• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

基于Spark的WOA-BP水稻产量预测

陈志浩, 王建华, 龙拥兵, 兰玉彬, 刘军和, 熊弘依, 肖方军, 肖艺铭

陈志浩, 王建华, 龙拥兵, 等. 基于Spark的WOA-BP水稻产量预测[J]. 华南农业大学学报, 2023, 44(4): 613-618. DOI: 10.7671/j.issn.1001-411X.202207009
引用本文: 陈志浩, 王建华, 龙拥兵, 等. 基于Spark的WOA-BP水稻产量预测[J]. 华南农业大学学报, 2023, 44(4): 613-618. DOI: 10.7671/j.issn.1001-411X.202207009
CHEN Zhihao, WANG Jianhua, LONG Yongbing, et al. WOA-BP rice yield prediction based on Spark[J]. Journal of South China Agricultural University, 2023, 44(4): 613-618. DOI: 10.7671/j.issn.1001-411X.202207009
Citation: CHEN Zhihao, WANG Jianhua, LONG Yongbing, et al. WOA-BP rice yield prediction based on Spark[J]. Journal of South China Agricultural University, 2023, 44(4): 613-618. DOI: 10.7671/j.issn.1001-411X.202207009

基于Spark的WOA-BP水稻产量预测

基金项目: 岭南现代农业实验室资助项目(NT2021009);广东省基础与应用基础研究基金(2021A1515011514);高等学校学科创新引智计划(D18019);中新国际联合研究院项目(No.206-A021006);广东省重点领域研发计划(2019B020214003)
详细信息
    作者简介:

    陈志浩,硕士研究生,主要从事农业人工智能与大数据处理研究,E-mail: 1217405445@qq.com

    通讯作者:

    王建华,副教授,博士,主要从事农业人工智能与大数据处理、物联网与虚拟现实技术研究,E-mail: jhw655@scau.edu.cn

  • 中图分类号: TP391;S512

WOA-BP rice yield prediction based on Spark

  • 摘要:
    目的 

    随着大数据技术和人工智能的快速发展,针对当前水稻产量预测模型精度低、预测区域范围过大、模型优化时间过长等问题,本文提出一种基于Spark的鲸鱼优化算法−反向传播神经网络(Whale optimization algorithm-backpropagation,WOA-BP)水稻产量预测方法。

    方法 

    本文以广东省西部地区的县/市/区水稻产量及气象数据作为研究对象,采用WOA对BP网络的权值和偏置值进行优化,并构建水稻产量预测模型,提升预测精度;此外,在Spark框架下,实现WOA-BP算法并行化,减少算法时间开销。

    结果 

    模型精度方面,通过对预测结果进行反归一化后比较,经WOA优化后的BP神经网络模型,平均绝对百分比误差 (Mean absolute percentage error) 从8.354%降至7.068%,平均绝对误差 (Mean absolute error) 从31.320 kg降至26.982 kg,均方根误差 (Root mean square error) 从41.008 kg降至33.546 kg;运行时间方面,3节点Spark集群比非Spark模式减少了11 742 s,减少44%的时间开销。

    结论 

    基于Spark的WOA-BP水稻产量预测方法,能够较好地预测出广东西部县/市/区的水稻产量,同时可以很好地反映气象因素对广东省西部地区水稻产量的影响情况,对研究广东西部县/市/区乃至整个广东的水稻产量情况具有一定的参考价值。

    Abstract:
    Objective 

    With the rapid development of big data technology and artificial intelligence, aiming at the problems of low accuracy, too large prediction area, too long model optimization time of the current rice yield prediction model, etc., a whale optimization algorithm-backpropagation (WOA-BP) rice yield prediction method based on Spark was proposed.

    Method 

    This paper took rice yield and weather data of counties/cities/districts in the western region of Guangdong Province as the research object, used WOA to optimize the weights and bias values of BP neural network, and constructed a rice yield prediction model to improve the prediction accuracy. In addition, the WOA-BP algorithm was parallelized in the Spark framework to reduce the algorithm time overhead.

    Result 

    In terms of model accuracy, by comparing the prediction results after inverse normalization, the mean absolute percentage error of the BP neural network model optimized by WOA decreased from 8.354% to 7.068%, and the mean absolute error decreased from 31.320 kg to 26.982 kg, the root mean square error dropped from 41.008 kg to 33.546 kg. In terms of run time, 3-node Spark cluster reduced runtime by 11 742 s over non-Spark mode, reducing time overhead by 44%.

    Conclusion 

    The WOA-BP rice yield prediction method based on Spark can better predict rice yield in western Guangdong counties/cities/districts, and at the same time can well reflect the influence of weather factors on rice yield in western Guangdong Province, which is a reference for studying the rice yield situation in western Guangdong counties/cities/districts and even the whole Guangdong.

  • 水稻直播栽培技术便于实现机械化,具有降低劳动强度,缓解农时,节本增效等优点[1-3],随着人们对水稻直播理念的深入了解[4],水稻直播机在各地得到广泛推广。但现有的机械式水稻直播机大多采用镇压轮传动播种,这种播种方式普遍存在一些不足:镇压轮易于裹草堵转,导致漏播;播量靠手动调节且控制精度低;无法实时依据机具车速变化自动调节播种量;自动化程度较低。目前国内外针对播种机播量调节已有一些相关研究,国外直播装备研究和运用起步较早,基本实现自动化、智能化作业[5],如LEMKEN公司生产的Saphir系列播种机通过配备电脑控制终端Easytronic系统,可以预设播种量并对播种量、施肥量进行校对,可完成多种作物播种;日本矢崎公司生产了一种直接配套插秧机进行播种作业的SYG-8型水稻直播机,播种量、穴距可精准调节,但该机具作业效率较低,价格高昂,使其推广受到限制。国内现有水稻直播机的研究主要集中在机械结构的设计改进以及关键部件的参数优化[6-8],未能从根本上解决镇压轮传动播种导致的漏播以及播种量无法同步均匀调节问题。

    本文以现有苏南地区机械式水稻播种机为基础,设计了一种基于PID控制算法[9-11]的水稻直播机播量控制系统。该系统可以在线无极调节排种量,实现排种转速的闭环控制,达到同步播种目的,提高播量控制精度,为现有的水稻直播机播量自动化改造提供了一种可靠途径。

    播量控制系统工作原理如图1所示。播种作业时,通过电位器设定目标播量,结合安装在测速轮上的编码器采集实时机具车速以及排种转速,计算出排种目标转速;同时安装在排种轴上的编码器实时检测排种轴转速;决策系统将目标播量、机具车速、排种转速作为控制系统的输入量,得到当前排种器的转速控制量,然后通过PID调速算法使控制器输出相应PWM波[12-13],再经过放大调理后,驱动排种电机在线调节排种转速,实现同步排种作业。

    图  1  控制原理结构图
    Figure  1.  Schematic diagram of control principle

    单位面积上的播种量[Q(t)]可以表示为[14-15]

    $$ Q(t) = \frac{{0.06q(t){{n}}}}{{L v(t)}}, $$ (1)

    式中, q(t)为单个排种器播种量,g/min;n为播种行数;L为排种通道所能覆盖的作业幅宽,m;v(t)为机具作业车速,km/h;0.06是各变量单位换算产生的系数;q(t)和排种电机转速(ɑ)的标定公式为:

    $$ q(t) = ka + b, $$ (2)

    式中, kb是标定试验测定系数。根据目标播种量,排种电机转速和机具车速之间关系可以表示为:

    $$ a = \frac{{Q(t) L v(t)}}{{1\,000k{{n}}}} - \frac{b}{k}{\text{。}} $$ (3)

    根据公式(3),机具车速发生变化时,控制器可以同步调整排种轴转速,确保实际单位面积排种量与目标播种量一致。

    针对江苏丹阳欣田机械制造有限公司生产的2BFGK-12型播种机进行自动化改造,改造后的播种机结构简图如图2所示。自动化改进保留了机械式播种开沟、旋耕、播种、镇压等功能,重点改进了排种驱动方式,将链轮传动改为直流电机驱动,排种轴下方种箱内侧安装直流电机驱动,通过链轮驱动排种轴,播种行数为12行,机具宽度230 mm,取消地轮与排种轴连接的链式结构;设计增加了一种铁质测速轮,直径为400 mm,测速轮表面均匀布设15个防滑齿[16],抓地性良好,且具有单铰链仿行机构,弹簧支杆上方每隔20 mm开调节孔位1个,共计10个,可以通过开口销调节弹簧压缩长度,减缓测速轮对地弹跳,提高测速准确度;弹簧压杆上方安装行程开关,抬起机具可断停排种电机,防止重播;通过轴套分别在排种轴和地轮安装2个编码器用于测量排种轴转速和机具车速;播量可按需无极调节,简化了播量调节方法,可实现同步播种。

    图  2  播种机结构图
    Figure  2.  Seeder structure diagram

    控制系统按照模块化设计思路,由速度采集、人机交互、执行机构、主控单元等主要模块组成,如图3所示。排种控制系统设计手动和自动2种模式:手动模式可转动旋钮调节播量;自动模式下,控制系统可依据设定机具前进速度与播种量的比例系数,在线调节排种转速。数码管采用三段式设计,分别显示机具车速、播量档位、排种转速。速度采集模块采用2个编码器测速,分别采集排种转速和机具车速,信号经过A/D转换发送主控器STC12C5A60S2单片机[17]。驱动电路采用拖拉机12 V电源供电,控制电路经L7805稳压芯片输出5 V供电,强弱电分离,提高电路板稳定性与可靠性,控制系统主控原理图如图4

    图  3  控制系统硬件结构框图
    Figure  3.  Hardware structure diagram of control system
    图  4  控制系统原理图
    Figure  4.  The circuit diagram of control system

    1)测速模块:编码器是把角位移或直线位移等非电量信号转换为电量信号的装置[18],安装于具有单铰链仿行机构的测速轮,实时检测机具行进速度,产生脉冲信号经过调理电路将脉冲信号放大并滤掉杂波,确保输出标准方波。选用欧姆龙增量式编码器E6B2-CWZ6C,旋转1周输出600脉冲数,该编码器具有构造简单、性能稳定,测量精度高等优点[19]。编码器采样频率为5 Hz,对每5个采样脉冲数据进行均值滤波,输出1 Hz速度控制信号,提高了测量速度的精度与稳定性。采用一个0.2 μF电容滤除采样信号过程中的杂波,并对LM358放大器进行保护。

    试验中设计直径为400 mm的测速轮模拟拖拉机后轮,播种机测速轮的转速与脉冲频率的关系为:

    $$ N = \frac{{60{{f_0}}}}{{ZM}}, $$ (4)

    式中,Z表示编码器每转输出的脉冲个数;f0为准时钟的脉冲频率,Hz;M为编码器2个脉冲之间的时钟脉冲的个数。

    2)直流电机驱动模块:直流电机工作时需要驱动12个排种槽轮,为了提高电路板驱动性能,设计了二极驱动电路单元,双NPN型三极管组合构成达林顿管,提升了SSF7509增强型MOS管[20]驱动电流,有效提高了驱动效率,最大漏极电流达60 A,漏源击穿电压为80 V,漏源导通电阻为6.5 mΩ。PWM信号经驱动模块调理运算控制排种电机,为提高驱动模块可靠性与稳定性,对MOS管电路铜箔表面走锡处理,形成3 mm的焊锡导线,增大有效走线截面,提高电路板载荷电流,驱动模块电路图如图5

    图  5  直流电机驱动电路图
    Figure  5.  Driving circuit diagram of DC motor

    3)人机交互模块:人机交互模块由按键、播量旋钮和数码管组成。74HC595驱动3个2位1.42 cm的共阴极数码管[21],将串行信号转为并行信号,分别显示拖拉机速度(km/h)、播量档位、排种轴转速(r/min);电源芯片实现了DC12 V与DC5 V的电压转换,排种轴控制模式可手动自动切换,按键输出端与P0.5引脚相连,高电平为自动模式、低电平为手动模式,墒情较为严重时,可选用手动模式,确保播种效果,人机交互电路图如图6

    图  6  人机交互电路图
    Figure  6.  Circuit diagram of human-computer interaction

    排种器转速控制本质是一个直流电机控制系统,测速轮转速作为系统输入量,输出量为排种槽轮转速。在忽略微小电感的情形下[22],可将该排种器驱动电机看成经典的一阶系统,其传递函数是一个典型积分环节和惯性环节串联[23]

    $$ G(s) = \frac{{1/2\pi {C_{\rm e}}}}{{s\left(\displaystyle\frac{{{J_{\rm a}}{R_{\rm a}}}}{{{C_{\rm e}}{C_{\rm t}}}}s + 1\right)}}, $$ (5)

    式中,G(s)是原函数经过拉普拉斯变换后的复函数表达式;Ce为电动势常数,由电动机结构参数确定;Jɑ为电动机转子转动惯量;Rɑ为电动机电阻;Ct为电磁力矩常数,由电动机结构参数确定;s为复频率。

    选用邦瑞公司生产的5D90-12GU直流电机,电机参数为Ce=12.04, Jɑ=4×10–5 kg·m2, Rɑ=6Ω, Ct=0.115 N·m/A,代入式(5)得:

    $$ G(s) = \frac{{8.69}}{{s(0.642s + 1)}}{\text{。}} $$ (6)

    本研究选用PID控制器模型,被控对象由排种电机、电机驱动器、执行机构组成。PID控制系统输入信号Nin,Sin为经PID控制器输出的最佳转速控制量,Nout为排种轴的作业转速;控制器执行过程中,编码器实时监测测速轮和排种轴转速,并将转速信号输入到控制系统中,与最佳转速控制量形成偏差(e),经PID调节器输出相应的控制量来调节排种转速,实现播量在线无极调节,达到控制目标。PID控制器与电机数学模型、负反馈控制量组成闭环控制系统,其传递函数近似于二阶惯性环节,通过与标准惯性环节比较取PID参数:kp=15.216 2,ki=0.319 3,kd=1.012 1,PID控制系统结构图如图7

    图  7  PID控制系统结构图
    Figure  7.  Structure diagram of PID control system

    电机空载下,测试控制器变速调节电机转速响应变化效果,排种轴转速选取农户常用播种量对应的3个转速,分别为20、30和40 r/min,测试控制系统启动后的电机响应转速数据曲线如图8,性能参数如表1所示。结果表明:控制系统在目标转速40 r/min下超调量最大,不同转速下的调整峰值时间差距较小,整体调整时间低于0.63 s,响应及时。

    表  1  空载响应试验数据
    Table  1.  The experimental data of no-load response
    转速/(r·min–1)
    Speed
    超调量/%
    Overshoot
    峰值时间/s
    Peak time
    调整时间/s
    Adjusted time
    20 7.66 0.24 0.38
    30 8.02 0.29 0.54
    40 8.21 0.33 0.63
    下载: 导出CSV 
    | 显示表格
    图  8  不同目标转速下电机空载转速响应曲线
    Figure  8.  The response curve of motor velocity without load under different target speeds

    传统播种机由于制造工艺和加工精度的差异,致使相同槽轮的排种轴阻力差距较大,对控制系统带负载能力要求较高。依据排种轴扭矩标准[24],12行以下播种机扭矩不大于10 N·m,通过磁负载装置给电机施加7.5、10.0和12.5 N·m负载,测试控制系统带负载能力及负载变化的调节能力,记录排种电机实时转速值及驱动电路负载电流。变负载响应曲线如图9所示。施加负载7.5 N·m时,电机瞬时转速回落较小,转速回调时间短,随着负载增大,电机瞬时转速回落逐渐增大,调整时间延长,当负载12.5 N·m时,转速瞬间下降了23.5%,控制系统迅速响应,系统转速回调时间为0.32 s,最大负载电流为6.5 A,大负载作业条件下控制系统工作稳定,性能可靠,为控制系统适配不同播种机提供了理论依据,带负载性能测试如图10所示。

    图  9  施加不同负载的电机转速曲线
    Figure  9.  The curve of motor speed under different loads
    图  10  负载性能试验台
    Figure  10.  Test platform of load performance

    排种转速控制精度对于播种效果起关键作用,为了综合测试播种机性能,开展了排种转速及播量控制精度田间试验(图11)。试验地点位于南京高淳禾田家庭农场,田间秸秆留茬高度18.5 cm,秸秆含水率(w)21.2%,秸秆切碎长度13.5 cm,秸秆量6 725.6 kg/hm2。土壤状况如表2所示,试验品种为‘南粳46’。设计机具车速和目标播量两因素三水平试验,依据苏南地区农户实际播种要求,选取试验机具车速为0.8、1.2和1.6 m/s,目标播量为7.50、11.25和15.00 g/m2。水稻直播机有效播种幅宽2.3 m,由久保田754拖拉机牵引,播种作业距离140 m(田块长约70 m)视为1次试验,记录排种轴实时转速、机具车速、实际播量,每个目标播量重复2次试验,取平均值为最终数据,结果见表3表3的结果表明,3种目标播量下的转速最大误差分别为6.73%、6.59%和7.21%,转速误差平均值分别为4.67%、4.92%和5.31%,对比传统播种机最大控制误差24.54%和平均控制误差17.08%[23],本系统控制精度显著提高;目标播量15.00 g/m2时,机具车速提升后转速误差平均值降低较为明显且播量误差显著降低,说明本控制系统在较高车速和较高目标播量下,控制效果更好;播种机整机转速控制精准,能满足实际需求,在不同的测试条件下,播量控制系统性能稳定。

    图  11  田间试验图
    Figure  11.  Field experiment chart
    表  2  田间土壤状况
    Table  2.  Soil condition in field
    土壤深度/cm
    Soil depth
    容重/(g·cm−1)
    Density
    含水率(w)/%
    Water content
    坚实度/MPa
    Firmness
    0~5 1.32 23.41 0.43
    5~10 1.45 20.26 0.86
    10~15 1.53 18.96 1.23
    下载: 导出CSV 
    | 显示表格
    表  3  不同目标播量下田间试验的控制精度
    Table  3.  Control accuracy of speed and seeding amount in field under different target seeding amounts
    播量/(g·m−2)
    Seeding amount
    机具车速/(m·s−1)
    Vehicle speed
    转速最大误差/%
    Max. speed error
    转速误差均值/%
    Average speed error
    播量误差/%
    Seeding amount error
    7.50 0.8 6.73 4.67 3.86
    1.2 4.96 3.62 3.91
    1.6 4.13 2.74 3.66
    11.25 0.8 6.59 4.92 3.25
    1.2 5.81 3.83 2.76
    1.6 5.34 2.32 2.12
    15.00 7.21 5.21 3.96 7.21
    5.68 3.54 2.52 5.68
    4.08 1.63 1.04 4.08
    下载: 导出CSV 
    | 显示表格

    机具行驶作业速度变化时需要排种轴快速同步响应,为测试播量控制系统排种同步性,设计了田间阶梯车速播种试验。选取目标播量11.25 g/m2,测试机具行驶速度在0.8~1.6 m/s范围内阶梯变化,实时记录排种轴转速和车速,田间排种车速同步跟随效果如图12图12的结果表明,田间播种车速变化时排种转速响应及时,具有较高的排种同步性,说明本研究设计改造的排种驱动机构和PID控制算法的引入措施起到了关键性的作用。

    图  12  排种车速同步跟随图
    Figure  12.  Synchronization follow map of seeding speed

    对传统水稻直播机进行自动化改造,重点改进了播量调节机构,并设计了配套的播量控制系统,简化播量调节方式。控制系统引入PID控制策略,并且建立了相应的传递函数,针对设计目标播量下的转速范围内,排种电机空载转速最大超调量为8.21%,转速调整最大时间为0.63 s,电机负载状况下最大回调时间为0.32 s,最大负载电流6.5 A, 控制系统响应迅速,满足实际播种需求。

    田间试验转速最大误差为7.21%,最大转速误差均值5.31%,最大播量误差为3.96%,播种机整机转速控制精度较传统播种机显著提高,田间播种车速变化时排种转速响应及时,具有较高的排种稳定性和同步性,实现了同步播种作业,提高了传统播种机播种性能。

    该控制系统自动化改造简便,对传统机械直播机具有较高适配性,为现有的机械式播种机低成本播量自动化改造提供了思路。

  • 图  1   WOA-BP算法的并行化流程

    Figure  1.   The parallelization process of the WOA-BP algorithm

    图  2   3种模型的绝对误差

    Figure  2.   Absolute error of the three models

    图  3   不同节点数时间开销对比

    Figure  3.   Time overhead comparison under different node number

    表  1   3种模型精度对比

    Table  1   Precision comparison of the three models

    模型
    Model
    平均绝对
    百分比误差/%
    MAPE
    平均绝对
    误差/kg
    MAE
    均方根
    误差/kg
    RMSE
    BP 8.354 31.320 41.008
    PSO-BP 7.890 29.999 38.786
    WOA-BP 7.068 26.982 33.546
    下载: 导出CSV

    表  2   不同节点数量性能对比及配置信息

    Table  2   Performance comparison and configuration information under different node number

    节点数量
    Node
    number
    总内存/G
    Total
    memory
    总物理核数
    Total physical
    nuclei number
    分区数量
    Partition
    number
    t/s
    116122424 534
    232244818 955
    348367214 895
    下载: 导出CSV
  • [1] 李晔, 白雪. 基于新维无偏灰色马尔可夫模型的小麦产量预测[J]. 江苏农业科学, 2021, 49(15): 181-186.
    [2] 韩芳玉, 张俊飚, 程琳琳, 等. 气候变化对中国水稻产量及其区域差异性的影响[J]. 生态与农村环境学报, 2019, 35(3): 283-289.
    [3] 闫蓉, 李凤霞, 赵维忠, 等. 气象条件对水稻蒸腾速率的影响[J]. 宁夏农林科技, 2005(2): 7-8. doi: 10.3969/j.issn.1002-204X.2005.02.003
    [4] 杨从党, 朱德峰, 周玉萍, 等. 不同生态条件下水稻产量及其构成因子分析[J]. 西南农业学报, 2004(S1): 35-39.
    [5] 焦江华. 不同土壤有机碳含量下气象因子主导的水稻产量模拟及模型改进[D]. 北京: 中国农业科学院, 2020.
    [6] 刘洪英, 鲜铁军, 李睿, 等. 基于气象因子的水稻产量预报模型[J]. 陕西气象, 2020(5): 45-47.
    [7] 高俊杰, 袁业溶, 梁应. 高要区早稻产量预测模型的建立[J]. 广东气象, 2022, 44(2): 50-52.
    [8]

    CHUTIA S, DEKA R L, GOSWAMI J, et al. Forecasting rice yield through modified Hendrick and Scholl technique in the Brahmaputra valley of Assam[J]. Journal of Agrometeorology, 2021, 23(1): 106-112. doi: 10.54386/jam.v23i1.95

    [9]

    KAEOMUANGMOON T, JINTRAWET A, CHOTAMONSAK C, et al. Estimating seasonal fragrant rice production in Thailand using a spatial crop modelling and weather forecasting approach[J]. Journal of Agricultural Science, 2020, 157(7/8): 566-577.

    [10]

    TRAORE S, ZHANG L, GUVEN A, et al. Rice yield response forecasting tool (YIELDCAST) for supporting climate change adaptation decision in Sahel[J]. Agricultural Water Management, 2020, 239: 106242. doi: 10.1016/j.agwat.2020.106242.

    [11]

    JHA P K, ATHANASIADIS P, GUALDI S, et al. Using daily data from seasonal forecasts in dynamic crop models for yield prediction: A case study for rice in Nepal’s Terai[J]. Agricultural and Forest Meteorology, 2018, 265: 349-358.

    [12]

    DHEKALE B S, NAGESWARARAO M M, NAIR A, et al. Prediction of kharif rice yield at Kharagpur using disaggregated extended range rainfall forecasts[J]. Theoretical and Applied Climatology, 2018, 133(3/4): 1075-1091.

    [13]

    NAIN G, BHARDWAJ N, JASLAM P K M, et al. Rice yield forecasting using agro-meteorological variables: A multivariate approach[J]. Journal of Agrometeorology, 2021, 23(1): 100-105. doi: 10.54386/jam.v23i1.94

    [14]

    GUO Y, XIANG H, LI Z, et al. Prediction of rice yield in East China based on climate and agronomic traits data using artificial neural networks and partial least squares regression[J]. Agronomy, 2021, 11(2): 282. doi: 10.3390/agronomy11020282.

    [15] 杨北萍, 陈圣波, 于海洋, 等. 基于随机森林回归方法的水稻产量遥感估算[J]. 中国农业大学学报, 2020, 25(6): 26-34.
    [16] 徐强强, 王旭辉. 指数平滑法在椒江区早稻产量预测中的应用研究[J]. 上海农业科技, 2021(4): 22-24.
    [17] 路智渊, 顾娟, 龚小丽, 等. 固原市冬小麦产量预报与气象条件分析[J]. 现代农业, 2021(5): 111-112.
    [18] 马凡. 基于气象数据的安徽省冬小麦产量预测模型研究[D]. 合肥: 安徽农业大学, 2020.
    [19]

    RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back propagating Errors[J]. Nature, 1986, 323(6088): 533-536.

    [20] 苏博, 刘鲁, 杨方廷. GM(1, N)灰色系统与BP神经网络方法的粮食产量预测比较研究[J]. 中国农业大学学报, 2006(4): 99-104. doi: 10.3321/j.issn:1007-4333.2006.04.021
    [21]

    MIRJALILI S, LEWIS A. The Whale Optimization Algorithm[J]. Advances in Engineering Software, 2016, 95: 51-57. doi: 10.1016/j.advengsoft.2016.01.008

    [22] 高岳林, 杨钦文, 王晓峰, 等. 新型群体智能优化算法综述[J]. 郑州大学学报(工学版), 2022, 43(3): 21-30. doi: 10.13705/j.issn.1671-6833.2022.03.007
    [23] 翟光明, 李国和, 吴卫江, 等. 基于Spark的人工蜂群改进算法[J]. 计算机应用, 2017, 37(7): 1906-1910. doi: 10.11772/j.issn.1001-9081.2017.07.1906
    [24] 王诏远, 王宏杰, 邢焕来, 等. 基于Spark的蚁群优化算法[J]. 计算机应用, 2015, 35(10): 2777-2780.
  • 期刊类型引用(7)

    1. 朱士江,李虎,徐文,冯雅婷. 三峡库区土壤含水量对柑橘园果实品质的影响. 中国农业科技导报. 2023(06): 201-207 . 百度学术
    2. 余高,陈芬,田霞,卢心,滕明欢,谢婉莹. 冬季覆盖对幼龄柑橘园土壤化学性质及酶活性的影响. 河南农业科学. 2023(09): 91-101 . 百度学术
    3. 同晓蕾,豆攀,张伯虎,问亚军,闫苗苗. 旱地果园生草栽培技术研究进展. 黑龙江农业科学. 2021(02): 127-131 . 百度学术
    4. 黄玉杰,唐明明,刘道纯. 覆草和浇水量对桃树幼苗生长及土壤温湿度的影响. 经济林研究. 2021(01): 184-190 . 百度学术
    5. 高海英. 果园生草对土壤和果树影响的试验研究. 乡村科技. 2021(20): 62-64 . 百度学术
    6. 高鹏,谢家兴,孙道宗,陈文彬,杨明欣,周平,王卫星. 基于物联网和LSTM的柑橘园土壤含水量和电导率预测模型. 华南农业大学学报. 2020(06): 134-144 . 本站查看
    7. 李运珍,谢永旺,邹彬. 浅析沃柑的引种栽培管理技术. 农村科学实验. 2019(13): 47+49 . 百度学术

    其他类型引用(3)

图(3)  /  表(2)
计量
  • 文章访问数:  137
  • HTML全文浏览量:  83
  • PDF下载量:  17
  • 被引次数: 10
出版历程
  • 收稿日期:  2022-07-03
  • 网络出版日期:  2023-09-03
  • 发布日期:  2023-05-10
  • 刊出日期:  2023-07-09

目录

/

返回文章
返回