Adjustment and improvement of environmental parameters for fruit and vegetable fresh-keeping based on BPNN-PID control strategy
-
摘要:目的
开发新的控制策略,用于解决传统控制方法果蔬保鲜环境参数因时变性、非线性、滞后性强和惯性大等特点导致的控制精度低、鲁棒性弱等问题。
方法将传统比例−积分−微分(Proportional-integral-derivative,PID)和BP神经网络(Back-propagation neural network,BPNN)算法相结合,开发一种基于BPNN-PID的控制策略,通过自主搭建的果蔬保鲜环境调控试验平台和自主设计的控制系统,研究不同控制策略对保鲜环境参数调控效果的影响。
结果基于BPNN-PID控制策略的果蔬保鲜环境控制系统,环境温度超调量为1.7 ℃、稳定时间为80 min、稳态误差为±0.2 ℃,环境相对湿度超调量为2.8%、稳定时间为55 min,相对湿度稳定维持在80%~90%范围内。与传统PID控制策略相比,BPNN-PID控制策略环境温度超调量减小了2.1 ℃、稳态误差减小了0.3 ℃、稳定时间缩短了25 min,环境相对湿度超调量减小了2.2%、稳定时间缩短了25 min,环境参数波动幅度均有所降低。
结论本文开发的果蔬保鲜环境控制系统呈现出良好的动态调整能力,具有较强的鲁棒性,控制性能明显提升,实现了保鲜环境参数的精准控制,满足果蔬保鲜贮藏要求。研究结果为果蔬保鲜环境参数调控提供了参考。
Abstract:ObjectiveThe environmental parameters of fruit and vegetable preservation are characterized by time-varying, non-linear, strong hysteresis and large inertia, which leads to the problems of low control accuracy and weak robustness of traditional control methods. The goal was to develop a new control strategy to address these problems.
MethodWe combined conventional proportional-integral-derivative (PID) and back-propagation neural network (BPNN) algorithms to develop a control strategy based on BPNN-PID. We studied the effect of using different control strategies on the regulation of freshness environment parameters through an independently built test platform for environmental regulation in fruit and vegetable preservation and an independently designed control system.
ResultThe experimental results showed that the temperature overshoot of the environment control system based on BPNN-PID control strategy was 1.7 ℃, the stable time was 80 min, and the steady-state error was 0.2 ℃. The overshoot of environmental relative humidity was 2.8%, the stable time was 55 min, and it was stable in the range of 80%–90%. Compared with conventional PID control strategy, the ambient temperature overshoot of BPNN-PID control strategy was reduced by 2.1℃, the steady-state error was reduced by 0.3 ℃, and the steady-state time was shortened by 25 min. The environmental relative humidity overshoot was reduced by 2.2%, the stabilization time was shortened by 25 min, and the fluctuation ranges of environmental parameters were reduced.
ConclusionThe system shows good dynamic adjustment ability, strong robustness and obvious improvement in control performance, which enables accurate control of environmental parameters of fruit and vegetable preservation and meets the requirements of fruit and vegetable preservation and storage. The research results can provide references for the regulation of environmental parameters of fruit and vegetable preservation.
-
Keywords:
- PID /
- BPNN /
- Control system /
- Fruit and vegetable fresh-keeping /
- Environmental parameter /
- Overshoot
-
-
图 1 果蔬保鲜运输车箱体结构示意图
1:冷凝器;2:冷凝风机;3:蒸发风机;4:回风道;5:保鲜室;6: 传感器盒;7:货物;8:支撑架;9:气流轨道;10:排水管;11:三通接头;12:积水槽;13:温度传感器;14:超声波雾化器;15:开孔隔板;16:加湿风机;17:蒸发器;18:补水箱;19:排水阀;20:变频器;21:变频压缩机;22:制冷管路;23:压力室;24:控制器;25:触摸屏;26:电子计算机
Figure 1. Schematic diagram of the box structure of the transport vehicle for fruit and vegetable fresh-keeping
1: Condenser; 2: Condensing fan; 3: Evaporating fan; 4: Return air duct; 5: Keep-freshing room; 6: Sensor box; 7: Cargo; 8: Support frame; 9: Air flow track; 10: Drain pipe; 11: Tee connector; 12: Standing water tank; 13: Temperature sensor; 14: Ultrasonic atomizer; 15: Open partition; 16: Humidifying fan; 17: Evaporator; 18: Water replenishment tank; 19: Drain valve; 20: Inverter; 21: Inverter compressor; 22: Refrigeration line; 23: Pressure chamber; 24: Controller; 25: Touch screen; 26: Electronic computer
图 8 果蔬保鲜环境温度BPNN-PID控制器
C:外部偏置常量;r(k) :系统期望值;y(k) :系统实际值;e(k) :系统偏差;u(k):计算机输出值;KP:比例系数;KI :积分系数;KD:微分系数
Figure 8. Ambient temperature BPNN-PID controller for fruit and vegetable fresh-keeping
C: External bias constant; r(k): System expected value; y(k): Actual value of the system; e(k): System deviation; u(k):Computer output; KP: Proportional coefficient; KI: Integration coefficient; KD: Differential coefficient
图 9 BP神经网络结构
x1:目标温度;x2:实际温度;x3:温度误差;x4:外部偏置常量;l:输入层神经元序号;m隐含层神经元序号;n:输出层神经元序号;KP :比例系数;KI:积分系数;KD:微分系数
Figure 9. BP neural network structure
x1: Target temperature; x2: Actual temperature; x3: Temperature error; x4: External bias constant; l: Input layer neuron number; m: Hidden layer neuron number; n: Output layer neuron number; KP: Proportional coefficient; KI: Integration coefficient; KD: Differential coefficient
-
[1] RINALDI M M, DIANESE A D C, COSTA A M, et al. Post-harvest conservation of Passiflora alata fruits under ambient and refrigerated condition[J]. Food Science and Technology, 2019, 39(4): 889-896. doi: 10.1590/fst.14018
[2] MAHMOOD M H, SULTAN M, MIYAZAKI T. Significance of temperature and humidity control for agricultural products storage: Overview of conventional and advanced options[J]. International Journal of Food Engineering, 2019, 15(10). doi: 10.1515/ijfe-2019-0063.
[3] SUGINO N, WATANABE T, KITAZAWA H. Effect of transportation temperature on tomato fruit quality: Chilling injury and relationship between mass loss and a*values[J]. Journal of Food Measurement and Characterization, 2022, 16(4): 2884-2889. doi: 10.1007/s11694-022-01394-2
[4] 刘佩. 高失水性新鲜果蔬包装内环境湿度调节技术的研究[D]. 西安: 西安理工大学, 2014. [5] 刘佳, 乔丽萍, 李喜宏, 等. 温度波动对樱桃番茄贮藏效果研究[J]. 食品研究与开发, 2017, 38(11): 198-202. doi: 10.3969/j.issn.1005-6521.2017.11.044 [6] 王广海, 吕恩利, 陆华忠, 等. 保鲜运输用液氮充注气调控制系统的设计与试验[J]. 农业工程学报, 2012, 28(1): 255-259. doi: 10.3969/j.issn.1002-6819.2012.01.045 [7] SHAFIUDIN S, KHOLIS N. Monitoring system and temperature controlling on PID based poultry hatching incubator[J]. IOP Conference Series: Materials Science and Engineering, 2018, 336(1): 12007.
[8] BARROS J S G, ROSSI L A, SARTOR K. PID temperature controller in pig nursery: Improvements in performance, thermal comfort, and electricity use[J]. International Journal of Biometeorology, 2016, 60(8): 1271-1277. doi: 10.1007/s00484-015-1122-7
[9] 王欣瑞, 卢雁. 关于PID控制技术在工业自动控制中的应用研究[J]. 电子测试, 2021(5): 109-110. doi: 10.3969/j.issn.1000-8519.2021.05.041 [10] PANG T, SUN X, PU C. Air conditioning temperature control based on adaptive neural fuzzy PID[J]. International Core Journal of Engineering, 2020, 6(7): 33-38.
[11] 赵鑫鑫. 冷藏车多温区分布优化及温度精准调控[D]. 济南: 山东大学, 2014. [12] AFTAB M S, SHAFIQ M. Adaptive PID controller based on Lyapunov function neural network for time delay temperature control[C]//2015 IEEE 8th GCC Conference & Exhibition. Muscat, Oman: IEEE, 2015: 1-6.
[13] SALCEDO J, FELIU V, RIVAS R. State feedback temperature control based on a Smith predictor in a precalciner of a cement kiln[J]. IEEE Latin America Transactions, 2021, 19(1): 138-146. doi: 10.1109/TLA.2021.9423857
[14] SILVEIRA A S, DE OLIVEIRA M D C, NETO A T, et al. Least power point tracking (LPPT) control for refrigeration systems running with variable-speed compressors[J]. International Journal of Refrigeration, 2021, 125: 132-137. doi: 10.1016/j.ijrefrig.2021.01.002
[15] 王广海, 夏晶晶, 吕恩利, 等. 基于递推估计的保鲜环境信息感知系统设计[J]. 包装工程, 2020, 41(21): 165-171. doi: 10.19554/j.cnki.1001-3563.2020.21.023 [16] 张东霞, 吕恩利, 陆华忠, 等. 保鲜运输车温度场分布特性试验研究[J]. 农业工程学报, 2012, 28(11): 254-260. doi: 10.3969/j.issn.1002-6819.2012.11.041 [17] 贺刚, 蔡晓华, 白阳, 等. 基于模糊PID的犊牛代乳粉奶液温度控制系统设计与试验[J]. 农业机械学报, 2022, 53(3): 266-276. doi: 10.6041/j.issn.1000-1298.2022.03.028 [18] MADUGU J S. Modeling and simulation of proportional-integral-derivative (PID) temperature controller for an electric kettle[J]. International Journal of Engineering, Science and Mathematics, 2019, 7(9): 15-20.
[19] 王祎晨. 增量式PID和位置式PID算法的整定比较与研究[J]. 工业控制计算机, 2018, 31(5): 123-124. doi: 10.3969/j.issn.1001-182X.2018.05.051 [20] 张永振, 苏寒松, 刘高华, 等. 基于BP神经网络的PID控制器参数调整[J]. 南开大学学报(自然科学版), 2018, 51(3): 26-30. [21] 李莲, 贾栋, 张晓, 等. 基于BP神经网络PID在地铁车站温度控制中的研究[J]. 天津理工大学学报, 2018, 34(5): 9-13. doi: 10.3969/j.issn.1673-095X.2018.05.003 [22] 韩谞, 吕恩利, 陆华忠, 等. 液氮充注气调保鲜运输厢内环境因素间耦合关系[J]. 农业工程学报, 2012, 28(17): 275-280. doi: 10.3969/j.issn.1002-6819.2012.17.040 [23] 焦岩, 张岩, 李保国, 等. 温湿度变化对冰箱中果蔬贮藏质量影响的研究[J]. 低温与特气, 2001(6): 18-21. doi: 10.3969/j.issn.1007-7804.2001.06.005 [24] 李兵, 孙长应, 李为宁, 等. 基于DMC-PID串级控制的茶叶远红外烘干机设计与试验[J]. 茶叶科学, 2018, 38(4): 410-415. doi: 10.3969/j.issn.1000-369X.2018.04.009 [25] 孙莹, 张凤英, 杜华英, 等. 脐橙保鲜技术研究进展[J]. 中国农学通报, 2015, 31(7): 246-250. doi: 10.11924/j.issn.1000-6850.2014-2507 [26] 张申宇, 马天兵, 罗松松, 等. 基于模糊自适应PID真空室温度控制的研究[J]. 组合机床与自动化加工技术, 2019(11): 92-95. doi: 10.13462/j.cnki.mmtamt.2019.11.023