector: CL104 carrying empty plasmid, fabG3: CL104 carrying plasmid expressing XccfabG3, CL104: CL104 without plasmid. B: Xanthomonadin production in XccfabG3 mutant; Xcc WT: Wild-type X. campestris pv. campestris strain, Xcc YH1: XccfabG3 mutant, Xcc YH2: XccfabG3 mutant carrying XccfabG3 ecoding plasmid, Xcc YH6: XccfabG3 mutant carrying XccfabG1 ecoding plasmid, Xcc YH10: XccfabG3 mutant carrying XccfabG2 ecoding plasmid, Xcc YH7: XccfabG3 mutant carrying EcfabG ecoding plasmid, Xcc YH1+3-HBA: XccfabG3 mutant supplemented with 3-hydroxybutyric acid

  • [1]

    PARSONS J B, ROCK C O. Bacterial lipids: Metabolism and membrane homeostasis[J]. Progress in Lipid Research, 2013, 52(3): 249-276. doi: 10.1016/j.plipres.2013.02.002

    [2]

    KANEDA T. Iso- and anteiso-fatty acids in bacteria: Biosynthesis, function, and taxonomic significance[J]. Microbiological Reviews, 1991, 55(2): 288-302. doi: 10.1128/mr.55.2.288-302.1991

    [3]

    CRONAN J E, THOMAS J. Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways[J]. Methods in Enzymology, 2009, 459: 395-433.

    [4]

    SANJURJO P, RUIZ J I, MONTEJO M. Inborn errors of metabolism with a protein-restricted diet: Effect on polyunsaturated fatty acids[J]. Journal of Inherited Metabolic Disease, 1997, 20(6): 783-789. doi: 10.1023/A:1005367701176

    [5]

    ROCK C O, CRONAN J E. Escherichia coli as a model for the regulation of dissociable (type II) fatty acid biosynthesis[J]. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1996, 1302(1): 1-16. doi: 10.1016/0005-2760(96)00056-2

    [6]

    GOVERS-RIEMSLAG J W P, JANSSEN M P, ZWAAL R F A, et al. Effect of membrane fluidity and fatty acid composition on the prothrombin-converting activity of phospholipid vesicles[J]. Biochemistry, 1992, 31(41): 10000-10008.

    [7]

    ZHANG Y M, ROCK C O. Membrane lipid homeostasis in bacteria[J]. Nature Reviews Microbiology, 2008, 6(3): 222-233. doi: 10.1038/nrmicro1839

    [8]

    YUAN Y Q, LEEDS J A, MEREDITH T C. Pseudomonas aeruginosa directly shunts β-oxidation degradation intermediates into de novo fatty acid biosynthesis[J]. Journal of Bacteriology, 2012, 194(19): 5185-5196. doi: 10.1128/JB.00860-12

    [9]

    ZHANG L, VERES-SCHALNAT T A, SOMOGYI A, et al. Fatty acid cosubstrates provide β-oxidation precursors for rhamnolipid biosynthesis in Pseudomonas aeruginosa, as evidenced by isotope tracing and gene expression assays[J]. Applied and Environmental Microbiology, 2012, 78(24): 8611-8622. doi: 10.1128/AEM.02111-12

    [10]

    CHRISTENSEN Q H, CRONAN J E. Lipoic acid synthesis: A new family of octanoyltransferases generally annotated as lipoate protein ligases[J]. Biochemistry, 2010, 49(46): 10024-10036. doi: 10.1021/bi101215f

    [11]

    LIN S, HANSON R E, CRONAN J E. Biotin synthesis begins by hijacking the fatty acid synthetic pathway[J]. Nature Chemical Biology, 2010, 6(9): 682-688. doi: 10.1038/nchembio.420

    [12]

    WANG Q, LIU C S, XIAN M, et al. Biosynthetic pathway for poly(3-hydroxypropionate) in recombinant Escherichia coli[J]. Journal of Microbiology, 2012, 50(4): 693-697. doi: 10.1007/s12275-012-2234-y

    [13]

    YU Y, HU Z, DONG H, et al. Xanthomonas campestris FabH is required for branched-chain fatty acid and DSF-family quorum sensing signal biosynthesis[J]. Scientific Reports, 2016, 6: 32811. doi: 10.1038/srep32811

    [14]

    HAN J, LU Q H, ZHOU L G, et al. Identification of the polyhydroxyalkanoate (PHA)-specific acetoacetyl coenzyme A reductase among multiple FabG paralogs in Haloarcula hispanica and reconstruction of the PHA biosynthetic pathway in Haloferax volcanii[J]. Applied and Environmental Microbiology, 2009, 75(19): 6168-6175. doi: 10.1128/AEM.00938-09

    [15]

    CRONAN J E JR. The structure of mammalian fatty acid synthase turned back to front[J]. Chemistry & Biology, 2004, 11(12): 1601-1602.

    [16]

    AMSTUTZ C L, FRISTEDT R, SCHULTINK A, et al. An atypical short-chain dehydrogenase-reductase functions in the relaxation of photoprotective qH in Arabidopsis[J]. Nature Plants, 2020, 6(2): 154-166. doi: 10.1038/s41477-020-0591-9

    [17]

    KOO A J, FULDA M, BROWSE J, et al. Identification of a plastid acyl‐acyl carrier protein synthetase in Arabidopsis and its role in the activation and elongation of exogenous fatty acids[J]. The Plant Journal, 2005, 44(4): 620-632. doi: 10.1111/j.1365-313X.2005.02553.x

    [18]

    LEE S, JUNG Y, LEE S, et al. Correlations between FAS elongation cycle genes expression and fatty acid production for improvement of long-chain fatty acids in Escherichia coli[J]. Applied Biochemistry and Biotechnology, 2013, 169(5): 1606-1619. doi: 10.1007/s12010-012-0088-8

    [19]

    CRONAN J E JR. Phospholipid modifications in bacteria[J]. Current Opinion in Microbiology, 2002, 5(2): 202-205. doi: 10.1016/S1369-5274(02)00297-7

    [20]

    MA J C, WU Y Q, CAO D, et al. Only acyl carrier protein 1 (AcpP1) functions in Pseudomonas aeruginosa fatty acid synthesis[J]. Frontiers in Microbiology, 2017, 8: 2186.

    [21]

    ROCK C O, JACKOWSKI S. Forty years of bacterial fatty acid synthesis[J]. Biochemical and Biophysical Research Communications, 2002, 292(5): 1155-1166. doi: 10.1006/bbrc.2001.2022

    [22]

    KONDAKOVA T, KUMAR S, CRONAN J E. A novel synthesis of trans-unsaturated fatty acids by the Gram-positive commensal bacterium Enterococcus faecalis FA2-2[J]. Chemistry and Physics of Lipids, 2019, 222: 23-35. doi: 10.1016/j.chemphyslip.2019.04.010

    [23]

    HEATH R J, ROCK C O. Fatty acid biosynthesis as a target for novel antibacterials[J]. Current Opinion in Investigational Drugs, 2004, 5(2): 146-153.

    [24]

    PARSONS J B, ROCK C O. Is bacterial fatty acid synthesis a valid target for antibacterial drug discovery?[J]. Current Opinion in Microbiology, 2011, 14(5): 544-549. doi: 10.1016/j.mib.2011.07.029

    [25]

    MOLNOS J, GARDINER R, DALE G E, et al. A continuous coupled enzyme assay for bacterial malonyl-CoA: Acyl carrier protein transacylase (FabD)[J]. Analytical Biochemistry, 2003, 319(1): 171-176. doi: 10.1016/S0003-2697(03)00327-0

    [26]

    SIX D A, YUAN Y Q, LEEDS J A, et al. Deletion of the β-acetoacetyl synthase FabY in Pseudomonas aeruginosa induces hypoacylation of lipopolysaccharide and increases antimicrobial susceptibility[J]. Antimicrobial Agents and Chemotherapy, 2014, 58(1): 153-161. doi: 10.1128/AAC.01804-13

    [27] 余永红, 段园园, 董会娟, 等. 茄科雷尔氏菌脂酰−CoA合成酶的功能鉴定[J]. 微生物学通报, 2017, 44(2): 366-374. doi: 10.13344/j.microbiol.china.160688
    [28]

    BI H, ZHU L, JIA J, et al. Unsaturated fatty acid synthesis in the gastric pathogen Helicobacter pylori proceeds via a backtracking mechanism[J]. Cell Chemical Biology, 2016, 23(12): 1480-1489. doi: 10.1016/j.chembiol.2016.10.007

    [29] 雷鸣, 马金成, 王海洪. 流产布氏杆菌烯脂酰ACP还原酶的鉴定[J]. 生物化学与生物物理进展, 2012, 39(5): 464-471.
    [30] 余永红, 马建荣, 王海洪. 野油菜黄单胞菌中烯脂酰ACP还原酶的功能鉴定[J]. 生物化学与生物物理进展, 2016, 43(5): 514-522. doi: 10.16476/j.pibb.2015.0343
    [31]

    DONG H J, MA J C, CHEN Q Y, et al. A cryptic long-chain 3-ketoacyl-ACP synthase in the Pseudomonas putida F1 unsaturated fatty acid synthesis pathway[J]. The Journal of Biological Chemistry, 2021, 297(2): 100920.

    [32]

    HEATH R J, ROCK C O. Roles of the FabA and FabZ beta-hydroxyacyl-acyl carrier protein dehydratases in Escherichia coli fatty acid biosynthesis[J]. The Journal of Biological Chemistry, 1996, 271(44): 27795-27801. doi: 10.1074/jbc.271.44.27795

    [33]

    ZHU L, CHENG J L, LUO B, et al. Functions of the Clostridium acetobutylicium FabF and FabZ proteins in unsaturated fatty acid biosynthesis[J]. BMC Microbiology, 2009, 9: 119.

    [34]

    CAMPBELL J W, CRONAN J E JR. Bacterial fatty acid biosynthesis: Targets for antibacterial drug discovery[J]. Annual Review of Microbiology, 2001, 55: 305-332. doi: 10.1146/annurev.micro.55.1.305

    [35]

    CHENG J L, MA J C, LIN J S, et al. Only one of the five Ralstonia solanacearum long-chain 3-ketoacyl-acyl carrier protein synthase homologues functions in fatty acid synthesis[J]. Applied and Environmental Microbiology, 2012, 78(5): 1563-1573. doi: 10.1128/AEM.07335-11

    [36]

    GOLDBECK O, ECK A W, SEIBOLD G M. Real time monitoring of NADPH concentrations in Corynebacterium glutamicum and Escherichia coli via the genetically encoded sensor mBFP[J]. Frontiers in Microbiology, 2018, 9: 2564.

    [37]

    KALLBERG Y, OPPERMANN U, PERSSON B. Classification of the short-chain dehydrogenase/reductase superfamily using hidden Markov models[J]. The FEBS Journal, 2010, 277(10): 2375-2386. doi: 10.1111/j.1742-4658.2010.07656.x

    [38]

    ZHANG Y, CRONAN J. Transcriptional analysis of essential genes of the Escherichia coli fatty acid biosynthesis gene cluster by functional replacement with the analogous Salmonella typhimurium gene cluster[J]. Journal of Bacteriology, 1998, 180: 3295-3303.

    [39]

    PODKOVYROV S M, LARSON T J. Identification of promoter and stringent regulation of transcription of the fabH, fabD and fabG genes encoding fatty acid biosynthetic enzymes of Escherichia coli[J]. Nucleic Acids Research, 1996, 24(9): 1747-1752. doi: 10.1093/nar/24.9.1747

    [40]

    LAI C Y, CRONAN J E. Isolation and characterization of beta-ketoacyl-acyl carrier protein reductase (fabG) mutants of Escherichia coli and Salmonella enterica serovar Typhimurium[J]. Journal of Bacteriology, 2004, 186(6): 1869-1878. doi: 10.1128/JB.186.6.1869-1878.2004

    [41]

    WANG H H, CRONAN J E. Only one of the two annotated Lactococcus lactis fabG genes encodes a functional beta-ketoacyl-acyl carrier protein reductase[J]. Biochemistry, 2004, 43(37): 11782-11789. doi: 10.1021/bi0487600

    [42]

    FENG S X, MA J C, YANG J, et al. Ralstonia solanacearum fatty acid composition is determined by interaction of two 3-ketoacyl-acyl carrier protein reductases encoded on separate replicons[J]. BMC Microbiology, 2015, 15: 223.

    [43]

    MAO Y H, LI F, MA J C, et al. Sinorhizobium meliloti functionally replaces 3-oxoacyl-acyl carrier protein reductase (FabG) by overexpressing NodG during fatty acid synthesis[J]. Molecular Plant-Microbe Interactions: MPMI, 2016, 29(6): 458-467. doi: 10.1094/MPMI-07-15-0148-R

    [44]

    HU Z, DONG H J, MA J C, et al. Novel Xanthomonas campestris long-chain-specific 3-oxoacyl-acyl carrier protein reductase involved in diffusible signal factor synthesis[J]. mBio, 2018, 9(3): e00596-e00518.

    [45]

    GUO Q Q, ZHANG W B, ZHANG C, et al. Characterization of 3-oxacyl-acyl carrier protein reductase homolog genes in Pseudomonas aeruginosa PAO1[J]. Frontiers in Microbiology, 2019, 10: 1028.

    [46]

    CUKIER C D, HOPE A G, ELAMIN A A, et al. Discovery of an allosteric inhibitor binding site in 3-oxo-acyl-ACP reductase from Pseudomonas aeruginosa[J]. ACS Chemical Biology, 2013, 8(11): 2518-2527.

    [47]

    JOERNVALL H, PERSSON B, KROOK M, et al. Short-chain dehydrogenases/reductases (SDR)[J]. Biochemistry, 1995, 34(18): 6003-6013. doi: 10.1021/bi00018a001

    [48]

    PERSSON B, KALLBERG Y. Classification and nomenclature of the superfamily of short-chain dehydrogenases/reductases (SDRs)[J]. Chemico Biological Interactions, 2013, 202(1): 111-115.

    [49]

    LORD D M, BARAN A U, WOOD T K, et al. BdcA, a protein important for Escherichia coli biofilm dispersal, is a short-chain dehydrogenase/reductase that binds specifically to NADPH[J]. PLoS One, 2014, 9(9): e105751.

    [50]

    FISHER M, KROON J T, MARTINDALE W, et al. The X-ray structure of Brassica napus β-keto acyl carrier protein reductase and its implications for substrate binding and catalysis[J]. Structure, 2000, 8(4): 339-347. doi: 10.1016/S0969-2126(00)00115-5

    [51]

    BUYSSCHAERT G, VERSTRAETE K, SAVVIDES S N, et al. Structural and biochemical characterization of an atypical short-chain dehydrogenase/reductase reveals an unusual cofactor preference[J]. The FEBS Journal, 2013, 280(5): 1358-1370. doi: 10.1111/febs.12128

    [52]

    YANG J K, YOON H J, AHN H J, et al. Crystallization and preliminary X-ray crystallographic analysis of the Rv2002 gene product from Mycobacterium tuberculosis, a beta-ketoacyl carrier protein reductase homologue[J]. Acta Crystallographica Section D, Biological Crystallography, 2002, 58(Pt2): 303-305.

    [53]

    REN Q, SIERRO N, WITHOLT B, et al. FabG, an NADPH-dependent 3-ketoacyl reductase of Pseudomonas aeruginosa, provides precursors for medium-chain-length poly-3-hydroxyalkanoate biosynthesis in Escherichia coli[J]. Journal of Bacteriology, 2000, 182(10): 2978-2981. doi: 10.1128/JB.182.10.2978-2981.2000

    [54]

    PRICE A C, ZHANG Y M, ROCK C O, et al. Structure of β-ketoacyl-[acyl carrier protein] reductase from Escherichia coli: Negative cooperativity and its structural asis[J]. Biochemistry, 2001, 40(43): 12772-12781.

    [55]

    CROSS E M, ADAMS F G, WATERS J K, et al. Insights into Acinetobacter baumannii fatty acid synthesis 3-oxoacyl-ACP reductases[J]. Scientific Reports, 2021, 11(1): 1-16. doi: 10.1038/s41598-020-79139-8

    [56]

    VELLA P, RUDRARAJU R S, LUNDBäCK T, et al. A FabG inhibitor targeting an allosteric binding site inhibits several orthologs from gram-negative ESKAPE pathogens[J]. Bioorganic & Medicinal Chemistry, 2021, 30: 115898.

    [57]

    PRICE A C, ZHANG Y M, ROCK C O, et al. Cofactor-induced conformational rearrangements establish a catalytically competent active site and a proton relay conduit in FabG[J]. Structure, 2004, 12(3): 417-428. doi: 10.1016/j.str.2004.02.008

    [58]

    ZHANG Y M, WU B N, ZHENG J, et al. Key residues responsible for acyl carrier protein and beta-ketoacyl-acyl carrier protein reductase (FabG) interaction[J]. The Journal of Biological Chemistry, 2003, 278(52): 52935-52943. doi: 10.1074/jbc.M309874200

    [59] 童文华, 张文彬, 马金成, 等. 大肠杆菌3−酮基脂酰ACP还原酶110位天冬酰胺突变后的结构与功能[J]. 中国生物化学与分子生物学报, 2012, 28(8): 713-721. doi: 10.13865/j.cnki.cjbmb.2012.08.010
    [60]

    HU Z, MA J C, CHEN Y C, et al. Escherichia coli FabG 3-ketoacyl-ACP reductase proteins lacking the assigned catalytic triad residues are active enzymes[J]. The Journal of Biological Chemistry, 2021, 296: 100365.

    [61]

    CROSS E M, ARAGÃO D, SMITH K M, et al. Structural characterization of a short-chain dehydrogenase/reductase from multi-drug resistant Acinetobacter baumannii[J]. Biochemical and Biophysical Research Communications, 2019, 518(3): 465-471. doi: 10.1016/j.bbrc.2019.08.056

    [62]

    ZHANG Y M, WHITE S W, ROCK C O. Inhibiting bacterial fatty acid synthesis[J]. Journal of Biological Chemistry, 2006, 281(26): 17541-17544. doi: 10.1074/jbc.R600004200

    [63]

    ZHENG Y M, ZHU Y S, MAO X H, et al. SDR7-6, a short-chain alcohol dehydrogenase/reductase family protein, regulates light-dependent cell death and defence responses in rice[J]. Molecular Plant Pathology, 2022, 23(1): 78-91. doi: 10.1111/mpp.13144

    [64]

    ZHANG Y M, ROCK C O. Evaluation of epigallocatechin gallate and related plant polyphenols as inhibitors of the FabG and FabI reductases of bacterial type II fatty-acid synthase[J]. Journal of Biological Chemistry, 2004, 279(30): 30994-31001. doi: 10.1074/jbc.M403697200

    [65]

    WU D, WU X D, YOU X F, et al. Inhibitory effects on bacterial growth and beta-ketoacyl-ACP reductase by different species of maple leaf extracts and tannic acid[J]. Phytotherapy Research: PTR, 2010, 24(S1): S35-S41. doi: 10.1002/ptr.2873

    [66]

    ENGEN K, ROSENSTRÖM U, AXELSSON H, et al. Identification of drug-Like inhibitors of insulin-regulated aminopeptidase through small-molecule screening[J]. Assay and Drug Development Technologies, 2016, 14(3): 180-193. doi: 10.1089/adt.2016.708

    [67]

    VARAKALA S D, RESHMA R S, SCHNELL R, et al. Lead derivatization of ethyl 6-bromo-2-((dimethylamino) methyl)-5-hydroxy-1-phenyl-1H-indole-3-carboxylate and 5-bromo-2-(thiophene-2-carboxamido) benzoic acid as FabG inhibitors targeting ESKAPE pathogens[J]. European Journal of Medicinal Chemistry, 2022, 228: 113976.

    [68]

    KRISTAN K, BRATKOVIC T, SOVA M, et al. Novel inhibitors of beta-ketoacyl-ACP reductase from Escherichia coli[J]. Chemico Biological Interactions, 2009, 178(1): 310-316.

    [69]

    BANERJEE A, SUGANTINO M, SACCHETTINI J C, et al. The mabA gene from the inhA operon of Mycobacterium tuberculosis encodes a 3-ketoacyl reductase that fails to confer isoniazid resistance[J]. Microbiology, 1998, 144(10): 2697-2704. doi: 10.1099/00221287-144-10-2697

    [70]

    MARRAKCHI H, DUCASSE S, LABESSE G, et al. MabA (FabG1), a Mycobacterium tuberculosis protein involved in the long-chain fatty acid elongation system FAS-II[J]. Microbiology, 2002, 148(Pt4): 951-960.

    [71]

    PARISH T, ROBERTS G, LAVAL F, et al. Functional complementation of the essential gene fabG1 of Mycobacterium tuberculosis by Mycobacterium smegmatis fabG but not Escherichia coli fabG[J]. Journal of Bacteriology, 2007, 189(10): 3721-3728. doi: 10.1128/JB.01740-06

    [72]

    DENG Y Y, WU J E, TAO F, et al. Listening to a new language: DSF-based quorum sensing in gram-negative bacteria[J]. Chemical Reviews, 2011, 111(1): 160-173. doi: 10.1021/cr100354f

    [73] 周莲, 王杏雨, 何亚文. 植物病原黄单胞菌DSF信号依赖的群体感应机制及调控网络[J]. 中国农业科学, 2013, 46(14): 2910-2922. doi: 10.3864/j.issn.0578-1752.2013.14.007
    [74]

    YU Y H, MA J R, GUO Q Q, et al. A novel 3-oxoacyl-ACP reductase (FabG3) is involved in the xanthomonadin biosynthesis of Xanthomonas campestris pv. campestris[J]. Molecular Plant Pathology, 2019, 20(12): 1696-1709. doi: 10.1111/mpp.12871

    [75]

    SINGH R, REYNOLDS K A. Characterization of FabG and FabI of the Streptomyces coelicolor dissociated fatty acid synthase[J]. Chembiochem, 2015, 16(4): 631-640. doi: 10.1002/cbic.201402670

  • 期刊类型引用(5)

    1. 摆福红,王晓敏,王凯彬,郭猛,程国新,胡新华,付金军,高艳明,李建设. 15个大果番茄自交系果实性状的配合力与遗传力分析. 江苏农业学报. 2023(04): 1043-1051 . 百度学术
    2. 王立如,曲玉杰,耿晓丽,Zareen Sarfraz,贾银华,潘兆娥,杜雄明. 陆地棉亲本间遗传距离与配合力的相关性研究. 中国科学:生命科学. 2022(04): 491-498 . 百度学术
    3. 李会霞,田岗,王玉文,刘鑫,刘红. 谷子杂交种与亲本性状的遗传相关性. 中国农业科学. 2020(02): 239-246 . 百度学术
    4. 彭建,朱益祥,钟许成,周小平,唐小美,刘俊,于江辉. 籼型杂交水稻农艺性状的配合力及遗传力研究(英文). Agricultural Science & Technology. 2020(03): 1-6+12 . 百度学术
    5. 王晓敏,赵宇飞,袁东升,刘珮君,郑福顺,胡新华,付金军,高艳明,李建设. 三十三个番茄自交系数量性状的配合力和遗传力分析. 浙江农业学报. 2019(12): 2025-2035 . 百度学术

    其他类型引用(3)

图(7)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  10
  • PDF下载量:  324
  • 被引次数: 8
出版历程
  • 收稿日期:  2022-08-21
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2022-11-09

目录

/

返回文章
返回