• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

呕吐毒素的毒理机制及防治策略研究进展

邓诣群, 林如琴, 吴思婷, 余丹妮, 刘思

邓诣群, 林如琴, 吴思婷, 等. 呕吐毒素的毒理机制及防治策略研究进展[J]. 华南农业大学学报, 2022, 43(6): 87-96. DOI: 10.7671/j.issn.1001-411X.202208017
引用本文: 邓诣群, 林如琴, 吴思婷, 等. 呕吐毒素的毒理机制及防治策略研究进展[J]. 华南农业大学学报, 2022, 43(6): 87-96. DOI: 10.7671/j.issn.1001-411X.202208017
DENG Yiqun, LIN Ruqin, WU Siting, et al. Research progress in toxicological mechanism and prevention strategy of deoxynivalenol[J]. Journal of South China Agricultural University, 2022, 43(6): 87-96. DOI: 10.7671/j.issn.1001-411X.202208017
Citation: DENG Yiqun, LIN Ruqin, WU Siting, et al. Research progress in toxicological mechanism and prevention strategy of deoxynivalenol[J]. Journal of South China Agricultural University, 2022, 43(6): 87-96. DOI: 10.7671/j.issn.1001-411X.202208017

呕吐毒素的毒理机制及防治策略研究进展

基金项目: 国家自然科学基金−广东联合基金重点项目(U1901207);岭南现代农业科学与技术广东省实验室科研项目(NZ2021016);国家自然科学基金(32102718)
详细信息
    作者简介:

    邓诣群,教授,博士,主要从事真菌毒素分子毒理及代谢转化机制研究,E-mail: yqdeng@scau.edu.cn
    邓诣群,教授,博士生导师。致力于动物蛋白质(酶)的功能、结构及调控机理研究,重点关注真菌毒素等外源化合物在动物体内的分子毒理和代谢转化机制。入选国家“万人计划”科技创新领军人才、广东省“珠江学者”特聘教授、教育部“新世纪优秀人才支持计划”;兼任中国生物化学与分子生物学会理事、广东省农业生物蛋白质功能与调控重点实验室主任。主持国家重点基础研究发展计划(973)课题、国家自然科学基金−广东联合基金重点项目、广东省自然科学基金研究团队项目等;以通信/共同通信作者发表60多篇论文,获得8项授权国家发明专利;荣获全国师德标兵、教育部霍英东青年教师奖(二等奖)、广东省丁颖科技奖和第十二届大北农科技奖创新奖等

  • 中图分类号: S816

Research progress in toxicological mechanism and prevention strategy of deoxynivalenol

  • 摘要:

    呕吐毒素是对粮谷、饲料原料和饲料等污染最为普遍和严重的真菌毒素之一,畜禽摄入呕吐毒素污染的饲料会出现呕吐、腹泻、拒食和体重减轻等急、慢性的中毒症状,严重的可导致死亡,威胁着畜禽的健康养殖。呕吐毒素的毒理机制和代谢转化是农业和食品领域的研究热点。本文主要从呕吐毒素的细胞毒理机制、生物防治方法和脱毒微生物的筛选研究等方面,综述近年来国内外的研究进展,为防控呕吐毒素对畜禽的危害提供参考。

    Abstract:

    Deoxynivalenol (DON) is one of the most common and serious polluted mycotoxins that contaminate grains, feed ingredients and feed. The acute or chronic poisoning symptoms of feed-borne exposure to DON in animals are vomiting, diarrhea, feed refusal, weight loss and even death, which seriously threatens the healthy breeding of animal. The toxicity mechanism and metabolic transformation of DON are the research hotspots in the fields of agriculture and food. This article reviews the latest domestic and international research progress in the cytotoxicological mechanism, biological prevention methods and detoxification microorganism screening of DON. It is expected to provide references for prevention and control of the harm of DON to animal.

  • 自两系不育系被发现以来,两系法杂交已在水稻生产上得到应用,并显示出广阔的应用前景[1]。两系不育系育性不稳定,育性敏感期受外界环境的严重制约,如果该时期遇到异常天气,可能导致繁种失败。已经推广应用的两系不育系起点温度由于温度漂变,制种风险增加[2-3],使得两系不育系的生产推广受到严重制约。此外,配合力不够理想也是其推广受阻的重要原因之一[4]。配合力包括一般配合力和特殊配合力,一般配合力指一个自交系和品种或其他一系列其他自交系和品种所产生的杂种一代的产量平均值;特殊配合力指在某个特定的杂交组合中2个自交系杂交产生的杂种一代的产量表现。一般配合力是评价亲本优良特性的重要依据,可通过一般配合力了解某亲本在杂交后代中的平均表现,特殊配合力是特定杂交组合中基因通过显性、上位性作用及与环境互作使后代表现相关优良性状的潜在能力。研究亲本的配合力对水稻杂交育种具有重要的指导意义,通过配合力评价种质资源在育种中的作用,可以充分利用水稻杂种优势,促进杂交水稻的发展[5]。若某亲本产量性状的一般配合力高,杂交组合的特殊配合力也较高,表明该亲本具有广泛的适用性,易选育高产优质的杂交组合[6]。遗传力反映亲本性状遗传给子代的能力[7],为了探究性状的遗传力,可以把全部基因型方差占表现型方差的百分比作为广义遗传力(hB2),把加性方差占表现型方差的百分比作为狭义遗传力(hN2),用狭义遗传力度量性状的遗传力更可靠[8]。本研究对大穗型两系不育系‘M20S’主要穗部性状的配合力和遗传力进行研究,从生产实践出发,选用生产上广泛应用的7个优良杂交稻亲本进行不完全双列杂交(Incomplete diallel cross,NCⅡ)设计组配[9],通过一般配合力、特殊配合力及遗传力分析,明确该不育系和恢复系在穗部性状上配合力的强弱,为优质高产杂交稻组合的选配提供参考依据。

    光温敏核不育系:‘望S’、‘深08S’、‘Y58S’以及华南农业大学国家植物航天育种工程技术研究中心新选育的‘M20S’;恢复系:‘航恢1173’、‘航恢91’和‘航恢24’;4个不育系和3个恢复系配制的12个杂交组合,共计19份材料。

    试验在华南农业大学国家植物航天育种工程技术研究中心水稻育种试验田(N23°,E113°)进行。2017年早季以4个光温敏核不育系为母本和3个恢复系为父本,按照NCⅡ设计配制12个杂交组合;2017年晚季种植F1代,7月22日播种,8月7日水稻幼苗长到四叶一心时插秧,完全随机区组设计,3次重复,每个小区按照6×6规格种植,共36株,单本种植,田间管理措施与常规大田生产管理相同。完熟期时,从每个小区中选取3株有代表性的单株,用烘干机于45 ℃条件下干燥处理24 h,干燥后用量程40 cm的直尺测量穗长,用水稻数字化考种机YTS-5D考种并记录总粒数、结实率、千粒质量、单穗质量、一次枝梗数和着粒密度(每10 cm稻穗着生的水稻籽粒总粒数)。

    数据分析采用SPSS 19.0和Microsoft Excel 2007进行,统计分析参照文献[10]的方法进行,配合力和遗传力分析按照文献[11-12]进行。根据固定模型估算试验材料的配合力效应,根据随机模型估算群体配合力方差和遗传参数。

    考察各杂交组合F1代的穗部性状,统计分析各性状的平均值,结果见表1。‘M20S’配制的组合与‘望S’配制的组合相比,一次枝梗数、总粒数、单穗质量和着粒密度呈正向优势;与‘深08S’配制的组合相比,穗长、一次枝梗数、总粒数和着粒密度呈正向优势;与‘Y58S’配制的组合相比,一次枝梗数、总粒数、结实率、单穗质量和着粒密度基本呈正向优势。

    表  1  12个杂交组合F1代穗部性状表型值
    Table  1.  Phenotypic values of panicle traits in F1 generations of 12 hybrid combinations
    杂交组合
    Hybrid combination
    穗长/cm
    Panicle
    length
    一次枝梗数
    Primary branch number
    总粒数
    Total grain number
    结实率/%
    Seed setting rate
    单穗质量/g
    Single panicle weight
    千粒质量/g
    1 000-grain weight
    着粒密度
    Grain
    density
    望 S/航恢 1173
    Wang S/Hanghui 1173
    29.54 16.67 2 009.00 0.76 29.60 18.02 67.90
    望 S/航恢 91
    Wang S/Hanghui 91
    27.50 12.00 1 437.33 0.85 30.31 24.21 52.30
    望 S/航恢 24
    Wang S/Hanghui 24
    29.17 13.33 2 459.33 0.88 48.31 23.44 84.56
    平均值 Mean value 28.74 14.00 1 968.56 0.83 36.08 21.89 68.25
    深 08S/航恢 1173
    Deep 08S/Hanghui 1173
    27.74 14.00 2 352.33 0.81 38.97 18.59 85.01
    深 08S/航恢 91
    Deep 08S/Hanghui 91
    26.94 12.33 2 134.67 0.86 47.33 23.90 79.34
    深 08S/航恢 24
    Deep 08S/Hanghui 24
    26.67 12.67 1 908.00 0.91 37.92 23.71 71.73
    平均值 Mean value 27.12 13.00 2 131.67 0.86 41.41 22.07 78.69
    Y58S/航恢 1173
    Y58S/Hanghui 1173
    29.67 19.00 2 573.00 0.78 38.60 14.38 86.69
    Y58S/航恢 91
    Y58S/Hanghui 91
    28.81 11.00 1 256.67 0.76 21.95 22.56 43.69
    Y58S/航恢 24
    Y58S/Hanghui 24
    26.84 11.33 1 442.00 0.81 27.25 23.01 53.62
    平均值 Mean value 28.44 13.78 1 757.22 0.78 29.27 19.98 61.33
    M20S/航恢 1173
    M20S/Hanghui 1173
    30.36 17.00 2 382.33 0.89 24.62 19.40 78.49
    M20S/航恢 91
    M20S/Hanghui 91
    27.67 18.00 3 810.00 0.78 35.69 11.82 137.57
    M20S/航恢 24
    M20S/Hanghui 24
    25.56 16.00 3 581.00 0.79 54.74 18.98 141.00
    平均值 Mean value 27.86 17.00 3 257.78 0.82 38.35 16.73 119.02
    下载: 导出CSV 
    | 显示表格

    7个穗部性状的配合力方差分析结果如表2所示,7个性状区间差异均不显著,组间差异均达极显著水平,说明不同杂交组合的基因型效应间存在真实的遗传差异。不育系母本中,穗长的一般配合力方差差异显著,一次枝梗数等其他6个性状的一般配合力方差差异极显著;恢复性父本中,总粒数和着粒密度的一般配合力方差差异显著,穗长等其他5个性状的一般配合力方差差异极显著;母本/父本组合中,穗长的特殊配合力方差差异显著,其他6个性状的特殊配合力方差差异极显著。表明杂交组合中7个性状均同时受亲本的一般配合力和杂交组合的特殊配合力的影响,即受基因的加性效应和非加性效应共同影响。

    表  2  穗部性状配合力方差分析1)
    Table  2.  Variance analysis of panicle trait combining ability
    方差来源
    Source of variation
    穗长
    Panicle
    length
    一次枝梗数
    Primary branch number
    总粒数
    Total grain number
    结实率
    Seed setting rate
    单穗质量
    Single panicle weight
    千粒质量
    1 000-grain weight
    着粒密度
    Grain
    density
    区间 Interplot 1.45 3.11 6 140.11 0.00 11.18 0.02 32.96
    组间 Intergroup 6.38** 22.87** 823.60** 0.01** 307.15** 48.99** 2 750.49**
    母本 Female parent 4.61* 27.78** 4 045 022.10** 0.01** 239.36** 55.19** 5 991.79**
    父本 Male parent 16.33** 44.45** 128 764.19* 0.01** 303.20** 67.79** 318.64*
    母本/父本 Female/Male 3.95* 13.22** 1 364 410.82** 0.01** 342.36** 39.61** 1 940.45**
    误差 Error 1.36 1.96 36 785.08 0.00 11.03 0.98 67.00
     1)“*”和“**”分别表示达 0.05 和 0.01 显著水平
     1) “*” and “**” indicated significance at 0.05 and 0.01 levels, respectively
    下载: 导出CSV 
    | 显示表格

    4个不育系和3个恢复系亲本的7个性状的一般配合力分析结果如表3所示。相同性状不同亲本和不同性状相同亲本材料间的一般配合力效应不同,表明不同亲本不同性状的遗传基因效应复杂。

    表  3  穗部性状一般配合力效应值
    Table  3.  The effect value of general combining ability of panicle trait %
    亲本
    Parent
    穗长
    Panicle
    length
    一次枝梗数
    Primary branch number
    总粒数
    Total grain number
    结实率
    Seed setting
    rate
    单穗质量
    Single panicle weight
    千粒质量
    1 000-grain weight
    着粒密度
    Grain
    density
    望 S Wang S 2.49 −3.08 −13.61 0.67 −0.55 8.54 −16.54
    深 08S Deep 08S −3.30 −10.00 −6.46 4.58 14.15 9.41 −3.89
    Y58S 1.44 −4.62 −22.89 −4.99 −19.32 −0.91 −24.92
    M20S −0.63 17.69 42.96 −0.27 5.72 −17.03 45.35
    航恢 1173 Hanghui 1173 4.60 15.38 2.21 −1.75 −9.18 −12.75 −2.71
    航恢 91 Hanghui 91 −1.10 −7.69 −5.23 −1.15 −6.76 2.25 −4.29
    航恢 24 Hanghui 24 −3.50 −7.69 3.02 2.90 15.94 10.50 7.00
    下载: 导出CSV 
    | 显示表格

    ‘M20S’在一次枝梗数、总粒数和着粒密度性状上一般配合力最佳,明显高于其他不育系,单穗质量一般配合力表现为正值,穗长、结实率和千粒质量表现为负值,一般配合力好的性状较多,表明该不育系能通过提高一次枝梗数和着粒密度来提高总粒数,从而提高库容量,与优势互补的恢复系进行配组,易选育出产量潜力高的品种。在3个恢复系中,‘航恢24’在总粒数、结实率、单穗质量、千粒质量和着粒密度性状上一般配合力具佳,优势比较明显,可以与‘M20S’优势互补。

    不同杂交组合的7个性状的特殊配合力分析结果如表4所示,相同性状不同组合间及相同组合不同性状间的特殊配合力效应值存在明显差异,表明基因互作具多样性。从单穗质量上看,‘Y58S’/‘航恢1173’特殊配合力效应值最高,‘深08S’/‘航恢24’最低,特殊配合力效应值的变幅在–25.54~34.89之间。从经济学产量相关性状上看,‘望S’/‘航恢24’、‘深08S’/‘航恢91’、‘Y58S’/‘航恢1173’、和‘M20S’/‘航恢24’的特殊配合力效应较好;‘M20S’配制的3个组合中,‘M20S’/‘航恢24’一次枝梗数、总粒数、单穗质量、千粒质量和着粒密度这5个经济性状的特殊配合力表现为正效应,特别是总粒数、单穗质量和着粒密度这3个性状的特殊配合力效应值较高,该杂交组合在以‘M20S’为母本的3个组合中最符合大穗型育种的要求。

    表  4  穗部性状特殊配合力的效应值
    Table  4.  The effect value of special combining ability of panicle trait %
    杂交组合
    Hybrid combination
    穗长
    Panicle
    length
    一次枝梗数
    Primary branch number
    总粒数
    Total grain number
    结实率
    Seed setting rate
    单穗质量
    Single panicle weight
    千粒质量
    1 000-grain weight
    着粒密度
    Grain
    density
    望 S/航恢 1173
    Wang S/Hanghui 1173
    −1.72 3.08 −0.44 −6.74 −8.67 −6.44 2.47
    望 S/航恢 91
    Wang S/Hanghui 91
    −3.30 −6.15 −18.08 3.98 −9.13 9.24 −15.21
    望 S/航恢 24
    Wang S/Hanghui 24
    5.03 3.08 18.52 2.76 17.80 −2.80 12.74
    深 08S/航恢 1173
    Deep 08S/Hanghui 1173
    −2.38 −8.46 7.47 −4.58 2.45 −4.47 10.39
    深 08S/航恢 91
    Deep 08S/Hanghui 91
    0.47 3.08 5.36 1.28 23.09 6.83 5.16
    深 08S/航恢 24
    Deep 08S/Hanghui 24
    1.91 5.38 −12.83 3.30 −25.54 −2.36 −15.55
    Y58S/航恢 1173
    Y58S/Hanghui 1173
    −0.20 20.77 33.59 0.94 34.89 −15.06 33.74
    Y58S/航恢 91
    Y58S/Hanghui 91
    2.42 −11.54 −16.74 −1.68 −13.40 10.54 −17.41
    Y58S/航恢 24
    Y58S/Hanghui 24
    −2.22 −9.23 −16.85 0.74 −21.49 4.52 −16.33
    M20S/航恢 1173
    M20S/Hanghui 1173
    4.31 −15.38 −40.63 10.38 −23.68 25.97 −46.60
    M20S/航恢 91
    M20S/Hanghui 91
    0.42 14.62 29.46 −3.57 −5.56 −26.61 27.46
    M20S/航恢 24
    M20S/Hanghui 24
    −4.72 0.77 11.17 −6.81 29.24 0.64 19.14
    下载: 导出CSV 
    | 显示表格

    此外,对亲本一般配合力效应和杂交组合特殊配合力效应进行比较,发现亲本一般配合力效应与杂交组合特殊配合力效应似乎是相对独立的,亲本一般配合力高的,杂交组合特殊配合力不一定高,亲本一般配合力低的,杂交组合特殊配合力不一定低。

    估算穗部各性状的一般配合力和特殊配合力基因型方差,可以更深入地了解双亲及其互作对杂种后代性状的影响,估算结果见表5,通过σ122σ12+σ22以及VgVs对比可知,总粒数、结实率、千粒质量、着粒密度和单穗质量的σ1-22>σ12+σ22,且Vs>Vg,表明这些性状以受亲本互作非加性效应的影响为主。穗长和一次枝梗数的σ1-22<σ12+σ22Vs<Vg,表明这2个性状以受亲本基因加性效应影响为主。通过σe2σG2对比可知,所有性状的σG2>σe2,表明亲本各性状受遗传的影响为主,受环境影响占次要地位,F1的各个性状受遗传与环境共同影响。

    表  5  穗部性状配合力的基因型方差及贡献率1)
    Table  5.  Genotypic variance and contribution rate of combining ability of panicle trait
    性状 Trait σ12 σ22 σ1-22 σe2 σ12+σ22
    穗长 Panicle length 0.055 0 1.375 6 0.861 7 1.364 9 1.430 6
    一次枝梗数 Primary branch number 1.213 0 3.469 1 3.754 2 2.477 3 4.682 1
    总粒数 Total grain number 223 384.270 0 −137 294.100 0 442 541.910 0 36 785.081 0 86 090.203 0
    结实率 Seed setting rate 0 −0.000 5 0.002 1 0.002 8 −0.000 4
    单穗质量 Single panicle weight −8.583 3 −4.351 1 110.443 5 11.029 6 −12.934 4
    千粒质量 1 000-grain weight 337.611 7 −180.201 1 624.485 0 0.978 2 157.410 6
    着粒密度 Grain density 1.298 3 3.131 1 12.877 3 0.978 2 4.429 4
    性状 Trait σG2 σP2 Vg/% Vs/%
    穗长 Panicle length 2.292 3 3.657 1 62.41 37.59
    一次枝梗数 Primary branch number 8.436 3 1 091.360 0 55.50 44.50
    总粒数 Total grain number 528 632.120 0 565 417.200 0 16.29 83.71
    结实率 Seed setting rate 0.001 7 0.004 6 −25.73 125.73
    单穗质量 Single panicle weight 97.509 0 108.538 6 −13.26 113.26
    千粒质量 1 000-grain weight 781.895 6 782.873 8 20.13 79.87
    着粒密度 Grain density 17.306 7 18.284 9 25.59 74.41
     1) σ12:P1(一套n1=4的不育系亲本)的一般配合力基因型方差;σ22:P2(一套n2=3的恢复系亲本)的一般配合力基因型方差;σ1-22:P1-2(亲本互作)的特殊配合力基因型方差,又叫显性方差;σe2:环境方差;σ12+σ22:一般配合力加性基因型方差;σG2:总基因型方差;σP2:表现型方差;Vg:一般配合力方差,反映加性效应;Vs:特殊配合力方差,反映非加性效应
     1) σ12: P1 (a set of n1=4 male sterile parents) general gratification genotype variance; σ22: P2 (a set of n2=3 restorative parents) general gratification genotype variance; σ1-22: P1-2 (parent interaction) special combining ability genotype variance (also called dominant variance); σe2: environmental variance; σ12+σ22: General combining ability additive genotype variance: σG2: Total genotype variance; σP2: Phenotypic variance; Vg : General combining force variance; Vs: Special combining force variance, reflecting non-additive effect
    下载: 导出CSV 
    | 显示表格

    7个穗部性状的遗传力如表6所示。广义遗传力从大到小依次为:千粒质量、着粒密度、总粒数、单穗质量、一次枝梗数、穗长和结实率。所有性状的广义遗传力均比较大,除了结实率广义遗传力为37.49%,其余性状的广义遗传力都在60%以上,其中千粒质量和总粒数的广义遗传力达90%以上,说明这些性状很大程度上受遗传效应的影响。狭义遗传力从大到小依次为:一次枝梗数、穗长、着粒密度、千粒质量、总粒数、结实率和单穗质量,这些性状的狭义遗传力都在45%以下,遗传稳定性一般,性状的遗传力较弱,特别是结实率和单穗质量的狭义遗传力均小于0,影响非常显著,后代遗传稳定性差,亲本性状容易与自然环境、栽培方式等因素互作,对组合性状表现有直接影响。

    表  6  各性状遗传力的估算1)
    Table  6.  Estimation of heritability of each trait %
    性状 Trait hB2 hN2
    穗长 Panicle length 62.68 39.12
    一次枝梗数 Primary branch number 77.30 42.90
    总粒数 Total grain number 93.49 15.23
    结实率 Seed setting number 37.49 −9.65
    单穗质量 Single panicle weight 89.84 −11.92
    千粒质量 1 000-grain weight 99.88 20.11
    着粒密度 Grain density 94.65 24.22
     1) hB2:广义遗传力;hN2:狭义遗传力
     1) hB2: Generalized heritability; hN2: Narrow heritability
    下载: 导出CSV 
    | 显示表格

    穗部性状的一般配合力和特殊配合力方差差异均达显著或极显著水平,说明这些性状的遗传是受加性效应和非加性效应共同控制的。这些性状的配合力方差分析结果表明一次枝梗数和穗长的一般配合力方差较大,说明这2个性状受加性效应的影响较大;总粒数、结实率、千粒质量、着粒密度以及单穗质量的特殊配合力方差较大,说明这些性状主要受非加性效应的影响。此外,对亲本一般配合力效应和杂交组合特殊配合力效应进行比较,发现亲本的一般配合力效应与杂交组合的特殊配合力效应似乎是相对独立的,与前人研究情况不完全相同[13-14],亲本一般配合力高的,组合的特殊配合力不一定高,亲本一般配合力低的,组合的特殊配合力不一定低,与前人研究一致[15-17]。由穗部性状广义遗传力分析可知,总粒数、千粒质量、着粒密度和单穗质量表现突出,受遗传效应的作用极大。在优质杂交稻亲本的改良中,一次枝梗数、穗长等狭义遗传力高的性状,可在杂交早代选择,以提高育种效率。

    在亲本选配的过程中,需要综合考虑亲本的一般配合力与杂交组合的特殊配合力才能获得优良组合[18-19],根据研究分析,‘M20S’在总粒数、一次枝梗数、着粒密度性状上一般配合力最突出,单穗质量上一般配合力也是正值,表现良好,该不育系是一个大穗型的不育系,而穗型的大小是通过总粒数来分类的,总粒数的一般配合力达到了42.96%,远远超过其他亲本,说明‘M20S’的大穗性状不但能通过杂交遗传给后代,而且该不育系可以通过提高一次枝梗数来提高总粒数,从而提高经济学产量,是一个优良的亲本。对于杂交组合‘M20S/航恢24’,总粒数、着粒密度和单穗质量的特殊配合力较高,其中单穗质量的特殊配合力较大,为29.24%,其他性状特殊配合力效应较好,表明‘M20S/航恢24’在‘M20S’组配的3个组合中是最符合大穗型育种要求的组合。

  • [1]

    PINTON P, OSWALD I P. Effect of deoxynivalenol and other type B trichothecenes on the intestine: A review[J]. Toxins, 2014, 6(5): 1615-1643. doi: 10.3390/toxins6051615

    [2]

    KHOSHAL A K, NOVAK B, MARTIN P G P, et al. Co-occurrence of DON and emerging mycotoxins in worldwide finished pig feed and their combined toxicity in intestinal cells[J]. Toxins, 2019, 11(12): 727. doi: 10.3390/toxins11120727.

    [3]

    ZHAO Y J, GUAN X L, ZONG Y, et al. Deoxynivalenol in wheat from the Northwestern region in China[J]. Food Additives & Contaminants: Part B, 2018, 11(4): 281-285.

    [4] 王国强. 2019年我国部分地区饲料及饲料原料霉菌毒素污染调查报告[J]. 养猪, 2020(2): 14-16. doi: 10.3969/j.issn.1002-1957.2020.02.005
    [5] 李孟聪, 丁燕玲, 谭磊, 等. 2020年广东省动物饲料中4种主要霉菌毒素污染调查[J]. 畜牧与兽医, 2021, 53(5): 122-126.
    [6]

    MARESCA M, FANTINI J. Some food-associated mycotoxins as potential risk factors in humans predisposed to chronic intestinal inflammatory diseases[J]. Toxicon, 2010, 56(3): 282-294. doi: 10.1016/j.toxicon.2010.04.016

    [7]

    PAYROS D, ALASSANE-KPEMBI I, PIERRON A, et al. Toxicology of deoxynivalenol and its acetylated and modified forms[J]. Archives of Toxicology, 2016, 90(12): 2931-2957. doi: 10.1007/s00204-016-1826-4

    [8]

    SUNDHEIM L, LILLEGAARD I T, FAESTE C K, et al. Deoxynivalenol exposure in Norway, risk assessments for different human age groups[J]. Toxins, 2017, 9(2): 46. doi: 10.3390/toxins9020046.

    [9]

    HOOFT J M, BUREAU D P. Deoxynivalenol: Mechanisms of action and its effects on various terrestrial and aquatic species[J]. Food and Chemical Toxicology, 2021, 157: 112616. doi: 10.1016/j.fct.2021.112616.

    [10]

    WANG Z H, WU Q H, KUČA K, et al. Deoxynivalenol: Signaling pathways and human exposure risk assessment: An update[J]. Archives of Toxicology, 2014, 88(11): 1915-1928. doi: 10.1007/s00204-014-1354-z

    [11]

    LI X, MU P, WEN J, et al. Carrier-mediated and energy-dependent uptake and efflux of deoxynivalenol in mammalian cells[J/OL]. Scientific Reports, 2017, 7(1): 5889. [2022-08-01]. https://doi.org/10.1038/s41598-017-06199-8.

    [12]

    LI X M, MU P Q, QIAO H, et al. JNK-AKT-NF-κB controls P-glycoprotein expression to attenuate the cytotoxicity of deoxynivalenol in mammalian cells[J]. Biochemical Pharmacology, 2018, 156: 120-134. doi: 10.1016/j.bcp.2018.08.020

    [13]

    YUAN L P, MU P Q, HUANG B Y, et al. EGR1 is essential for deoxynivalenol-induced G2/M cell cycle arrest in HepG2 cells via the ATF3ΔZip2a/2b-EGR1-p21 pathway[J]. Toxicology Letters, 2018, 299: 95-103. doi: 10.1016/j.toxlet.2018.09.012

    [14]

    HU Z S, SUN Y, CHEN J J, et al. Deoxynivalenol globally affects the selection of 3' splice sites in human cells by suppressing the splicing factors, U2AF1 and SF1[J]. RNA Biology, 2020, 17(4): 584-495. doi: 10.1080/15476286.2020.1719750

    [15]

    LIN R Q, SUN Y, MU P Q, et al. Lactobacillus rhamnosus GG supplementation modulates the gut microbiota to promote butyrate production, protecting against deoxynivalenol exposure in nude mice[J]. Biochemical Pharmacology, 2020, 175: 113868. doi: 10.1016/j.bcp.2020.113868.

    [16]

    QIAO H, JIANG T Q, MU P Q, et al. Cell fate determined by the activation balance between PKR and SPHK1[J]. Cell Death and Differentiation, 2021, 28(1): 401-418.

    [17]

    YANG Y X, YU S, LIU N, et al. Transcription factor FOXO3a is a negative regulator of cytotoxicity of Fusarium mycotoxin in GES-1 cells[J]. Toxicological Sciences, 2018, 166(2): 370-381.

    [18]

    NDLOVU S, NAGIAH S, ABDUL N S, et al. Deoxynivalenol downregulates NRF2-induced cytoprotective response in human hepatocellular carcinoma (HepG2) cells[J]. Toxicon, 2021, 193: 4-12. doi: 10.1016/j.toxicon.2021.01.017

    [19]

    MAO X X, LI J, XIE X, et al. Deoxynivalenol induces caspase-3/GSDME-dependent pyroptosis and inflammation in mouse liver and HepaRG cells[J/OL]. Archives of Toxicology, 2022. [2022-08-01]. https://doi.org/10.1007/s00204-022-03344-9.

    [20]

    TANG S L, CHEN S, HUANG B Y, et al. Deoxynivalenol induces inhibition of cell proliferation via the Wnt/β-catenin signaling pathway[J]. Biochemical Pharmacology, 2019, 166: 12-22. doi: 10.1016/j.bcp.2019.05.009

    [21]

    LI X G, ZHU M, CHEN M X, et al. Acute exposure to deoxynivalenol inhibits porcine enteroid activity via suppression of the Wnt/β-catenin pathway[J]. Toxicology Letters, 2019, 305: 19-31. doi: 10.1016/j.toxlet.2019.01.008

    [22]

    PAI S G, CARNEIRO B A, MOTA J M, et al. Wnt/beta-catenin pathway: Modulating anticancer immune response[J]. Journal of Hematology & Oncology, 2017, 10(1): 1-12.

    [23]

    MU H B, MU P Q, ZHU W Y, et al. Low doses of deoxynivalenol inhibit the cell migration mediated by H3K27me3-targeted downregulation of TEM8 expression[J]. Biochemical Pharmacology, 2020, 175: 113897. doi: 10.1016/j.bcp.2020.113897.

    [24]

    ZHAO Y, TANG S, LIN R, et al. Deoxynivalenol exposure suppresses adipogenesis by inhibiting the expression of peroxisome proliferator-activated receptor gamma 2 (PPARγ2) in 3T3-L1 cells[J]. International Journal of Molecular Sciences, 2020, 21(17): 6300. doi: 10.3390/ijms21176300.

    [25]

    WANG S, YANG J C, ZHANG B Y, et al. Deoxynivalenol impairs porcine intestinal host defense peptide expression in weaned piglets and IPEC-J2 Cells[J]. Toxins, 2018, 10(12): 541. doi: 10.3390/toxins10120541.

    [26]

    GU X L, GUO W Y, ZHAO Y J, et al. Deoxynivalenol-induced cytotoxicity and apoptosis in IPEC-J2 cells through the activation of autophagy by inhibiting PI3K-AKT-mTOR signaling pathway[J]. ACS Omega, 2019, 4(19): 18478-18486. doi: 10.1021/acsomega.9b03208

    [27]

    KANG R F, LI R N, DAI P Y, et al. Deoxynivalenol induced apoptosis and inflammation of IPEC-J2 cells by promoting ROS production[J]. Environmental Pollution, 2019, 251: 689-698. doi: 10.1016/j.envpol.2019.05.026

    [28]

    LI E K, HORN N, AJUWON K M. Mechanisms of deoxynivalenol-induced endocytosis and degradation of tight junction proteins in jejunal IPEC-J2 cells involve selective activation of the MAPK pathways[J]. Archives of Toxicology, 2021, 95(6): 2065-2079. doi: 10.1007/s00204-021-03044-w

    [29]

    YU Y H, LAI Y H, HSIAO F S H, et al. Effects of deoxynivalenol and mycotoxin adsorbent agents on mitogen-activated protein kinase signaling pathways and inflammation-associated gene expression in porcine intestinal epithelial cells[J]. Toxins, 2021, 13(5): 301. doi: 10.3390/toxins13050301.

    [30]

    ZHANG H, DENG X W, ZHOU C, et al. Deoxynivalenol induces inflammation in IPEC-J2 cells by activating P38 mapk and Erk1/2[J]. Toxins, 2020, 12(3): 180. doi: 10.3390/toxins12030180.

    [31]

    WANG X C, ZHANG Y Y, ZHAO J, et al. Deoxynivalenol induces inflammatory injury in IPEC-J2 cells via NF-κB signaling pathway[J]. Toxins, 2019, 11(12): 733. doi: 10.3390/toxins11120733.

    [32]

    WANG X C, ZHANG Y F, CAO L, et al. Deoxynivalenol induces intestinal damage and inflammatory response through the nuclear factor-κB signaling pathway in piglets[J]. Toxins, 2019, 11(11): 663. doi: 10.3390/toxins11110663.

    [33]

    GE L, LIU D D, MAO X R, et al. Low dose of deoxynivalenol aggravates intestinal inflammation and barrier dysfunction induced by enterotoxigenic Escherichia coli infection through activating macroautophagy/NLRP3 inflammasomes[J]. Journal of Agricultural and Food Chemistry, 2022, 70(9): 3009-3022. doi: 10.1021/acs.jafc.1c07834

    [34]

    LIU D D, WANG Q, HE W M, et al. Two-way immune effects of deoxynivalenol in weaned piglets and porcine alveolar macrophages: Due mainly to its exposure dosage[J]. Chemosphere, 2020, 249: 126464. doi: 10.1016/j.chemosphere.2020.126464.

    [35]

    JI J, ZHU P, CUI F C, et al. The disorder metabolic profiling in kidney and spleen of mice induced by mycotoxins deoxynivalenol through gas chromatography mass spectrometry[J]. Chemosphere, 2017, 180: 267-274. doi: 10.1016/j.chemosphere.2017.03.129

    [36]

    REN Z H, GUO C Y, HE H Y, et al. Effects of deoxynivalenol on mitochondrial dynamics and autophagy in pig spleen lymphocytes[J]. Food and Chemical Toxicology, 2020, 140: 111357. doi: 10.1016/j.fct.2020.111357.

    [37]

    WANG X C, CHEN X F, CAO L, et al. Mechanism of deoxynivalenol-induced neurotoxicity in weaned piglets is linked to lipid peroxidation, dampened neurotransmitter levels, and interference with calcium signaling[J]. Ecotoxicology and Environmental Safety, 2020, 194: 110382. doi: 10.1016/j.ecoenv.2020.110382.

    [38]

    WANG X C, CHU X Y, CAO L, et al. The role and regulatory mechanism of autophagy in hippocampal nerve cells of piglet damaged by deoxynivalenol[J]. Toxicology in Vitro, 2020, 66: 104837. doi: 10.1016/j.tiv.2020.104837.

    [39]

    KOWALSKA K, KOZIEŁ M J, HABROWSKA-GóRCZYŃSKA D E, et al. Deoxynivalenol induces apoptosis and autophagy in human prostate epithelial cells via PI3K/Akt signaling pathway[J]. Archives of Toxicology, 2022, 96(1): 231-241. doi: 10.1007/s00204-021-03176-z

    [40]

    CAO L, JIANG Y J, ZHU L, et al. Deoxynivalenol induces caspase-8-mediated apoptosis through the mitochondrial pathway in hippocampal nerve cells of piglet[J]. Toxins, 2021, 13(2): 73. doi: 10.3390/toxins13020073.

    [41]

    WANG X C, FAN M X, CHU X Y, et al. Deoxynivalenol induces toxicity and apoptosis in piglet hippocampal nerve cells via the MAPK signaling pathway[J]. Toxicon, 2018, 155: 1-8. doi: 10.1016/j.toxicon.2018.09.006

    [42]

    YANG J H, WANG J H, GUO W B, et al. Toxic effects and possible mechanisms of deoxynivalenol exposure on sperm and testicular damage in BALB/c mice[J]. Journal of Agricultural and Food Chemistry, 2019, 67(8): 2289-2295. doi: 10.1021/acs.jafc.8b04783

    [43]

    YU M, WEI Z Y, XU Z H, et al. Oxidative damage and Nrf2 translocation induced by toxicities of deoxynivalenol on the placental and embryo on gestation day 12.5 d and 18.5 d[J]. Toxins, 2018, 10(9): 370. doi: 10.3390/toxins10090370.

    [44]

    VIGNAL C, DJOUINA M, PICHAVANT M, et al. Chronic ingestion of deoxynivalenol at human dietary levels impairs intestinal homeostasis and gut microbiota in mice[J]. Archives of Toxicology, 2018, 92(7): 2327-2338. doi: 10.1007/s00204-018-2228-6

    [45]

    MARCHESI J R, ADAMS D H, FAVA F, et al. The gut microbiota and host health: A new clinical frontier[J]. Gut, 2016, 65(2): 330-339. doi: 10.1136/gutjnl-2015-309990

    [46]

    HE X L, ZENG Q, PUTHIYAKUNNON S, et al. Lactobacillus rhamnosus GG supernatant enhance neonatal resistance to systemic Escherichia coli K1 infection by accelerating development of intestinal defense[J]. Scientific Reports, 2017, 7: 43305. doi: 10.1038/srep43305.

    [47]

    REN C C, DOKTER-FOKKENS J, FIGUEROA LOZANO S, et al. Lactic acid bacteria may impact intestinal barrier function by modulating goblet cells[J]. Molecular Nutrition & Food Research, 2018, 62(6): e1700572. doi: 10.1002/mnfr.201700572.

    [48]

    GARCíA G R, PAYROS D, PINTON P, et al. Intestinal toxicity of deoxynivalenol is limited by Lactobacillus rhamnosus RC007 in pig jejunum explants[J]. Archives of Toxicology, 2017, 92(2): 983-993.

    [49]

    BAI Y S, MA K D, LI J B, et al. Deoxynivalenol exposure induces liver damage in mice: Inflammation and immune responses, oxidative stress, and protective effects of Lactobacillus rhamnosus GG[J]. Food and Chemical Toxicology, 2021, 156: 112514. doi: 10.1016/j.fct.2021.112514.

    [50]

    MA K D, BAI Y S, LI J B, et al. Lactobacillus rhamnosus GG ameliorates deoxynivalenol-induced kidney oxidative damage and mitochondrial injury in weaned piglets[J]. Food & Function, 2022, 13(7): 3905-3916.

    [51]

    WU S R, LIU Y L, DUAN Y L, et al. Intestinal toxicity of deoxynivalenol is limited by supplementation with Lactobacillus plantarum JM113 and consequentially altered gut microbiota in broiler chickens[J]. Journal of Animal Science and Biotechnology, 2018, 9: 74. doi: 10.1186/s40104-018-0286-5.

    [52]

    MAIDANA L G, GEREZ J, HOHMANN M N S, et al. Lactobacillus plantarum metabolites reduce deoxynivalenol toxicity on jejunal explants of piglets[J]. Toxicon, 2021, 203: 12-21. doi: 10.1016/j.toxicon.2021.09.023

    [53]

    LI X Y, GUO Y P, ZHAO L H, et al. Protective effects of Devosia sp. ANSB714 on growth performance, immunity function, antioxidant capacity and tissue residues in growing-finishing pigs fed with deoxynivalenol contaminated diets[J]. Food and Chemical Toxicology, 2018, 121: 246-251. doi: 10.1016/j.fct.2018.09.007

    [54]

    QIN T, LIU X P, LUO Y, et al. Characterization of polysaccharides isolated from Hericium erinaceus and their protective effects on the DON-induced oxidative stress[J]. International Journal of Biological Macromolecules, 2020, 152: 1265-1273. doi: 10.1016/j.ijbiomac.2019.10.223

    [55]

    RAJPUT S A, LIANG S J, WANG X Q, et al. Lycopene protects intestinal epithelium from deoxynivalenol-induced oxidative damage via regulating Keap1/Nrf2 signaling[J]. Antioxidants, 2021, 10(9): 1493. doi: 10.3390/antiox10091493.

    [56]

    AL-SAEEDI F J. Mangiferin protect oxidative stress against deoxynivalenol induced damages through Nrf2 signalling pathways in endothelial cells[J]. Clinical and Experimental Pharmacology & Physiology, 2021, 48(3): 389-400.

    [57]

    YANG J, ZHU C, YE J L, et al. Protection of porcine intestinal-epithelial cells from deoxynivalenol-induced damage by resveratrol via the Nrf2 signaling pathway[J]. Journal of Agricultural and Food Chemistry, 2019, 67(6): 1726-1735. doi: 10.1021/acs.jafc.8b03662

    [58]

    ZHANG J, WANG J M, FANG H T, et al. Pterostilbene inhibits deoxynivalenol-induced oxidative stress and inflammatory response in bovine mammary epithelial cells[J]. Toxicon, 2021, 189: 10-18. doi: 10.1016/j.toxicon.2020.11.002

    [59]

    WAN M L Y, TURNER P C, CO V A, et al. Schisandrin A protects intestinal epithelial cells from deoxynivalenol-induced cytotoxicity, oxidative damage and inflammation[J]. Scientific Reports, 2019, 9: 19173. doi: 10.1038/s41598-019-55821-4.

    [60]

    WANG X J, LI L, ZHANG G Y. Impact of deoxynivalenol and kaempferol on expression of tight junction proteins at different stages of Caco-2 cell proliferation and differentiation[J]. RSC Advances, 2019, 9(59): 34607-34616. doi: 10.1039/C9RA06222J

    [61]

    XU X X, CHANG J, WANG P, et al. Effect of chlorogenic acid on alleviating inflammation and apoptosis of IPEC-J2 cells induced by deoxyniyalenol[J]. Ecotoxicology and Environmental Safety, 2020, 205: 111376. doi: 10.1016/j.ecoenv.2020.111376.

    [62]

    TANG M, YUAN D X, LIAO P. Berberine improves intestinal barrier function and reduces inflammation, immunosuppression, and oxidative stress by regulating the NF-κB/MAPK signaling pathway in deoxynivalenol-challenged piglets[J]. Environmental Pollution, 2021, 289: 117865. doi: 10.1016/j.envpol.2021.117865.

    [63]

    LIAO P, LI Y H, LI M J, et al. Baicalin alleviates deoxynivalenol-induced intestinal inflammation and oxidative stress damage by inhibiting NF-κB and increasing mTOR signaling pathways in piglets[J]. Food and Chemical Toxicology, 2020, 140: 111326. doi: 10.1016/j.fct.2020.111326.

    [64]

    WANG X M, ZUO Z C, ZHAO C P, et al. Protective role of selenium in the activities of antioxidant enzymes in piglet splenic lymphocytes exposed to deoxynivalenol[J]. Environmental Toxicology and Pharmacology, 2016, 47: 53-61. doi: 10.1016/j.etap.2016.09.003

    [65]

    SHIEH P, HSU S S, LIANG W Z. Mechanisms underlying protective effects of vitamin E against mycotoxin deoxynivalenol-induced oxidative stress and its related cytotoxicity in primary human brain endothelial cells[J]. Environmental Toxicology, 2021, 36(7): 1375-1388. doi: 10.1002/tox.23133

    [66]

    LIAO S M, LIU G, TAN B, et al. Fullerene C60 protects against intestinal injury from deoxynivalenol toxicity by improving antioxidant capacity[J]. Life, 2021, 11(6): 491. doi: 10.3390/life11060491.

    [67]

    ZHOU J Y, LIN H L, QIN Y C, et al. L-carnosine protects against deoxynivalenol-induced oxidative stress in intestinal stem cells by regulating the Keap1/Nrf2 signaling pathway[J]. Molecular Nutrition & Food Research, 2021, 65(17): e2100406. doi: 10.1002/mnfr.202100406.

    [68]

    WANG S, ZHANG C, YANG J C, et al. Sodium butyrate protects the intestinal barrier by modulating intestinal host defense peptide expression and gut microbiota after a challenge with deoxynivalenol in weaned piglets[J]. Journal of Agricultural and Food Chemistry, 2020, 68(15): 4515-4527. doi: 10.1021/acs.jafc.0c00791

    [69]

    XIAO K, LIU C C, QIN Q, et al. EPA and DHA attenuate deoxynivalenol-induced intestinal porcine epithelial cell injury and protect barrier function integrity by inhibiting necroptosis signaling pathway[J]. FASEB Journal, 2020, 34(2): 2483-2496. doi: 10.1096/fj.201902298R

    [70]

    XUE R F, LI S H, ZOU H J, et al. Melatonin alleviates deoxynivalenol-induced apoptosis of human granulosa cells by reducing mutually accentuated FOXO1 and ER stress[J]. Biology of Reproduction, 2021, 105(2): 554-566. doi: 10.1093/biolre/ioab084

    [71]

    SOBROVA P, ADAM V, VASATKOVA A, et al. Deoxynivalenol and its toxicity[J]. Interdiscip Toxicol, 2010, 3(3): 94-99.

    [72]

    KABAK B, DOBSON A D W, VAR I. Strategies to prevent mycotoxin contamination of food and animal feed: A review[J]. Critical Reviews in Food Science and Nutrition, 2006, 46(8): 593-619. doi: 10.1080/10408390500436185

    [73]

    XU H W, WANG L Z, SUN J D, et al. Microbial detoxification of mycotoxins in food and feed[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(18): 4951-4969. doi: 10.1080/10408398.2021.1879730

    [74]

    ERIKSEN G S, PETTERSSON H, LUNDH T. Comparative cytotoxicity of deoxynivalenol, nivalenol, their acetylated derivatives and de-epoxy metabolites[J]. Food and Chemical Toxicology, 2004, 42(4): 619-624. doi: 10.1016/j.fct.2003.11.006

    [75]

    FUCHS E, BINDER E M, HEIDLER D, et al. Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797[J]. Food Additives and Contaminants, 2002, 19(4): 379-386. doi: 10.1080/02652030110091154

    [76]

    LI F C, WANG J Q, HUANG L B, et al. Effects of adding Clostridium sp. WJ06 on intestinal morphology and microbial diversity of growing pigs fed with natural deoxynivalenol contaminated wheat[J]. Toxins, 2017, 9(12): 383. doi: 10.3390/toxins9120383.

    [77]

    LI X Z, ZHU C, DE LANGE C F M, et al. Efficacy of detoxification of deoxynivalenol-contaminated corn by Bacillus sp. LS100 in reducing the adverse effects of the mycotoxin on swine growth performance[J]. Food Additives & Contaminants: Part A, 2011, 28(7): 894-901.

    [78]

    GAO X J, MU P Q, WEN J K, et al. Detoxification of trichothecene mycotoxins by a novel bacterium, Eggerthella sp. DII-9[J]. Food and Chemical Toxicology, 2018, 112: 310-319. doi: 10.1016/j.fct.2017.12.066

    [79]

    GAO X J, MU P Q, ZHU X H, et al. Dual function of a novel bacterium, Slackia sp. D-G6: Detoxifying deoxynivalenol and producing the natural estrogen analogue, equol[J]. Toxins, 2020, 12(2): 85. doi: 10.3390/toxins12020085.

    [80]

    HE W J, SHI M M, YANG P, et al. Novel soil bacterium strain Desulfitobacterium sp. PGC-3-9 detoxifies trichothecene mycotoxins in wheat via de-epoxidation under aerobic and anaerobic conditions[J]. Toxins, 2020, 12(6): 363. doi: 10.3390/toxins12060363.

    [81]

    SHIMA J, TAKASE S, TAKAHASHI Y, et al. Novel detoxification of the trichothecene mycotoxin deoxynivalenol by a soil bacterium isolated by enrichment culture[J]. Applied and Environmental Microbiology, 1997, 63(10): 3825-3830. doi: 10.1128/aem.63.10.3825-3830.1997

    [82]

    ZHANG J, QIN X J, GUO Y P, et al. Enzymatic degradation of deoxynivalenol by a novel bacterium, Pelagibacterium halotolerans ANSP101[J]. Food and Chemical Toxicology, 2020, 140: 111276. doi: 10.1016/j.fct.2020.111276.

    [83]

    QIN X J, ZHANG J, LIU Y R, et al. A quinoprotein dehydrogenase from Pelagibacterium halotolerans ANSP101 oxidizes deoxynivalenol to 3-keto-deoxynivalenol[J]. Food Control, 2022, 136: 108834. doi: 10.1016/j.foodcont.2022.108834.

    [84] 唐语谦, 潘药银, 刘晨迪, 等. 脱氧雪腐镰刀菌烯醇的生物转化及其隐蔽型毒素的形成研究进展[J]. 食品科学, 2020, 41(19): 281-288. doi: 10.7506/spkx1002-6630-20190908-104
    [85]

    HE J W, HASSAN Y I, PERILLA N, et al. Bacterial epimerization as a route for deoxynivalenol detoxification: The influence of growth and environmental conditions[J]. Frontiers in Microbiology, 2016, 7: 572. doi: 10.3389/fmicb.2016.00572.

    [86]

    CARERE J, HASSAN Y I, LEPP D, et al. The enzymatic detoxification of the mycotoxin deoxynivalenol: Identification of DepA from the DON epimerization pathway[J]. Microbial Biotechnology, 2018, 11(6): 1106-1111. doi: 10.1111/1751-7915.12874

    [87]

    CARERE J, HASSAN Y I, LEPP D, et al. The identification of DepB: An enzyme responsible for the final detoxification step in the deoxynivalenol epimerization pathway in Devosia mutans 17-2-E-8[J]. Frontiers in Microbiology, 2018, 9: 1573. doi: 10.3389/fmicb.2018.01573.

    [88]

    HE W J, SHI M M, YANG P, et al. A quinone-dependent dehydrogenase and two NADPH-dependent aldo/keto reductases detoxify deoxynivalenol in wheat via epimerization in a Devosia strain[J]. Food Chemistry, 2020, 321: 126703. doi: 10.1016/j.foodchem.2020.126703.

    [89]

    HE W J, ZHANG L, YI S Y, et al. An aldo-keto reductase is responsible for Fusarium toxin-degrading activity in a soil Sphingomonas strain[J]. Scientific Reports, 2017, 7(1): 9549. doi: 10.1038/s41598-017-08799-w.

    [90]

    WANG Y, ZHANG H, ZHAO C, et al. Isolation and characterization of a novel deoxynivalenol-transforming strain Paradevosia shaoguanensis DDB001 from wheat field soil[J]. Letters in Applied Microbiology, 2017, 65(5): 414-422. doi: 10.1111/lam.12790

    [91]

    IKUNAGA Y, SATO I, GROND S, et al. Nocardioides sp. strain WSN05-2, isolated from a wheat field, degrades deoxynivalenol, producing the novel intermediate 3-epi-deoxynivalenol[J]. Applied Microbiology and Biotechnology, 2011, 89(2): 419-427. doi: 10.1007/s00253-010-2857-z

    [92]

    WILSON N M, MCMASTER N, GANTULGA D, et al. Modification of the mycotoxin deoxynivalenol using microorganisms isolated from environmental samples[J]. Toxins, 2017, 9(4): 141. doi: 10.3390/toxins9040141.

    [93]

    ZHANG H H, ZHANG H, QIN X, et al. Biodegradation of deoxynivalenol by Nocardioides sp. ZHH-013: 3-keto-deoxynivalenol and 3-epi-deoxynivalenol as intermediate products[J]. Frontiers in Microbiology, 2021, 12: 658421. doi: 10.3389/fmicb.2021.658421.

  • 期刊类型引用(5)

    1. 摆福红,王晓敏,王凯彬,郭猛,程国新,胡新华,付金军,高艳明,李建设. 15个大果番茄自交系果实性状的配合力与遗传力分析. 江苏农业学报. 2023(04): 1043-1051 . 百度学术
    2. 王立如,曲玉杰,耿晓丽,Zareen Sarfraz,贾银华,潘兆娥,杜雄明. 陆地棉亲本间遗传距离与配合力的相关性研究. 中国科学:生命科学. 2022(04): 491-498 . 百度学术
    3. 李会霞,田岗,王玉文,刘鑫,刘红. 谷子杂交种与亲本性状的遗传相关性. 中国农业科学. 2020(02): 239-246 . 百度学术
    4. 彭建,朱益祥,钟许成,周小平,唐小美,刘俊,于江辉. 籼型杂交水稻农艺性状的配合力及遗传力研究(英文). Agricultural Science & Technology. 2020(03): 1-6+12 . 百度学术
    5. 王晓敏,赵宇飞,袁东升,刘珮君,郑福顺,胡新华,付金军,高艳明,李建设. 三十三个番茄自交系数量性状的配合力和遗传力分析. 浙江农业学报. 2019(12): 2025-2035 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  147
  • HTML全文浏览量:  87
  • PDF下载量:  483
  • 被引次数: 8
出版历程
  • 收稿日期:  2022-08-09
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2022-11-09

目录

/

返回文章
返回