• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

蛋白修饰调控植物育性与生殖发育的研究进展

李构思, 张雅玲, 马坤, 谢勇尧, 陈乐天

李构思, 张雅玲, 马坤, 等. 蛋白修饰调控植物育性与生殖发育的研究进展[J]. 华南农业大学学报, 2022, 43(6): 36-47. DOI: 10.7671/j.issn.1001-411X.202208054
引用本文: 李构思, 张雅玲, 马坤, 等. 蛋白修饰调控植物育性与生殖发育的研究进展[J]. 华南农业大学学报, 2022, 43(6): 36-47. DOI: 10.7671/j.issn.1001-411X.202208054
LI Gousi, ZHANG Yaling, MA Kun, et al. Advances in protein modifications for fertility regulation and reproductive development in plants[J]. Journal of South China Agricultural University, 2022, 43(6): 36-47. DOI: 10.7671/j.issn.1001-411X.202208054
Citation: LI Gousi, ZHANG Yaling, MA Kun, et al. Advances in protein modifications for fertility regulation and reproductive development in plants[J]. Journal of South China Agricultural University, 2022, 43(6): 36-47. DOI: 10.7671/j.issn.1001-411X.202208054

蛋白修饰调控植物育性与生殖发育的研究进展

基金项目: 国家自然科学基金重点项目(32030080);广东省基础与应用基础研究区域联合基金青年项目(2020A1515111101);广东省自然科学基金杰出青年项目(2021B1515020089)
详细信息
    作者简介:

    李构思,博士,主要从事作物育性分子机制与杂种优势利用的研究,E-mail: goes_li@qq.com

    通讯作者:

    陈乐天,教授,博士,主要从事作物育性分子机制与杂种优势利用的研究,E-mail: lotichen@scau.edu.cn

  • 中图分类号: Q943

Advances in protein modifications for fertility regulation and reproductive development in plants

  • 摘要:

    植物育性与生殖发育不仅与植物繁衍后代息息相关,也是作物杂种优势利用技术的遗传基础。探究作物生殖发育的分子调控机制是植物发育研究的重要科学内容,也是农作物杂交育种的重要需求。蛋白质修饰是重要的翻译后调控方式,广泛参与植物生长发育的各个过程。近年来,植物育性调控和生殖发育的分子网络调控研究取得了重要进展,但尚未系统总结蛋白质修饰在该发育过程中的功能和作用。为此,本文总结了磷酸化、泛素化、SUMO化和糖基化等多种蛋白修饰类型在植物育性调控和生殖发育阶段的调控作用,以期为后续的研究提供参考和思路。

    Abstract:

    Plant fertility regulation and reproductive development are not only essential for plant reproduction, but also the genetic basis of hybrid crop breeding. Post-translational protein modifications are the important regulation mechanism of different activities during plant development. In recent years, the molecular networks of fertility regulation and reproductive development in plants have been greatly advanced. However, very few reviews focus on how post-translational protein modifications involve in the plant fertility control. In this review, we summarize the function of phosphorylation, ubiquitination, SUMOylation and glycosylation on male fertility regulation, which provides some insights into further studies.

  • 水稻Oryza sativa L.是我国最重要的粮食作物之一,提高水稻产量是水稻研究者的主要育种任务之一。水稻的有效穗数、穗粒数和粒质量是决定其产量的重要因素[1]。穗长是与产量相关的性状之一,与水稻产量密切相关,可作为产量育种的选择标准[2]。穗长是典型的数量性状,并由主数量性状座位(Quantitative trait locus,QTL)和次QTL控制[3]。据统计(http://www.gramene.org),到目前为止,已检测到超过250个穗长QTL,分布在12条染色体上。然而,只有少数基因被克隆并应用于水稻育种中。DEP1基因是一个控制我国水稻产量的关键多效基因,其能促进细胞分裂,通过缩短穗节间长度使稻穗变密、枝梗数増加,同时增加穗粒数,从而提高产量[4]SP1编码一个可能的多肽转运蛋白(Peptide transporter, PTR),通过调节穗分生组织的活性来调节水稻的穗长[5]DEP2 编码一个目前功能未知的植物特有蛋白,通过影响穗指数生长时期的细胞增殖决定穗的生长和伸长[6]DEP3编码一个含有马铃薯糖蛋白样磷脂酶A2 (Phospholipase A2,PLA2)超家族结构域的蛋白,在高产中发挥着重要作用[7]。大穗基因LP(EP3)编码含有Kelch重复序列的F-box蛋白,LP可能参与调节植物组织中的细胞分裂素水平从而影响穗长、一级枝梗数和籽粒数[8]。同时,许多穗部性状基因也是多效性的,例如MOC1[9]LAX1[10]IPA1(OsSPL14WFP)[11]等基因同时影响着穗长、分枝数和分蘖等多个性状;而OsSPL18的缺陷降低了粒宽、粒厚和穗长,但增加了分蘖[12]

    穗长的遗传因素及其对水稻产量提高的影响尚未得到充分认识[13-14]。深入挖掘与穗长相关的新基因将有助于揭示决定各种类型的品种特异性穗结构的基本机制,对于水稻穗型塑造及提高水稻产量有着重要意义。

    本研究以2个优良亲本‘R8605’和‘ZP37’及其杂交衍生的208个高世代重组自交系(Recombinant inbred lines,RILs)为作图群体,利用通过全基因组重测序构建的包含2193个bin标记高密度连锁图谱,在3种不同环境下定位和分析穗长QTL,寻找新的、可稳定遗传的的位点,同时分析他们的聚合效应,以期为水稻穗长相关基因的精细定位、克隆及分子育种提供依据。

    ‘ZP37’来自广西农业科学院水稻研究所抗性育种研究室收集的一个地方品种,具有茎秆粗壮、穗长短、二次支梗极多和抗病性强等特点;‘R8605’是由广西农业科学院水稻研究所选育的籼粳型恢复系,具有稻穗极长、耐冷和优质高产等特点。以‘R8605’为父本、‘ZP37’为母本杂交获得F1,收获F1代种子后多代自交,使用单粒传法构建了一套包含208个家系的重组自交系群体(F8:9代)。亲本和RILs均于2019年早造和2020年晚造种植于广西南宁市,以及2022年晚造种植于广西桂平市,3种环境分别命名为2019、2020和2022,早造的播种和插秧时间分别为每年的3月1日和4月2日,晚造的则分别为7月18日和8月4日。每个RIL或亲本采用块体设计,每个株系种6行,每行6株,行株距为20 cm×20 cm。单苗栽插,田间管理同当地大田栽培管理。

    水稻成熟时,每株选取3个较大的穗子,测量穗长,即穗颈节至穗顶(不含芒)的长度,计平均值。每个株系随机选取3株单株,以3株的平均值为最终的表型值。

    用WPS office Excel对数据进行记录、分析处理以及绘制RIL群体的不同性状在多个环境下的直方图。以DPS v9.01进行统计分析,采用LSD法检测差异显著性。

    前期我们对‘R8605’和‘ZP37’及其杂交衍生的208个高世代重组自交系群体分别进行全基因组重测序,以‘日本晴’基因组(IRGSP 1.0)作为SNP检测的参考基因组,获得526957个高质量、双等位基因、纯合的SNP标记。使用滑动窗口方法,构建了一个高密度遗传图谱,共包含2193个bin标记。12条染色体的总图距1542.27 cM,每条染色体平均标记数为182.75个;遗传距离为68.68~193.02 cM,平均遗传距离为128.52 cM,相邻2个bin标记间的平均遗传距离和物理距离分别为0.76 cM和201.29 kb[15]。利用QTL IciMapping软件3.4版,采用完备区间作图法(Inclusive composite interval mapping,ICIM)[16-17],设定PIN为0.001,以1 cM为步长,对目的性状进行全基因组扫描,设定似然函数比对数值(Log of odds,LOD)阈值为3.0。以LOD峰值作为该QTL的LOD值,以LOD峰值位置的Bin标记估算QTL的效应,并计算各个QTL的加性效应和对该性状的贡献率,遵循Mccouch等[18]的原则命名QTL。加性效应为正表明增效等位基因来自亲本‘ZP37’,为负则表明来自亲本‘R8605’。

    将在2个及2个以上环境下能重复检测到的位点称为稳定QTL位点。分析稳定QTL位点定位区间内的bin标记的基因型,记为ZP37型、R8605型以及少数存在的杂合类型。分析RIL群体中增效等位基因的分布情况,将聚合不同数量有利基因的RIL群体进行分组,通过评价各组别的性状表现以分析聚合不同数量有利基因的聚合效应。

    对亲本‘ZP37’‘R8605’和208个RIL株系在3个不同的环境下的穗长进行考查和统计分析。‘ZP37’的穗长分别为23.10、23.57和23.48 cm,而‘R8605’的穗长分别为37.56、34.63和32.05 cm,3个环境下‘R8605’的穗长均极显著高于‘ZP37’(图1表1)。

    图  1  2020年亲本‘ZP37’‘R8605’及部分重组自交系穗长差异
    Figure  1.  Panicle length differences of ‘ZP37’, ‘R8605’ and some RILs in 2020
    表  1  穗长在RIL群体中的分布情况
    Table  1.  Distribution of panicle length traits in RIL population
    环境
    Environment
    亲本穗长/cm
    Parent panicle length
    重组自交系穗长
    RIL panicle length
    ZP37R86051)平均值/cm
    Mean
    变幅/cm
    Range
    偏度
    Skewness
    峰度
    Kurtosis
    变异系数/%
    CV
    201923.1037.56**29.0823.20~38.670.42−0.130.11
    202023.5734.63**26.5019.87~37.200.501.040.11
    202223.4832.05**26.2920.86~33.800.290.180.08
     1)“**”表示与‘ZP37’株系相比差异显著(P < 0.01,t 检验)
     1) “**” indicates significant difference from ‘ZP37’ strains (P < 0.01, t test)
    下载: 导出CSV 
    | 显示表格

    重组自交系群体在3个环境下穗长的平均值分别为29.08、26.50、26.29 cm,变幅分别为23.20~38.67、19.87~37.20、20.86~33.80 cm,呈现出广泛的变异和明显的超亲现象(图1)。对穗长的频率分布及峰值进行分析发现,3个环境下重组自交系群体的穗长峰度和偏度的绝对值都小于1,呈现连续变异的近正态分布,且3个环境下的变化趋势相似,说明为多基因控制的数量性状,符合QTL区间作图的要求(表1图2)。

    图  2  不同环境下RIL群体穗长分布
    Figure  2.  Distribution of panicle length in the RIL population in different environments

    对在3个不同环境下种植的RIL群体的穗长进行QTL分析,共检测到11个QTL(表2)。其中,2019年共检测到 5个 QTL,分别位于第4、8、9和12 染色体上,LOD 为 3.07~5.99,单个贡献率介于 2.17%~5.87%。2020 年共检测到5个 QTL,分别位于第3、4、7 和8 染色体,LOD 为 3.11~12.87 ,单个贡献率介于2.28%~10.94%。2022 年共检测到5个 QTL,分别位于第4、7、8和9染色体,LOD值为3.12~6.33,单个贡献率介于2.75%~6.39%。其中4个QTL(qPL4-2qPL7-1qPL8-1qPL9)是在2个不同的环境下均被检测到。

    表  2  不同环境下水稻穗长QTL 分析
    Table  2.  QTL analysis of panicle length under different environments
    位点
    QTL
    染色体
    Chr.
    物理位置/bp
    Physical position
    201920202022
    LOD加性效应
    Additive
    effect
    贡献率/%
    PVE
    LOD加性效应
    Additive
    effect
    贡献率/%
    PVE
    LOD加性效应
    Additive
    effect
    贡献率/%
    PVE
    qPL3-136992384—71974293.11−0.632.28
    qPL3-237324223—78902783.43−0.712.89
    qPL4-1420619799—207025626.22−0.684.54
    qPL4-2424259618—243996413.81−0.692.173.94−0.682.66
    qPL7-1714356324—149827255.210.662.453.140.532.75
    qPL7-2717321645—174187443.120.532.77
    qPL8-1825112712—2601019412.87−1.3910.946.33−0.806.39
    qPL8-2827500184—276827175.99−1.135.87
    qPL9920564403—207708743.22−0.823.085.42−0.704.88
    qPL12-1127167759—74017473.31−0.944.02
    qPL12-21214722574—149187153.07−0.772.70
    下载: 导出CSV 
    | 显示表格

    qPL4-2位于第4染色体的24.26—24.40 Mb处,在2019和2020年2个环境中均被检测到,表现出较强的稳定性。在2019和2020年环境下检测到的LOD分别为3.81和3.94,可分别解释2.17%和2.66%的表型变异。

    qPL7-1位于第7染色体的14.36—14.98 Mb处,在2020和2022年2个环境中均被检测到,表现出较强的稳定性。在2020和2022年环境下检测到的LOD分别为5.21和3.14,可分别解释2.45%和2.75%的表型变异。

    qPL8-1位于第8染色体的25.11—26.01 Mb处,在2020和2022年2个环境中均被检测到,表现出较强的稳定性。在2020、2022年环境下检测到的LOD分别为12.87和6.33,可分别解释10.94%和6.39%的表型变异。

    qPL9位于第9染色体的20.56—20.77 Mb处,在2019和2022年2个环境中均被检测到,表现出较强的稳定性。在2019和2022年环境下检测到的LOD分别为3.22和5.42,可分别解释3.08%和4.88%的表型变异。

    第3染色体上共定位到2个穗长相关的QTL,分别位于6.99—7.20 Mb和7.32—7.89 Mb处,均是在2020年环境下检测到的,增效基因均来自于‘R8605’。qPL3-1的LOD约为3.11,贡献率为2.28%。qPL3-2的LOD约为3.43,贡献率为2.89%。

    第4染色体上除定位到了在2个环境下检测到的qPL4-2,还在2022年环境下检测到了qPL4-1,定位于20.62—20.70 Mb处,增效基因来自于‘R8605’,LOD约为6.22,贡献率为4.54%。

    第7染色体上除定位到了在2个环境下检测到的qPL7-1,还在2022年环境下检测到了qPL7-2,定位于17.32—17.42 Mb处,增效基因来自于‘ZP37’,LOD约为3.12,贡献率为2.77%。

    第8染色体上除定位到了在2个环境下检测到的qPL8-1,还在2019年环境下检测到了qPL8-2,定位于27.50—27.68 Mb处,增效基因来自于‘R8605’,LOD约为5.99,贡献率为5.87%。

    第12染色体上共定位到2个穗长相关的QTL,分别位于7.17—7.40 Mb和14.72—14.92 Mb处,均是在2019年环境下检测到的,增效基因均来自于‘R8605’。qPL12-1的LOD约为3.31,贡献率为4.02%。qPL12-2的LOD约为3.07,贡献率为2.70%。

    以上QTL的增效等位基因大部分来自大穗亲本‘R8605’,说明大穗亲本中的QTL位点对穗长具有明显的增效作用(表2)。

    在所定位到的11个穗长相关QTL中,有4个QTL即qPL4-2qPL7-1qPL8-1qPL9在2个不同环境下均被检测到,表现出稳定的遗传效应。本研究对其中的3个QTL(qPL4-2qPL8-1qPL9)的聚合效应进行分析,根据3个位点的bin标记基因型,先去除杂合类型,然后将RIL群体分为8种组合类型,依次命名为Hap1~Hap 8 (表3)。对不同组合类型的表型值和增效等位位点的数量关系进行分析,结果表明:在3个不同的环境下,随着不同株系中增效等位QTL的增加,穗长表现出了累加效应,穗长增加,且大部分株系之间差异显著(表3)。

    表  3  穗长QTL的聚合效应分析1)
    Table  3.  Pyramiding effect of the QTLs for panicle length
    株系类型QTLRIL数量
    No. of RILs
    不同年份穗长/cm Panicle length in different years
    qPL4-2qPL8-1qPL9201920202022
    Hap 1+++2432.57a29.86a28.75a
    Hap 2++1829.48bc27.15b26.92bc
    Hap 3++1730.39b27.80b27.23b
    Hap 4++3429.63bc26.81bc26.91bc
    Hap 5+1528.91bcd26.34bcd25.71cd
    Hap 6+3028.47cde25.61cde25.62d
    Hap 7+3727.89de25.43de25.57d
    Hap 82026.91e24.44e24.19e
     1) “+”和“−”分别表明含有和不含增效等位基因;同列数据后的不同小写字母表示相同环境下不同株系类型之间差异显著(P < 0.05, LSD法)
     1) “+” and “−” indicate the presence and absence of favorable alleles respectively; Different lowercase letters of the same column indicate significant differences among different types of strains under the same environment (P < 0.05,LSD method)
    下载: 导出CSV 
    | 显示表格

    水稻复杂性状QTL定位的效率主要取决于标记密度,增加标记密度是提高QTL定位分辨率的有效方法[19-20]。以往采用RFLP、SSR、InDel等传统分子标记构建的遗传图谱,精度约为1~10 Mb[21],受标记数量、覆盖密度的限制,定位区间较大且精确度不高。随着高通量测序技术的快速发展,近年来研究者基于高密度bin图谱成功定位了多个粒型、耐低氧萌发、叶绿素含量等水稻复杂性状QTL,大大提高了水稻数量性状遗传分析的效率[22-27]。水稻穗长主要为多基因控制,是受基因和环境的共同影响的复杂数量性状[28]。本研究使用了一个包含2193个bin标记的高密度遗传图谱,定位到了11个穗长QTL位点,其中定位到的4个稳定的穗长QTL位点的物理区间平均只有约470 kb。与以往通过RFLP、SSR、InDel等传统分子标记构建的遗传图谱进行的水稻农艺性状QTL定位结果相比,这一距离已经显著缩小[29-30]

    产量长期以来都是水稻育种过程中的重要目标之一,并受到许多在不同生物过程中发挥作用的QTL/基因的控制,这些QTL/基因的鉴定将有助于在水稻育种中应用优良的等位基因。穗型相关性状是影响水稻产量的直接因素。一般而言,穗长过短,会导致一次枝梗多而紧密,二次枝梗发育受阻;穗长过长会使穗分枝稀疏分布,引起枝梗着粒密度降低,穗粒数减少,影响水稻产量。因此,适宜的穗长可以形成穗枝梗排列适中、着粒密度均匀、穗粒数合适的优良穗型,有利于水稻产量的提高[31]。然而,穗长的遗传因素及其对水稻产量的影响尚未得到很好的认识[32]。深入挖掘水稻重要穗长QTL可为水稻高产育种提供遗传资源和理论依据。本研究利用2个优良亲本‘R8605’和‘ZP37’及其RIL群体构建的高密度遗传图谱,对在3个不同环境下种植的穗长进行QTL分析,共检测到11个QTL,其中7个QTL是新的位点,目前还未见报道,其余4个QTL位点与已报道的穗长基因/QTL位置重叠或相近。如QTL qPL8-1,位于第8染色体25.11—26.01 Mb处,该区域克隆了一个与穗长相关的理想株型基因IPA1(OsSPL14WFP)[11],其正调控水稻直立型密穗基因DEP1,调节水稻株高和穗长,同时还抑制水稻分蘖的发生;qPL4-2与徐华山等[33]以‘9311’为背景、导入‘日本晴’片段的代换系群体定位到穗长QTL pl4、以及魏少博等[34]以‘成恢727’和‘9311’为亲本构建的重组自交系群体定位到的穗长QTL qPL4-1位置重叠;qPL8-2与Zhang等[35]定位到的与RM23466及InDel8-7标记连锁的穗长QTL qPL8位置接近;qPL9与徐华山等[33]定位到的穗长QTL pl9位置接近。共定位的结果也在一定程度上证明了本研究结果的可靠性。

    在育种实践中,穗长已被广泛调查,但在阐明潜在基因及其与产量构成因素的关系方面却没有引起太多关注。目前有一些已报道的穗部结构基因如NAL1,已应用于水稻育种[36-37]。通过利用同一作图群体在多种不同环境下进行QTL定位,检测到受环境影响小、能重复定位到的稳定QTL对聚合育种具有重要的意义[38]。本研究定位的QTL中,有4个是多个不同的环境下稳定表达的QTL,可以有效增加水稻穗长。这些都是重要的QTL,具有较高的研究价值,这些位点值得进一步进行精细定位和候选基因分析,以最终应用于标记辅助选择育种。

    许多研究[39-41]表明,利用分子标记进行辅助聚合育种对性状的改良是很有效的,尤其是涉及数量性状或复杂性状的改良。本研究鉴定的4个遗传效应稳定的穗长相关位点,对其中3个位点的聚合效应的分析结果与我们预期一致,聚集多个有利等位基因可以有效改善表型性状,且增效等位位点的聚合主要表现为累加效应,证明这些位点可以运用于水稻聚合育种中,为提高水稻产量和理想植株的培育提供机会。

  • 图  1   花粉发育各个阶段的蛋白质修饰

    左侧为不同发育时期的花药结构示意图,自上而下分别代表小孢子母细胞期、减数分裂期、小孢子发育期、花粉成熟期;右侧为对应发育时期调控网络中分别受到磷酸化修饰(P)、泛素化修饰(Ubi)、类泛素化修饰(SUMO)及糖基化修饰(Glyc)的蛋白

    Figure  1.   Protein modifications during pollen development

    Left: From top to bottom are the schematic diagrams of the structure of anthers at microsporocyte stage, meiosis stage, microspore stage and mature pollen stage, respectively; Right: Proteins under phosphorylation (P), ubiquitination (Ubi), SUMOylation (SUMO) and glycosylation (Glyc) during pollen development

    表  1   花粉发育过程中参与蛋白磷酸化修饰的催化酶

    Table  1   Enzymes for protein phosphorylation during pollen development

    物种 Species 蛋白名称 Protein name 酶类型 Enzyme type 作用时期 Functional stage 参考文献 Reference
    拟南芥 Arabidopsis thaliana ER/ERL1/2, BAM1/2, RPK2, CIK, EMS1, SERK1/2 类受体激酶 Receptor-like kinase 细胞分化期 Cell differentiation [17,20-24,28-30]
    MPK3/6 促分裂原活化蛋白激酶 Mitogen-activated kinase 细胞分化期 Cell differentiation [17-18]
    CDKA;1 细胞周期蛋白依赖性激酶 Cyclin-dependent kinase 减数分裂期 Meiosis [38-39]
    ATM 丝氨酸−苏氨酸激酶 Serine/threonine kinase 减数分裂期 Meiosis [41]
    PPX1, PP2A 磷酸酶 Phosphatase 减数分裂期 Meiosis [40,44-45]
    SGC 类受体激酶 Receptor-like kinase 小孢子发育期 Microspore development [52]
    水稻 Oryza sativa ERL, MSP1 类受体激酶 Receptor-like kinase 细胞分化期 Cell differentiation [19,33-34]
    ATM, BRK1 丝氨酸−苏氨酸激酶 Serine/threonine kinase 减数分裂期 Meiosis [42-43]
    TMS10/10L, LecRK5 类受体激酶 Receptor-like kinase 小孢子发育期 Microspore development [47-51]
    棉花 Gossypium hirsutum SERK1 类受体激酶 Receptor-like kinase 细胞分化期 Cell differentiation [36]
    CKⅠ 酪氨酸激酶 Tyrosine kinase 小孢子发育期 Microspore development [46]
    下载: 导出CSV

    表  2   花粉发育过程中参与蛋白泛素化和SUMO化修饰的催化酶

    Table  2   Enzymes for protein ubiquitination and SUMOylation during pollen development

    修饰类型 Modification type 物种 Species 蛋白名称 Protein name 酶类型 Enzyme type 作用时期 Functional stage 参考文献 Reference
    泛素化 Ubiquitination 拟南芥 Arabidopsis thaliana APC8 APC/C泛素E3连接酶组成蛋白 Component of APC/C ubiquitin E3 ligase 减数分裂期 Meiosis [60]
    HEI10 RING泛素E3连接酶 RING ubiquitin E3 ligase 减数分裂期 Meiosis [65]
    PUB4 U-box泛素E3连接酶 U-box ubiquitin E3 ligase 小孢子发育期 Microspore development [71]
    FBL17 F-Box蛋白 F-Box protein 小孢子发育期 Microspore development [75-76]
    水稻 Oryza sativa MOF, ZYGO1 F-Box蛋白 F-Box protein 减数分裂期 Meiosis [56-57]
    ADF F-Box蛋白 F-Box protein 小孢子发育期 Microspore development [74]
    PUB73 U-box泛素E3连接酶 U-box ubiquitin E3 ligase 小孢子发育期 Microspore development [72]
    HUB1/2 泛素E3连接酶 Ubiquitin E3 ligase 小孢子发育期 Microspore development [73]
    玉米 Zea mays ACOZ1 F-Box蛋白 F-Box protein 减数分裂期 Meiosis [58]
    SUMO化 SUMOylation 拟南芥 A. thaliana MMS21 SUMO E3连接酶 SUMO E3 ligase 减数分裂期 Meiosis [68-69]
    SPF1/2 去SUMO化酶 SUMO proteinase 小孢子发育期 Microspore development [82-83]
    水稻 O. sativa SIZ1/2 SUMO E3连接酶 SUMO E3 ligase 小孢子发育期 Microspore development [79-81]
    玉米 Z. mays MMS21 SUMO E3连接酶 SUMO E3 ligase 减数分裂期 Meiosis [70]
    下载: 导出CSV

    表  3   花粉发育过程中参与蛋白糖基化修饰的催化酶

    Table  3   Enzymes for protein glycosylation during pollen development

    物种 Species 蛋白名称 Protein name 酶类型 Enzyme type 作用时期 Functional stage 参考文献 Reference
    拟南芥 Arabidopsis thaliana KNS4 半乳糖基转移酶 Galactosyltransferase 小孢子发育期 Microspore development [92-93]
    GlcNA.UT1/2 N−乙酰氨基葡萄糖−1−P尿甙基转化酶 N-Acetylglucosamine-1-P Uridylyltransferase 小孢子发育期 Microspore development [95]
    GFAT1 谷氨酰胺:果糖−6−磷酸酰胺基转移酶 Glutamine:fructose-6-phosphate amidotransferase 小孢子发育期 Microspore development [96]
    USP UDP−糖焦磷酸化酶 UDP-sugar-pyrophosphorylase 未知 Unknown [94]
    玉米 Zea mays Ms8 半乳糖基转移酶 Galactosyltransferase 未知 Unknown [91]
    下载: 导出CSV
  • [1]

    GUO J, LIU Y. Molecular control of male reproductive development and pollen fertility in rice[J]. Journal of Integrative Plant Biology, 2012, 54(12): 967-978. doi: 10.1111/j.1744-7909.2012.01172.x

    [2]

    ABBAS A, YU P, SUN L, et al. Exploiting genic male sterility in rice: From molecular dissection to breeding applications[J]. Frontiers in Plant Science, 2021, 12: 629314. doi: 10.3389/fpls.2021.629314

    [3] 欧阳亦聃, 陈乐天. 作物育性调控和分子设计杂交育种前沿进展与展望[J]. 中国科学(生命科学), 2021, 51(10): 1385-1395.
    [4]

    WAN X, WU S, LI Z, et al. Lipid metabolism: Critical roles in male fertility and other aspects of reproductive development in plants[J]. Molecular Plant, 2020, 13(7): 955-983. doi: 10.1016/j.molp.2020.05.009

    [5]

    LEI X, LIU B. Tapetum-dependent male meiosis progression in plants: Increasing evidence emerges[J]. Frontiers in Plant Science, 2020, 10: 1667. doi: 10.3389/fpls.2019.01667

    [6]

    VERMA N. Transcriptional regulation of anther development in Arabidopsis[J]. Gene, 2019, 689: 202-209. doi: 10.1016/j.gene.2018.12.022

    [7]

    MILLAR A H, HEAZLEWOOD J L, GIGLIONE C, et al. The scope, functions, and dynamics of posttranslational protein modifications[J]. Annual Review of Plant Biology, 2019, 70(1): 119-151. doi: 10.1146/annurev-arplant-050718-100211

    [8]

    STUHRWOHLDT N, SCHALLER A. Regulation of plant peptide hormones and growth factors by post-translational modification[J]. Plant Biology, 2019, 21(S1): 49-63. doi: 10.1111/plb.12881

    [9]

    YU F, LI M, HE D, et al. Advances on post-translational modifications involved in seed germination[J]. Frontiers in Plant Science, 2021, 12: 642979. doi: 10.3389/fpls.2021.642979

    [10]

    KOSOVÁ K, VÍTÁMVÁS P, PRÁŠIL I T, et al. Plant proteoforms under environmental stress: Functional proteins arising from a single gene[J]. Frontiers in Plant Science, 2021, 12: 793113. doi: 10.3389/fpls.2021.793113

    [11]

    WANG W, LI A, ZHANG Z, et al. Posttranslational modifications: Regulation of nitrogen utilization and signaling[J]. Plant and Cell Physiology, 2021, 62(4): 543-552. doi: 10.1093/pcp/pcab008

    [12]

    QI H, XIA F N, XIAO S. Autophagy in plants: Physiological roles and post-translational regulation[J]. Journal of Integrative Plant Biology, 2021, 63(1): 161-179. doi: 10.1111/jipb.12941

    [13]

    SCOTT R J, SPIELMAN M, DICKINSON H G. Stamen structure and function[J]. The Plant Cell, 2004, 16(Suppl): S46-S60.

    [14]

    ZHANG D, WILSON Z A. Stamen specification and anther development in rice[J]. Chinese Science Bulletin, 2009, 54(14): 2342-2353. doi: 10.1007/s11434-009-0348-3

    [15]

    CAI W, ZHANG D. The role of receptor-like kinases in regulating plant male reproduction[J]. Plant Reproduction, 2018, 31(1): 77-87. doi: 10.1007/s00497-018-0332-7

    [16]

    CUI Y, LU X, GOU X. Receptor-like protein kinases in plant reproduction: Current understanding and future perspectives[J]. Plant Communications, 2022, 3(1): 100273. doi: 10.1016/j.xplc.2021.100273

    [17]

    HORD C L H, SUN Y, PILLITTERI L J, et al. Regulation of Arabidopsis early anther development by the mitogen-activated protein kinases, MPK3 and MPK6, and the ERECTA and related receptor-like kinases[J]. Molecular Plant, 2008, 1(4): 645-658. doi: 10.1093/mp/ssn029

    [18]

    ZHAO F, ZHENG Y, ZENG T, et al. Phosphorylation of SPOROCYTELESS/NOZZLE by the MPK3/6 kinase is required for anther development[J]. Plant Physiology, 2017, 173(4): 2265-2277. doi: 10.1104/pp.16.01765

    [19]

    LIU T, JIANG G, YAO X, et al. The leucine-rich repeat receptor-like kinase OsERL plays a critical role in anther lobe formation in rice[J]. Biochemical and Biophysical Research Communications, 2021, 563: 85-91. doi: 10.1016/j.bbrc.2021.05.059

    [20]

    HORD C L H, CHEN C, DEYOUNG B J, et al. The BAM1/BAM2 receptor-like kinases are important regulators of Arabidopsis early anther development[J]. The Plant Cell, 2006, 18(7): 1667-1680. doi: 10.1105/tpc.105.036871

    [21]

    MIZUNO S, OSAKABE Y, MARUYAMA K, et al. Receptor-like protein kinase 2 (RPK 2) is a novel factor controlling anther development in Arabidopsis thaliana[J]. The Plant Journal, 2007, 50(5): 751-766. doi: 10.1111/j.1365-313X.2007.03083.x

    [22]

    CUI Y, HU C, ZHU Y, et al. CIK receptor kinases determine cell fate specification during early anther development in Arabidopsis[J]. The Plant Cell, 2018, 30(10): 2383-2401. doi: 10.1105/tpc.17.00586

    [23]

    ZHAO D Z, WANG G F, SPEAL B, et al. The excess microsporocytes1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther[J]. Genes & Development, 2002, 16(15): 2021-2031.

    [24]

    CANALES C, BHATT A M, SCOTT R, et al. EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis[J]. Current Biology, 2002, 12(20): 1718-1727. doi: 10.1016/S0960-9822(02)01151-X

    [25]

    YANG S, XIE L, MAO H, et al. TAPETUM DETERMINANT1 is required for cell specialization in the Arabidopsis anther[J]. The Plant Cell, 2003, 15(12): 2792-2804. doi: 10.1105/tpc.016618

    [26]

    YANG S, JIANG L, PUAH C S, et al. Overexpression of TAPETUM DETERMINANT1 alters the cell fates in the Arabidopsis carpel and tapetum via genetic interaction with EXCESS MICROSPOROCYTES1/EXTRA SPOROGENOUS CELLS[J]. Plant Physiology, 2005, 139(1): 186-191. doi: 10.1104/pp.105.063529

    [27]

    JIA G, LIU X, OWEN H A, et al. Signaling of cell fate determination by the TPD1 small protein and EMS1 receptor kinase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(6): 2220-2225. doi: 10.1073/pnas.0708795105

    [28]

    COLCOMBET J, BOISSON-DERNIER A, ROS-PALAU R, et al. Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 are essential for tapetum development and microspore maturation[J]. The Plant Cell, 2005, 17(12): 3350-3361. doi: 10.1105/tpc.105.036731

    [29]

    ALBRECHT C, RUSSINOVA E, HECHT V, et al. The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1 and 2 control male sporogenesis[J]. The Plant Cell, 2005, 17(12): 3337-3349. doi: 10.1105/tpc.105.036814

    [30]

    LI Z, WANG Y, HUANG J, et al. Two SERK receptor-like kinases interact with EMS1 to control anther cell fate determination[J]. Plant Physiology, 2017, 173(1): 326-337. doi: 10.1104/pp.16.01219

    [31]

    CHEN W, LV M, WANG Y, et al. BES1 is activated by EMS1-TPD1-SERK1/2-mediated signaling to control tapetum development in Arabidopsis thaliana[J]. Nature Communications, 2019, 10(1): 4164. doi: 10.1038/s41467-019-12118-4

    [32]

    ZHENG B, BAI Q, WU L, et al. EMS1 and BRI1 control separate biological processes via extracellular domain diversity and intracellular domain conservation[J]. Nature Communications, 2019, 10(1): 4165. doi: 10.1038/s41467-019-12112-w

    [33]

    NONOMURA K, MIYOSHI K, EIGUCHI M, et al. The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice[J]. The Plant Cell, 2003, 15(8): 1728-1739. doi: 10.1105/tpc.012401

    [34]

    ZHAO X, DEPALMA J, OANE R, et al. OsTDL1A binds to the LRR domain of rice receptor kinase MSP1, and is required to limit sporocyte numbers[J]. The Plant Journal, 2008, 54(3): 375-387. doi: 10.1111/j.1365-313X.2008.03426.x

    [35]

    HONG L, TANG D, SHEN Y, et al. MIL2 (MICROSPORELESS2) regulates early cell differentiation in the rice anther[J]. New Phytologist, 2012, 196(2): 402-413. doi: 10.1111/j.1469-8137.2012.04270.x

    [36]

    SHI Y, GUO S, ZHANG R, et al. The role of Somatic embryogenesis receptor-like kinase 1 in controlling pollen production of the Gossypium anther[J]. Molecular Biology Reports, 2014, 41(1): 411-422. doi: 10.1007/s11033-013-2875-x

    [37]

    WANG C J, NAN G L, KELLIHER T, et al. Maize multiple archesporial cells 1 (mac1), an ortholog of rice TDL1A, modulates cell proliferation and identity in early anther development[J]. Development, 2012, 139(14): 2594-2603. doi: 10.1242/dev.077891

    [38]

    YANG C, SOFRONI K, WIJNKER E, et al. The Arabidopsis Cdk1/Cdk2 homolog CDKA;1 controls chromosome axis assembly during plant meiosis[J]. The EMBO Journal, 2020, 39(3): e101625.

    [39]

    WIJNKER E, HARASHIMA H, MüLLER K, et al. The Cdk1/Cdk2 homolog CDKA;1 controls the recombination landscape in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(25): 12534-12539. doi: 10.1073/pnas.1820753116

    [40]

    NAGESWARAN D C, KIM J, LAMBING C, et al. HIGH CROSSOVER RATE1 encodes PROTEIN PHOSPHATASE X1 and restricts meiotic crossovers in Arabidopsis[J]. Nature Plants, 2021, 7(4): 452-467. doi: 10.1038/s41477-021-00889-y

    [41]

    GARCIA V, BRUCHET H, CAMESCASSE D, et al. AtATM is essential for meiosis and the somatic response to DNA damage in plants[J]. The Plant Cell, 2003, 15(1): 119-132. doi: 10.1105/tpc.006577

    [42]

    ZHANG C, ZHANG F, CHENG X, et al. OsATM safeguards accurate repair of meiotic double-strand breaks in rice[J]. Plant Physiology, 2020, 183(3): 1047-1057. doi: 10.1104/pp.20.00053

    [43]

    WANG M, TANG D, LUO Q, et al. BRK1, a Bub1-related kinase, is essential for generating proper tension between homologous kinetochores at metaphase I of rice meiosis[J]. The Plant Cell, 2012, 24(12): 4961-4973.

    [44]

    YUAN G, AHOOTAPEH B H, KOMAKI S, et al. PROTEIN PHOSHATASE 2A B'α and β maintain centromeric sister chromatid cohesion during meiosis in Arabidopsis[J]. Plant Physiology, 2018, 178(1): 317-328. doi: 10.1104/pp.18.00281

    [45]

    ZHANG Y Y, ZHANG H H, GAO Y Y, et al. Protein phosphatase 2A B'α and B'β protect centromeric cohesion during meiosis I[J]. Plant Physiology, 2019, 179(4): 1556-1568. doi: 10.1104/pp.18.01320

    [46]

    MIN L, ZHU L, TU L, et al. Cotton GhCKI disrupts normal male reproduction by delaying tapetum programmed cell death via inactivating starch synthase[J]. The Plant Journal, 2013, 75(5): 823-835. doi: 10.1111/tpj.12245

    [47]

    YU J, HAN J, KIM Y J, et al. Two rice receptor-like kinases maintain male fertility under changing temperatures[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(46): 12327-12332. doi: 10.1073/pnas.1705189114

    [48]

    WANG B, FANG R, ZHANG J, et al. Rice LecRK5 phosphorylates a UGPase to regulate callose biosynthesis during pollen development[J]. Journal of Experimental Botany, 2020, 71(14): 4033-4041. doi: 10.1093/jxb/eraa180

    [49]

    PENG X, WANG M, LI Y, et al. Lectin receptor kinase OsLecRK-S. 7 is required for pollen development and male fertility[J]. Journal of Integrative Plant Biology, 2020, 62(8): 1227-1245. doi: 10.1111/jipb.12897

    [50]

    HE Z, ZOU T, XIAO Q, et al. An L-type lectin receptor-like kinase promotes starch accumulation during rice pollen maturation[J]. Development, 2021, 148(6): 196378. doi: 10.1242/dev.196378

    [51]

    ZHANG X, ZHAO G, TAN Q, et al. Rice pollen aperture formation is regulated by the interplay between OsINP1 and OsDAF1[J]. Nature Plants, 2020, 6(4): 394-403. doi: 10.1038/s41477-020-0630-6

    [52]

    WAN J, PATEL A, MATHIEU M, et al. A lectin receptor-like kinase is required for pollen development in Arabidopsis[J]. Plant Molecular Biology, 2008, 67(5): 469-482. doi: 10.1007/s11103-008-9332-6

    [53]

    ORR J N, WAUGH R, COLAS I. Ubiquitination in plant meiosis: Recent advances and high throughput methods[J]. Frontiers in Plant Science, 2021, 12: 667314. doi: 10.3389/fpls.2021.667314

    [54]

    WANG Y, WU H, LIANG G, et al. Defects in nucleolar migration and synapsis in male prophaseI in the ask1-1 mutant of Arabidopsis[J]. Sexual Plant Reproduction, 2004, 16(6): 273-282.

    [55]

    WANG Y, YANG M. The ARABIDOPSIS SKP1-LIKE1 (ASK1) protein acts predominately from leptotene to pachytene and represses homologous recombination in male meiosis[J]. Planta, 2006, 223(3): 613-617. doi: 10.1007/s00425-005-0154-3

    [56]

    HE Y, WANG C, HIGGINS J D, et al. MEIOTIC F-BOX is essential for male meiotic DNA double-strand break repair in rice[J]. The Plant Cell, 2016, 28(8): 1879-1893. doi: 10.1105/tpc.16.00108

    [57]

    ZHANG F, TANG D, SHEN Y, et al. The F-box protein ZYGO1 mediates bouquet formation to promote homologous pairing, synapsis, and recombination in rice meiosis[J]. The Plant Cell, 2017, 29(10): 2597-2609. doi: 10.1105/tpc.17.00287

    [58]

    JING J, WU N, XU W, et al. An F-box protein ACOZ1 functions in crossover formation by ensuring proper chromosome compaction during maize meiosis[J]. New Phytologist, 2022, 235(1): 157-172. doi: 10.1111/nph.18116

    [59]

    ZHENG B, CHEN X, MCCORMICK S. The anaphase-promoting complex is a dual integrator that regulates both microRNA-mediated transcriptional regulation of cyclin B1 and degradation of cyclin B1 during Arabidopsis male gametophyte development[J]. The Plant Cell, 2011, 23(3): 1033-1046. doi: 10.1105/tpc.111.083980

    [60]

    XU R Y, XU J, WANG L, et al. The Arabidopsis anaphase-promoting complex/cyclosome subunit 8 is required for male meiosis[J]. New Phytologist, 2019, 224(1): 229-241. doi: 10.1111/nph.16014

    [61]

    NIU B, WANG L, ZHANG L, et al. Arabidopsis cell division cycle 20.1 is required for normal meiotic spindle assembly and chromosome segregation[J]. The Plant Cell, 2015, 27(12): 3367-3382. doi: 10.1105/tpc.15.00834

    [62]

    CROMER L, HEYMAN J, TOUATI S, et al. OSD1 promotes meiotic progression via APC/C inhibition and forms a regulatory network with TDM and CYCA1;2/TAM[J]. PLoS Genetics, 2012, 8(7): e1002865. doi: 10.1371/journal.pgen.1002865

    [63]

    CIFUENTES M, JOLIVET S, CROMER L, et al. TDM1 regulation determines the number of meiotic divisions[J]. PLoS Genetics, 2016, 12(2): e1005856. doi: 10.1371/journal.pgen.1005856

    [64]

    CROMER L, JOLIVET S, SINGH D K, et al. Patronus is the elusive plant securin, preventing chromosome separation by antagonizing separase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(32): 16018-16027. doi: 10.1073/pnas.1906237116

    [65]

    CHELYSHEVA L, VEZON D, CHAMBON A, et al. The Arabidopsis HEI10 is a new ZMM protein related to Zip3[J]. PLoS Genetics, 2012, 8(7): e1002799. doi: 10.1371/journal.pgen.1002799

    [66]

    ZHANG J, WANG C, HIGGINS J D, et al. A multiprotein complex regulates interference-sensitive crossover formation in rice[J]. Plant Physiology, 2019, 181(1): 221-235. doi: 10.1104/pp.19.00082

    [67] 廖桂艳, 金城, 汪斌. 染色体结构维持蛋白Smc5/6复合体的结构与功能[J]. 广西科学, 2021, 28(6): 539-546. doi: 10.13656/j.cnki.gxkx.20220117.010
    [68]

    LIU M, SHI S, ZHANG S, et al. SUMO E3 ligase AtMMS21 is required for normal meiosis and gametophyte development in Arabidopsis[J]. BMC Plant Biology, 2014, 14: 153. doi: 10.1186/1471-2229-14-153

    [69]

    YANG F, FERNÁNDEZ-JIMÉNEZ N, TUČKOVÁ M, et al. Defects in meiotic chromosome segregation lead to unreduced male gametes in Arabidopsis SMC5/6 complex mutants[J]. The Plant Cell, 2021, 33(9): 3104-3119. doi: 10.1093/plcell/koab178

    [70]

    ZHANG J, AUGUSTINE R C, SUZUKI M, et al. The SUMO ligase MMS21 profoundly influences maize development through its impact on genome activity and stability[J]. PLoS Genetics, 2021, 17(10): e1009830. doi: 10.1371/journal.pgen.1009830

    [71]

    WANG H, LU Y, JIANG T, et al. The Arabidopsis U-box/ARM repeat E3 ligase AtPUB4 influences growth and degeneration of tapetal cells, and its mutation leads to conditional male sterility[J]. The Plant Journal, 2013, 74(3): 511-523. doi: 10.1111/tpj.12146

    [72]

    CHEN L, DENG R, LIU G, et al. Cytological and transcriptome analyses reveal OsPUB73 defect affects the gene expression associated with tapetum or pollen exine abnormality in rice[J]. BMC Plant Biology, 2019, 19(1): 546. doi: 10.1186/s12870-019-2175-2

    [73]

    CAO H, LI X, WANG Z, et al. Histone H2B monoubiquitination mediated by HISTONE MONOUBIQUITINATION1 and HISTONE MONOUBIQUITINATION2 is involved in anther development by regulating tapetum degradation-related genes in rice[J]. Plant Physiology, 2015, 168(4): 1389-1405. doi: 10.1104/pp.114.256578

    [74]

    LI L, LI Y, SONG S, et al. An anther development F-box (ADF) protein regulated by tapetum degeneration retardation (TDR) controls rice anther development[J]. Planta, 2015, 241(1): 157-166. doi: 10.1007/s00425-014-2160-9

    [75]

    KIM H J, OH S A, BROWNFIELD L, et al. Control of plant germline proliferation by SCF FBL17 degradation of cell cycle inhibitors[J]. Nature, 2008, 455(7216): 1134-1137. doi: 10.1038/nature07289

    [76]

    GUSTI A, BAUMBERGER N, NOWACK M, et al. The Arabidopsis thaliana F-box protein FBL17 is essential for progression through the second mitosis during pollen development[J]. PLoS One, 2009, 4(3): e4780. doi: 10.1371/journal.pone.0004780

    [77]

    YAO X, YANG H, ZHU Y, et al. The canonical E2Fs are required for germline development in Arabidopsis[J]. Frontiers in Plant Science, 2018, 9: 638. doi: 10.3389/fpls.2018.00638

    [78]

    LIU Y, LAI J, YU M, et al. The Arabidopsis SUMO E3 ligase AtMMS21 dissociates the E2Fa/DPa complex in cell cycle regulation[J]. The Plant Cell, 2016, 28(9): 2225-2237. doi: 10.1105/tpc.16.00439

    [79]

    WANG H, MAKEEN K, YAN Y, et al. OsSIZ1 regulates the vegetative growth and reproductive development in rice[J]. Plant Molecular Biology Reporter, 2011, 29(2): 411-417. doi: 10.1007/s11105-010-0232-y

    [80]

    THANGASAMY S, GUO C L, CHUANG M H, et al. Rice SIZ1, a SUMO E3 ligase, controls spikelet fertility through regulation of anther dehiscence[J]. New Phytologist, 2011, 189(3): 869-882. doi: 10.1111/j.1469-8137.2010.03538.x

    [81]

    PEI W, JAIN A, AI H, et al. OsSIZ2 regulates nitrogen homeostasis and some of the reproductive traits in rice[J]. Journal of Plant Physiology, 2019, 232: 51-60. doi: 10.1016/j.jplph.2018.11.020

    [82]

    CASTRO P H, SANTOS M Â, FREITAS S, et al. Arabidopsis thaliana SPF1 and SPF2 are nuclear-located ULP2-like SUMO proteases that act downstream of SIZ1 in plant development[J]. Journal of Experimental Botany, 2018, 69(19): 4633-4649. doi: 10.1093/jxb/ery265

    [83]

    LIU L L, JIANG Y Y, ZHANG X X, et al. Two SUMO proteases SUMO PROTEASE RELATED TO FERTILITY1 and 2 are required for fertility in Arabidopsis[J]. Plant Physiology, 2017, 175(4): 1703-1719. doi: 10.1104/pp.17.00021

    [84]

    TAN H, LIANG W, HU J, et al. MTR1 encodes a secretory fasciclin glycoprotein required for male reproductive development in rice[J]. Developmental Cell, 2012, 22(6): 1127-1137. doi: 10.1016/j.devcel.2012.04.011

    [85]

    COSTA M L, SOBRAL R, COSTA M M R, et al. Evaluation of the presence of arabinogalactan proteins and pectins during Quercus suber male gametogenesis[J]. Annals of Botany, 2015, 115(1): 81-92. doi: 10.1093/aob/mcu223

    [86]

    MA T, DONG F, LUAN D, et al. Gene expression and localization of arabinogalactan proteins during the development of anther, ovule, and embryo in rice[J]. Protoplasma, 2019, 256(4): 909-922. doi: 10.1007/s00709-019-01349-3

    [87]

    LI J, YU M, GENG L L, et al. The fasciclin-like arabinogalactan protein gene, FLA3, is involved in microspore development of Arabidopsis[J]. The Plant Journal, 2010, 64(3): 482-497. doi: 10.1111/j.1365-313X.2010.04344.x

    [88]

    LIN S, DONG H, ZHANG F, et al. BcMF8, a putative arabinogalactan protein-encoding gene, contributes to pollen wall development, aperture formation and pollen tube growth in Brassica campestris[J]. Annals of Botany, 2014, 113(5): 777-788. doi: 10.1093/aob/mct315

    [89]

    DENG Y, WAN Y, LIU W, et al. OsFLA1 encodes a fasciclin-like arabinogalactan protein and affects pollen exine development in rice[J]. Theoretical and Applied Genetics, 2022, 135(4): 1247-1262. doi: 10.1007/s00122-021-04028-1

    [90]

    ZHOU D, ZOU T, ZHANG K, et al. DEAP1 encodes a fasciclin-like arabinogalactan protein required for male fertility in rice[J]. Journal of Integrative Plant Biology, 2022, 64(7): 1430-1447. doi: 10.1111/jipb.13271

    [91]

    WANG D, SKIBBE D S, WALBOT V. Maize male sterile 8 (Ms8), a putative β-1, 3-galactosyltransferase, modulates cell division, expansion, and differentiation during early maize anther development[J]. Plant Reproduction, 2013, 26(4): 329-338. doi: 10.1007/s00497-013-0230-y

    [92]

    SUZUKI T, NARCISO J O, ZENG W, et al. KNS4/UPEX1: A type II arabinogalactan β-(1, 3)-galactosyltransferase required for pollen exine development[J]. Plant Physiology, 2017, 173(1): 183-205. doi: 10.1104/pp.16.01385

    [93]

    WANG K Q, YU Y H, JIA X L, et al. Delayed callose degradation restores the fertility of multiple P/TGMS lines in Arabidopsis[J]. Journal of Integrative Plant Biology, 2022, 64(3): 717-730. doi: 10.1111/jipb.13205

    [94]

    GESERICK C, TENHAKEN R. UDP-sugar pyrophosphorylase is essential for arabinose and xylose recycling, and is required during vegetative and reproductive growth in Arabidopsis[J]. The Plant Journal, 2013, 74(2): 239-247. doi: 10.1111/tpj.12116

    [95]

    CHEN Y, SHEN H, HSU P, et al. N-acetylglucosamine-1-P uridylyltransferase 1 and 2 are required for gametogenesis and embryo development in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2014, 55(11): 1977-1993. doi: 10.1093/pcp/pcu127

    [96]

    VU K V, JEONG C Y, NGUYEN T T, et al. Deficiency of AtGFAT1 activity impairs growth, pollen germination and tolerance to tunicamycin in Arabidopsis[J]. Journal of Experimental Botany, 2019, 70(6): 1775-1787. doi: 10.1093/jxb/erz055

    [97]

    EDSTAM M M, EDQVIST J. Involvement of GPI-anchored lipid transfer proteins in the development of seed coats and pollen in Arabidopsis thaliana[J]. Physiologia Plantarum, 2014, 152(1): 32-42. doi: 10.1111/ppl.12156

    [98]

    GAO H, ZHANG Y, WANG W, et al. Two membrane-anchored aspartic proteases contribute to pollen and ovule development[J]. Plant Physiology, 2017, 173(1): 219-239. doi: 10.1104/pp.16.01719

    [99]

    FABRICE T N, VOGLER H, DRAEGER C, et al. LRX proteins play a crucial role in pollen grain and pollen tube cell wall development[J]. Plant Physiology, 2018, 176(3): 1981-1992. doi: 10.1104/pp.17.01374

    [100]

    FANG H, SHAO Y, WU G. Reprogramming of histone H3 lysine methylation during plant sexual reproduction[J]. Frontiers in Plant Science, 2021, 12: 782450. doi: 10.3389/fpls.2021.782450

    [101]

    ZHOU H, LIU Y, LIANG Y, et al. The function of histone lysine methylation related SET domain group proteins in plants[J]. Protein Science, 2020, 29(5): 1120-1137. doi: 10.1002/pro.3849

    [102]

    LI X, YE J, MA H, et al. Proteomic analysis of lysine acetylation provides strong evidence for involvement of acetylated proteins in plant meiosis and tapetum function[J]. The Plant Journal, 2018, 93(1): 142-154. doi: 10.1111/tpj.13766

    [103]

    YE J, ZHANG Z, LONG H, et al. Proteomic and phosphoproteomic analyses reveal extensive phosphorylation of regulatory proteins in developing rice anthers[J]. The Plant Journal, 2015, 84(3): 527-544. doi: 10.1111/tpj.13019

    [104]

    KLODOVÁ B, FÍLA J. A decade of pollen phosphoproteomics[J]. International Journal of Molecular Sciences, 2021, 22(22): 12212. doi: 10.3390/ijms222212212

    [105]

    ZHU L, CHENG H, PENG G, et al. Ubiquitinome profiling reveals the landscape of ubiquitination regulation in rice young panicles[J]. Genomics Proteomics & Bioinformatics, 2020, 18(3): 305-320.

  • 期刊类型引用(1)

    1. 祝小雅,闫蕴韬,桂金鑫,石居斌,张海清,贺记外. 基于全基因组关联分析的水稻穗长QTL定位及其候选基因分析. 湖南农业大学学报(自然科学版). 2024(04): 1-9 . 百度学术

    其他类型引用(1)

图(1)  /  表(3)
计量
  • 文章访问数:  197
  • HTML全文浏览量:  11
  • PDF下载量:  523
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-08-07
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2022-11-09

目录

/

返回文章
返回