Effects of biomass types and additions on soil infiltration characteristics and nutrient transport in fertilizer irrigation
-
摘要:目的
探究添加不同生物质和添加量对肥液灌溉土壤入渗特征与养分运移的影响,为提升肥液灌溉效率提供理论依据。
方法以生物炭(BC)、咖啡渣(CF)和甘蔗渣(SC)作为生物质添加材料,设置4个添加量(质量分数)水平T1(0.5%)、T2(1.0%)、T3(1.5%)、T4(2.0%)。测量肥液在不同生物质添加土壤中的运移特征及养分分布,评估不同生物质添加对土壤结构的影响。
结果3种生物质对湿润锋运移与土壤累积入渗量抑制效果均表现为SC>CF>BC,各处理组内抑制效果随生物质添加量增加有所提升;和CK组相比, SCT4、CFT4和BCT4组湿润锋运移距离分别降低了38.33%、37.00%和34.00%;SCT4、CFT4和BCT4组土壤累积入渗量分别降低了31.01%、30.00%和26.60%。和CK组相比,肥液灌溉下3种生物质添加均能提升土壤中3种主要无机养分,且随生物质添加量增加土壤肥力提升;3种生物质对土壤硝态氮截留总体表现为BC>CF>SC,其中,BCT4、CFT4和SCT4组的土壤硝态氮含量分别提升了74.32%、56.00%和51.00%;3种生物质对土壤速效磷截留总体表现为CF>SC>BC,其中,CFT4、SCT4和BCT4组的土壤速效磷含量分别提升了140.70%、139.20%和30.25%;3种生物质对土壤速效钾截留总体表现为CF>BC>SC,其中,CFT4、BCT4和SCT4组的土壤速效钾含量分别提升了143.87%、126.85%和104.03%。
结论3种生物质对肥液入渗均有抑制效果,其中,生物炭效果最佳;3种生物质对肥力均有截留效果,生物炭对硝态氮截留效果最佳,咖啡渣对速效磷与速效钾截留效果最佳。
Abstract:ObjectiveIn order to explore the effects of different biomass additions and amounts on soil infiltration characteristics and nutrient transport in fertilizer irrigation, so as to provide a theoretical basis for improving fertilizer irrigation efficiency.
MethodBiochar (BC), coffee grounds (CF) and bagasse (SC) were used as biomass additives, and four levels of addition were set including T1 (0.5%), T2 (1.0%), T3 (1.5%), and T4 (2.0%). The transport characteristics of fertilizer solution in different biomass-added soils and their nutrient distributions were measured. The effects of different biomass additions on soil structure were evaluated.
ResultThe inhibitory effects of three kinds of biomass on wetting front migration and soil cumulative infiltration were SC>CF>BC, and the inhibitory effects in each treatment group increased with increasing biomass addition. Compared with the CK group, the wetting front migration distances of SCT4, CFT4 and BCT4 decreased by 38.33%, 37.00% and 34.00% respectively. The cumulative soil infiltration amounts of SCT4, CFT4 and BCT4 decreased by 31.01%, 30.00% and 26.60% respectively. Compared with the CK group, the three kinds of biomass additions under the fertilizer irrigation improved the contents of three main inorganic nutrients in soil, and the soil fertility was improved with increasing biomass addition. The overall performance of soil nitrate nitrogen retention by the three kinds of biomass was BC>CF>SC. Among them, the soil nitrate nitrogen contents of BCT4, CFT4 and SCT4 increased by 74.32%, 56.00% and 51.00% respectively. The overall performance of soil available phosphorus retention by the three kinds of biomass was CF>SC>BC. Among them, the soil available phosphorus contents of CFT4, SCT4 and BCT4 increased by 140.70%, 139.20% and 30.25% respectively. The overall performance of soil available potassium retention by the three kinds of biomass was CF>BC>SC. Among them, CFT4, BCT4 and SCT4 increased the soil available potassium contents by 143.87%, 126.85% and 104.03% respectively.
ConclusionAll three kinds of biomass have inhibitory effects on the infiltration of fertilizer solution with biochar being the best. The three kinds of biomass all have interception effects on fertility, meanwhile, biochar has the best interception effect on nitrate nitrogen, and coffee grounds have the best interception effect on available phosphorus and available potassium.
-
钾是农作物生长必需的三大营养元素之一[1].我国呈现出不同程度的土壤缺钾现状, 且南方较北方的缺钾情况严重, 如广东的水稻土壤、旱地土壤缺钾面积均达到了90%以上[2].同时, 可利用的水溶性钾矿资源短缺, 供给量仅占需求量的30% ~ 40%, 进口已成为钾肥的主要来源[3].我国的非水溶性钾矿资源却非常丰富, 达到了100亿t[4].充分开发利用这部分资源, 将极大缓解我国的缺钾现状.我国对非水溶性钾矿已做了较多的研究[5-6], 然而大部分的提钾工艺复杂, 成本高, 难以推广.近年来, 基于活化概念的理化促释技术提供了一条新型研发思路[7].已有的研究结果表明, 活化后钾长石的钾释放量显著提高, 可部分替代氯化钾而肥效不减[8-9].开展活化钾矿的钾素释放机理与规律的理论研究, 尤其是对动力学规律的研究, 对其肥力评价指标的建立具有重要意义.
钾的释放既受含钾矿物类型的影响, 也受钾释放的溶液环境(如各种离子种类和浓度)的影响[10].范钦桢[11]发现铵态氮肥中的NH4+会抑制土壤中非交换态钾和结构钾的释放, 土壤中常见的阳离子有NH4+、Na+、Ca2+等, 而这些阳离子同样会影响非水溶性钾矿的释放.王瑾[12]研究了不同阳离子盐溶液对黑云母、白云母、正长石等非水溶性钾矿钾释放的影响, 发现随着离子种类、钾矿类型的不同, 钾的释放也呈现不同的释放特征.本研究选取2种钾矿及其QN活化钾矿为研究材料, 采用NH4Cl和NaCl这2种阳离子盐溶液做浸提剂对其连续振荡提取, 建立活化钾矿的钾释放动力学模型, 旨在从动力学角度研究活化钾矿的高效释放特征, 为评价活化钾矿的植物有效性提供理论依据.
1. 材料与方法
1.1 材料
供试的非水溶性钾矿为钾长石和富钾页岩, 其中, 钾长石w (K2O)为8.57%, 取自广东五华; 富钾页岩w(K2O)为11.42%, 取自河北张家口.2种钾矿经风干、磨细后过100目筛备用.
活化钾矿的制备方法:分别称取上述钾矿20 g, 加入质量分数为5%的QN活化剂, 再加入2 mL蒸馏水, 混合研磨5 min, 风干、磨细, 过100目筛备用.其中, QN活化剂为含Na+、不含K+的无机活化剂.
浸提剂分别为10 mmol·L-1的NH4Cl和NaCl.
1.2 方法
准确称取钾矿及活化钾矿0.500 0 g于离心管中, 分别加入50 mL不同的浸提剂溶液, 对照加入去离子水(H2O), 摇匀, 在振荡机上振荡15 min, 取出后5 000 r·min-1离心.倒出全部上清液, 用火焰光度法测定溶液钾的含量.残渣中分别加入50 mL上述溶液, 重复浸提步骤, 钾长石、活化钾长石连续提取10次, 页岩、活化页岩连续提取15次.每个处理设3个重复.上述提取次数均根据实际浸提过程中到达平衡附近的时间确定.
1.3 释放动力学模型
一级动力学模型:y = a-ae-bx,
双常数模型:y = axb,
扩散模型:y = a+ bx0.5,
Elovich模型:y = a+ blnx.
上述模型中, x为浸提时间, y为钾矿的累积释钾量, a、b为模型常数[13-16].
1.4 数据处理方法
数据的处理、分析和制图分别采用Excel、Spass13.0、Matlab7.1等软件.
2. 结果与分析
2.1 连续振荡条件下活化钾矿的钾释放
如图 1所示, 各浸提剂浸提钾矿的释放均表现为前期快速, 之后缓慢释放的变化趋势, 其中NH4Cl浸提时, 钾矿及活化钾矿在30 min左右即完成了快速释放, 进入了缓慢释放阶段.NH4Cl和NaCl在浸提钾长石、活化钾长石时, 均在45 min左右达到了缓慢释放阶段; H2O在浸提富钾页岩、活化页岩时, 快速释放阶段为0 ~ 90 min, 90 min之后为缓慢释放阶段, 而NaCl浸提到45 min左右时, 富钾页岩、活化页岩即进入了缓慢释放阶段.
连续浸提的过程中, 活化钾矿与钾矿表现出一致的浸提规律.初始阶段, 钾长石、活化钾长石的钾释放量表现为:NH4Cl>NaCl>H2O, 随着浸提时间的延长, 释钾量逐渐减少, 到达释钾平衡附近时, 3种浸提剂的累积释钾量表现为:NaCl>NH4Cl≈H2O; 富钾页岩、活化页岩的整个动态释钾过程均表现为: H2O>NaCl>NH4Cl.
对钾矿及其活化钾矿的累积释钾量分析可知, 在H2O、NH4Cl、NaCl浸提下, 活化钾长石的累积释钾量分别是钾长石的2.3、2.0和1.7倍, 活化页岩的累积释钾量分别是富钾页岩的2.5、3.3和2.5倍, 所以活化钾矿的累积释钾能力大于钾矿.由图 1还可以看出, 富钾页岩的累积释钾能力大于钾长石、活化页岩的累积释钾能力大于活化钾长石.
2.2 钾矿的释钾动力学模型
由图 1中钾矿释钾的动态数据, 建立不同浸提剂钾矿的钾释放动力学模型, 拟合结果如表 1所示.其中, 模型拟合的优劣取决于拟合性, 即计算值与实测值的符合程度, 常用相关系数(R)和标准差(S)来评定, R越大、S越小拟合性越好.由表 1可以看出, 除钾长石的一级动力学拟合方程R达显著水平外, 其余拟合方程的R均达到极显著水平, 相关系数在0.698 6 ~ 0.997 3之间.累积释钾量的计算值与实测值之间的S在11.35 ~ 295.90之间, 表明4个模型均能很好的拟合钾矿及活化钾矿的动态释钾过程.
表 1 连续振荡条件下活化钾矿释钾的动力学模型1)Table 1. The kinetics model of K release of activated potassium ores with successive extraction双常数模型、一级动力学模型、扩散模型和Elovich模型拟合钾长石的累积释钾量, 拟合R的平均值分别为0.971 3、0.832 2、0.953 3和0.978 2;拟合S的平均值分别为15.48、22.99、19.49和13.30, 双常数模型和Elovich模型两者间的R和S基本没有差别, 所以, 钾长石的最优释放动力学模型是Elovich模型或双常数模型.
对于活化钾长石, 4种模型拟合R的平均值分别为0.948 4、0.920 1、0.900 3和0.958 1;拟合S的平均值分别为22.35、26.28、31.07和20.50, 与钾长石的结果类似, 活化钾长石的最优释放动力学模型亦为Elovich模型或双常数模型.
对页岩, 4种模型拟合R的平均值分别为0.979 4、0.906 4、0.974 6和0.981 7;S的平均值分别为:64.68、88.84、72.36和51.36, 钾的释放动力学模型拟合性表现为:Elovich模型>双常数模型>扩散模型>一级动力学模型.所以, 页岩的最优释放动力学模型为Elovich模型.
对活化页岩, 4种模型拟合R的平均值分别为0.974 3、0.849 7、0.956 2和0.981 6;S的平均值分别为126.70、194.30、169.11和95.79, 动力学方程拟合性:Elovich模型>双常数模型>扩散模型>一级动力学模型.所以, 活化页岩的最优释放动力学模型是Elovich模型.
4种模型拟合时, H2O、NH4Cl、NaCl浸提钾长石的方程S均表现为:NaCl>H2O>NH4Cl, 活化钾长石亦表现出相同规律.一级动力学模型拟合时, 3种浸提剂之间的S相差不大, 说明除了一级动力学模型, 其他3种动力学模型拟合钾长石、活化钾长石时, NH4Cl浸提下的模型拟合性均优于NaCl.4种模型拟合页岩时浸提剂间的S均表现出:H2O>NaCl>NH4Cl, 浸提活化页岩时亦表现出相同规律, 说明4种模型拟合下, NH4Cl浸提页岩、活化页岩的拟合性均优于NaCl.
2.3 动力学模型参数与钾矿释钾关系
由上述分析可知, 双常数模型、一级动力学模型、扩散模型和Elovich模型均具有较好的拟合性, 模型中的参数对于活化钾矿中钾素在盐溶液持续作用下的释放特征具有重要的意义.
拟合方程的参数见表 2.双常数方程的参数a表示释放过程的初始瞬时速率[17-18], a值越大, 钾矿释钾的初始瞬时速率越大.通过比较双常数方程的a值可以看出, 活化钾矿的钾初始释放速率显著高于未活化钾矿, 在H2O、NH4Cl和NaCl的浸提条件下, 活化钾长石的钾初始释放速率分别比钾长石增加了3.7、1.1和1.6倍; 活化页岩的钾初始释放速率分别比富钾页岩增加了4.7、6.0和4.0倍.
表 2 活化钾矿的动力学模型拟合参数Table 2. The kinetics model fitting parameters of activated potassium ores对Elovich方程求导, 可得到Elovich速率方程: y = b/x, 由b值可以求出任一时间的释放速率[17, 19-20].b值越大, 钾矿释钾的速率越大.表 2可以看出, NH4Cl浸提钾矿及活化钾矿的b显著小于其他浸提剂, 表明NH4Cl浸提的钾释放速率远小于其他浸提剂.比较钾长石和活化钾长石的b发现, 除了NaCl浸提活化钾长石的b小于钾长石, H2O和NH4Cl浸提活化钾长石的b分别比钾长石增加了10.3%和71.2%.H2O、NH4Cl和NaCl浸提活化页岩的b分别比页岩增加了61.7%、102.4%和86.3%.
一级动力学方程的a值表示释放过程的最大平衡释放量[16, 22-23], 由表 2可以看出, H2O、NH4Cl和NaCl连续浸提活化钾长石钾的一级动力学方程的a分别比钾长石增加了139.6%、99.6%和73.3%;活化页岩钾的a分别比富钾页岩增加了1.3、2.4和1.6倍.
动力学参数的分析可以看出, 活化后钾矿中钾的初始释放速率、平均释放速率以及最大平衡释放量均有所提高.其中, 初始释放速率增大是活化钾矿中钾的最大平衡释放量增多的主要原因.
3. 讨论与结论
各浸提剂下, 钾矿的累积释钾能力及动力学参数均表现出了富钾页岩大于钾长石、活化页岩大于活化钾长石, 说明矿物类型不同, 其释钾能力差异较大.这可能与矿物结构有关, 钾长石矿物结构为无水架状结构铝硅酸盐矿物, 钾原子的位置位于晶格内部, 钾原子落在10个氧原子所组成的穴中, 与6个氧原子相距0.285 nm, 因此阻碍了钾的释放[10].页岩结构较为复杂, 如辽宁省朝阳地区的页岩包含了多种以独立矿物形式出现的含钾矿物, 主要成分是钾长石, 约80%的钾赋存于钾长石中, 其次为白云母、伊利石等, 约20%的钾赋存于云母类矿物中[24], 而长石类与云母类相比, 由于钾离子处在相邻四面体的空隙中, 释钾较为困难[15].
本研究结果表明, 钾长石、活化钾长石的钾初始释放量表现为:NH4Cl>NaCl>H2O, 累积释钾量表现为:NaCl>NH4Cl≈H2O.一开始, NH4+的提取能力强于Na+, 之后提取能力减弱, 这可能是因为与Na+、Ca2+等水化半径较大的离子相比, NH4+与K+有几乎相同的离子半径和水化能[25-26], 甚至在电性、化合价、释放与固定机制等多方面都具有相似之处[27], 故NH4+更容易置换矿物表面及边缘、楔形位点吸附的钾, 当矿物的速效钾含量较高时, 交换能力最强[28].随着浸提时间的延长, 矿物表面和边缘处吸附的钾较少, 水化半径较大的Na+提钾能力大于NH4+, 这是因为Na+虽然因其水化半径较大不易置换楔形位点上吸附的K+, 但能置换一部分矿物晶层表面吸附的K+ [29-30]; Na+、Ca2+等水化半径较大的盐离子可以撬开矿物晶层, 使得一部分易释放的非交换性钾释放出来[28].本试验中, H2O浸提下页岩、活化页岩的累积释钾量大于2种盐溶液, 这可能是因为页岩复杂的结构中存在大量的层状结构, K+通过直接的扩散而不需要离子交换就可以释放出来.
通过动力学模型来拟合钾矿释钾的过程并描述其释钾规律鲜见报道.王瑾等[15]研究发现用不同有机酸连续浸提黑云母、正长石等钾矿, 其释放的最优动力学模型为双常数模型或Elovich模型.为了准确、定量地描述某种元素的动态释放过程, 有必要建立或引用各种数学模型, 吕晓男等[30]通过多个动力学模型拟合电超滤方法下土壤钾释放的动态过程发现, Elovich方程的参数b和双常数方程的参数a与土壤速效钾和大麦相对产量之间存在显著或极显著相关.本试验建立了活化钾矿的释放动力学模型, 同时对动力学模型的参数进行了比较, 发现活化后钾矿的钾初始释放速率、平均释放速率、最大平衡释放量均显著增大, 并从动力学角度定量评价了活化后钾矿的释钾效果.至于参数能否作为评价其生物有效性的指标还需进一步的研究.
本试验得到如下结论:1)浸提剂浸提活化钾长石的钾初始释放量表现为:NH4Cl>NaCl>H2O; 累积释放量表现为:NaCl>NH4Cl≈H2O; 浸提活化页岩的整个动态释钾过程均表现为:H2O>NaCl>NH4Cl.在盐溶液的连续振荡浸提下, 活化钾矿的累积释钾能力大于钾矿, 富钾页岩及活化页岩的累积释钾能力大于相同处理下的钾长石.2)钾长石、活化钾长石钾的最优释放动力学模型是Elovich模型或双常数模型; 页岩、活化页岩的最优动力学模型是Elovich模型.除了一级动力学模型拟合钾长石、活化钾长石时, NH4Cl、NaCl浸提剂间拟合性无差异外, 其他情况时, NH4Cl浸提下的模型拟合性均优于NaCl.3)通过动力学模型参数比较, 从动力学角度定量评价了钾矿的QN活化效果, 结果表明, 活化后钾矿的钾初始释放速率、平均释放速率以及最大平衡释放量均有显著提高.
-
表 1 不同入渗模型拟合关系
Table 1 Fitting relationships of different infiltration models
生物质
Biomass处理组
Treatment groupKostiakov Philip $ K $ $ n $ $ {R}^{2} $ $ A $ $ B $ $ {R}^{2} $ 生物炭
Biochar
(BC)CK 5.577 0.260 0.998 3.129 −0.115 0.913 BCT1 3.810 0.323 0.997 2.529 −0.077 0.968 BCT2 3.478 0.320 0.997 2.217 −0.064 0.966 BCT3 3.685 0.281 0.981 2.030 −0.061 0.910 BCT4 3.125 0.291 0.974 1.685 −0.434 0.922 咖啡渣
Coffee grounds
(CF)CK 5.577 0.260 0.998 3.129 −0.115 0.913 CFT1 3.088 0.361 0.999 2.245 −0.057 0.991 CFT2 3.035 0.342 0.997 2.008 −0.049 0.983 CFT3 3.088 0.316 0.995 1.880 −0.050 0.970 CFT4 3.084 0.295 0.993 1.781 −0.052 0.951 甘蔗渣
Bagasse
(SC)CK 5.577 0.260 0.998 3.129 −0.115 0.913 SCT1 2.665 0.382 0.996 2.063 −0.048 0.985 SCT2 2.197 0.404 0.997 1.827 −0.040 0.990 SCT3 2.030 0.401 0.997 1.615 −0.031 0.990 SCT4 1.491 0.447 0.997 1.420 −0.003 0.997 -
[1] 李冬初, 黄晶, 马常宝, 等. 中国农耕区土壤有机质含量及其与酸碱度和容重关系[J]. 水土保持学报, 2020, 34(6): 252-258. [2] 刘振杰, 李鹏飞, 黄世威, 等. 小麦秸秆生物质炭施用对不同耕作措施土壤碳含量变化的影响[J]. 环境科学, 2021, 42(6): 3000-3009. [3] 王艳群, 彭正萍, 薛世川, 等. 过量施肥对设施农田土壤生态环境的影响[J]. 农业环境科学学报, 2005, 24(S1): 81-84. [4] ZHU X, CHEN B, ZHU L, et al. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review[J]. Environmental Pollution, 2017, 227: 98-115. doi: 10.1016/j.envpol.2017.04.032
[5] LEHMANN J, GAUNT J, RONDON M. Bio-char sequestration in terrestrial ecosystems: A review[J]. Mitigation and Adaptation Strategies for Global Change, 2006, 11(2): 395-419.
[6] 刘书田, 窦森, 郑伟, 等. 基于配方施肥数据集的有机碳含量与温度和降水量相关性研究[J]. 农业环境科学学报, 2016, 35(7): 1413-1420. [7] 魏阳, 彭勃, 汪元南, 等. 利用复合菌系处理甘蔗渣及城市污泥堆肥效果[J]. 科学技术与工程, 2019, 19(7): 316-320. [8] 田丹, 屈忠义, 李波, 等. 生物炭对砂土水力特征参数及持水特性影响试验研究[J]. 灌溉排水学报, 2013, 32(3): 135-137. [9] 廉辰, 于嘉佳, 高婷, 等. 3种壳类生物质炭对南方红壤理化性质的动态影响[J]. 华南农业大学学报, 2022, 43(1): 20-27. [10] 周建民, 沈仁芳. 土壤学大辞典[M]. 北京: 科学出版社, 2013. [11] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 1981. [12] 范严伟, 赵文举, 冀宏. 膜孔灌溉单孔入渗Kostiakov模型建立与验证[J]. 兰州理工大学学报, 2012, 38(3): 61-66. [13] PHILIP J R. The theory of infiltration: 1: The infiltration equation and its solution[J]. Soil Science, 1957, 83(5): 345-358. doi: 10.1097/00010694-195705000-00002
[14] 刘春成, 李毅, 任鑫, 等. 四种入渗模型对斥水土壤入渗规律的适用性[J]. 农业工程学报, 2011, 27(5): 62-67. [15] SONE J S, OLIVEIRA P T S, EUCLIDES V P B, et al. Effects of nitrogen fertilisation and stocking rates on soil erosion and water infiltration in a Brazilian Cerrado farm[J]. Agriculture, Ecosystems & Environment, 2020, 304: 107159.
[16] XIAO Y, HUANG Z, YANG F, et al. Dynamics of soil moisture and salt content after infiltration of saline ice meltwater in saline-sodic soil columns[J]. Pedosphere, 2017, 27(6): 1116-1124. doi: 10.1016/S1002-0160(17)60465-X
[17] ALAOUL A. Modelling susceptibility of grassland soil to macropore flow[J]. Journal of Hydrology, 2015, 525: 536-546. doi: 10.1016/j.jhydrol.2015.04.016
[18] 包维斌, 白一茹, 赵云鹏, 等. 生物炭添加对宁夏中部旱区土壤水分入渗及持水性的影响[J]. 土壤通报, 2018, 49(6): 1326-1332. [19] HUSSAIN R, KUMAR GHOSH K, RAVI K. Impact of biochar produced from hardwood of mesquite on the hydraulic and physical properties of compacted soils for potential application in engineered structures[J]. Geoderma, 2021, 385: 114836. doi: 10.1016/j.geoderma.2020.114836
[20] LIM T J, SPOKAS K A, FEYEREISEN G, et al. Predicting the impact of biochar additions on soil hydraulic properties[J]. Chemosphere, 2016, 142: 136-144. doi: 10.1016/j.chemosphere.2015.06.069
[21] JEFFERY S, MEINDERS M B J, STOOF C R, et al. Biochar application does not improve the soil hydrological function of a sandy soil[J]. Geoderma, 2015, 251-252: 47-54. doi: 10.1016/j.geoderma.2015.03.022
[22] 李帅霖, 王霞, 王朔, 等. 生物炭施用方式及用量对土壤水分入渗与蒸发的影响[J]. 农业工程学报, 2016, 32(14): 135-144. [23] LIANG B Q, LEHMANN J, SOHI S P, et al. Black carbon affects the cycling of non-black carbon in soil[J]. Organic Geochemistry, 2010, 41(2): 206-213. doi: 10.1016/j.orggeochem.2009.09.007
[24] PUGET P, CHENU C, BALESDENT J. Dynamics of soil organic matter associated with particle size fractions of water-stable aggregates[J]. European Journal of Soil Science, 2000, 51(4): 595-605. doi: 10.1111/j.1365-2389.2000.00353.x
[25] 管瑶, 雷廷武, 刘芳芳, 等. 土壤点源入渗自动测量系统监测滴头下土壤湿润过程[J]. 农业工程学报, 2016, 32(14): 1-7. [26] 刘目兴, 聂艳, 于婧. 不同初始含水率下粘质土壤的入渗过程[J]. 生态学报, 2012, 32(3): 871-878. [27] LEHMANN J. Bio-energy in the black[J]. Frontiers in Ecology and the Environment, 2007, 5(7): 381-387. doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2
[28] CRUZ R, MENDES E, TORRINHA Á, et al. Revalorization of spent coffee residues by a direct agronomic approach[J]. Food Research International, 2015, 73: 190-196. doi: 10.1016/j.foodres.2014.11.018
[29] 黄绍文, 金继运. 土壤钾形态及其植物有效性研究进展[J]. 土壤肥料, 1995(5): 23-29. [30] 王亚琼, 牛文全, 段晓辉, 等. 生物炭对关中塿土不同形态钾素含量的影响[J]. 东北农业科学, 2021, 46(2): 43-46.