Physiological mechanisms of zinc oxide nanoparticles alleviating aluminum stress in soybean
-
摘要:目的
探究在铝(Al)胁迫下不同含量的纳米氧化锌(Zinc oxide nanoparticles,ZnO NPs)对大豆Glycine max (Linn.) Merr.生理特性的影响,为金属纳米材料在农业上的应用提供一定参考。
方法采用盆栽试验,选择耐Al品种‘华春2号’和普通品种‘华春6号’,在0.3 g/kg Al胁迫处理下,施加不同剂量的ZnO NPs(0、25、50、100和150 mg/kg),探究ZnO NPs对大豆生理指标(鲜质量、根长和叶绿素含量)、总超氧化物歧化酶(Total superoxide dismutase,T-SOD)活性和丙二醛(Malondialdehyde,MDA)浓度的影响。
结果Al胁迫显著降低了‘华春6号’的鲜质量和根长,显著增加了其MDA浓度。对于‘华春2号’,Al胁迫显著增加了其叶绿素a和叶绿素b含量,而对其他指标无明显影响。无Al胁迫条件下施用ZnO NPs,均提高了‘华春6号’和‘华春2号’的鲜质量、根长和T-SOD活性。而在Al胁迫下施加不同剂量的ZnO NPs使‘华春6号’的鲜质量和根长分别增加13.2%~100.4%和7.8%~35.8%,而‘华春2号’的鲜质量在150 mg/kg ZnO NPs处理下达到最高值。在25 mg/kg ZnO NPs处理下,‘华春6号’和‘华春2号’的叶绿素a含量均达到最高值。不同含量的ZnO NPs对‘华春6号’的叶绿素b含量无显著影响,而显著降低了‘华春2号’的叶绿素b含量,在100 mg/kg ZnO NPs下达到最低值(3.5 mg/g)。‘华春6号’的T-SOD活性随ZnO NPs含量的增加而增加,‘华春2号’的T-SOD活性在50 mg/kg ZnO NPs时达到峰值(820 U/g),之后随ZnO NPs含量的增加出现下降的趋势。‘华春6号’和‘华春2号’的MDA浓度最小值分别出现在25和50 mg/kg ZnO NPs处理。
结论Al胁迫严重影响大豆的生长发育,施用ZnO NPs可以在一定程度上缓解Al胁迫对大豆植株产生的负面作用,改善植株的生长发育。
Abstract:ObjectiveThis study evaluated the effects of different zinc oxide nanoparticles (ZnO NPs) contents on the growth and physiological characteristics of Glycine max (Linn.) Merr. under aluminum (Al) stress, aiming to provide some reference for the application of metal nanomaterials in agriculture.
MethodIn a pot experiment, Al resistant cultivar ‘Huachun 2’ and Al sensitive cultivar ‘Huachun 6’ were selected and treated with ZnO NPs in various dosages of (0, 25, 50, 100 and 150 mg/kg) under 0.3 g/kg Al stress conditions, to investigate the effects of ZnO NPs on soybean physiological indicators (fresh weight, root length and chlorophyll content), total superoxide dismutase (T-SOD) activity and malondialdehyde (MDA) concentration.
ResultAl stress significantly reduced the fresh weight and root length of ‘Huachun 6’, and increased its MDA concentration. For ‘Huachun 2’, a significant increase in its chlorophyll a and chlorophyll b content was observed, while there was no significant effect on other indicators. Application of ZnO NPs under no Al stress conditions increased the fresh weight, root length and SOD activity of both ‘Huachun 6’ and ‘Huachun 2’. When ZnO NPs were applied at various dosages under Al stress, ‘Huachun 6’ gained 13.2%−100.4% in fresh weight and 7.8%−35.8% in root length, respectively, while ‘Huachun 2’ reached its highest fresh weight at 150 mg/kg ZnO NPs. The chlorophyll a content of both ‘Huachun 6’ and ‘Huachun 2’ reached the highest value under 25 mg/kg ZnO NPs treatment under Al stress. Different levels of ZnO NPs had no significant effect on the chlorophyll b content of ‘Huachun 6’ and significantly reduced the chlorophyll b content of ‘Huachun 2’, reaching the lowest value (3.5 mg/g) at 100 mg/kg ZnO NPs. As ZnO NPs content increased, the T-SOD activity of ‘Huachun 6’ increased, and that of ‘Huachun 2’ reached the peak (820 U/g) at 50 mg/kg ZnO NPs, and then showed a decreasing trend. The minimum MDA concentration of ‘Huachun 6’ and ‘Huachun 2’ occurred at 25 and 50 mg/kg of ZnO NPs treatment, respectively.
ConclusionAl stress severely affects the growth and development of soybean, while the application of ZnO NPs, to some extent, can alleviate the negative effects of Al stress on soybean, and improve the growth and development of the plants.
-
图 1 ZnO NPs对Al胁迫条件下大豆植株鲜质量和根长的影响
柱子上不同小写字母表示在相同Al处理下ZnO NPs处理间差异显著(P < 0.05,Duncan’s法);“*”和“**”分别表示相同含量ZnO NPs处理下相同品种无Al胁迫和Al胁迫之间在0.05和0.01水平差异显著(t检验)
Figure 1. Effect of ZnO NPs on fresh weigh and root length of soybean plantlets under Al stress
Different lowercase letters above the bars indicate significant differences among ZnO NPs treatments under the same Al treatment(P < 0.05, Duncan’s method); “*” and “**” respectively indicate significant differences at 0.05 and 0.01 levels between no Al and Al stresses of the same variety under the same content of ZnO NPs(t test)
图 2 ZnO NPs对Al胁迫条件下大豆植株叶绿素a和叶绿素b含量的影响
柱子上不同小写字母表示在相同Al处理下ZnO NPs处理间差异显著(P < 0.05,Duncan’s法);“*”和“**”分别表示相同含量ZnO NPs处理下相s同品种无Al胁迫和Al胁迫之间在0.05和0.01水平差异显著(t检验)
Figure 2. Effect of ZnO NPs on chlorophyll a and chlorophyll b contents of soybean plantlets under Al stress
Different lowercase letters above the bars indicate significant differences among ZnO NPs treatments under the same Al treatment (P < 0.05, Duncan’s method) ; “*” and “**” respectively indicate significant differences at 0.05 and 0.01 levels between no Al and Al stresses of the same variety under the same content of ZnO NPs (t test)
图 3 ZnO NPs对Al胁迫下大豆T-SOD活性及MDA浓度的影响
柱子上不同小写字母表示在相同Al处理不同ZnO NPs处理间差异显著(P < 0.05,Duncan’s法);“*”和“**”分别表示相同含量ZnO NPs相同品种无Al胁迫和Al胁迫之间在0.05和0.01水平差异显著(t检验)
Figure 3. Effect of ZnO NPs on T-SOD activity and MDA concentration of soybean plantlets under Al stress
Different lowercase letters above the bars indicate significant differences among ZnO NPs treatments under the same Al treatment (P < 0.05, Duncan’s method); “*” and “**” respectively indicate significant differences at 0.05 and 0.01 levels between no Al and Al stresses of the same variety under the same content of ZnO NPs (t test)
-
[1] HODSON M E, DONNER E. Managing adverse soil chemical environments[M]//GREGORY P J, NORTCLIFF S. Soil conditions and plant growth. Blackwell Publishing Ltd, 2013: 195-237.
[2] KUNITO T, ISOMURA I, SUMI H, et al. Aluminum and acidity suppress microbial activity and biomass in acidic forest soils[J]. Soil Biology and Biochemistry, 2016, 97: 23-30. doi: 10.1016/j.soilbio.2016.02.019
[3] 郑开敏, 肖家昶, 马俊英, 等. 柠檬酸对铝胁迫下豆瓣菜生长及生理的影响[J]. 江苏农业学报, 2022, 38(2): 476-485. doi: 10.3969/j.issn.1000-4440.2022.02.023 [4] ZHANG X, LONG Y, HUANG J, et al. Molecular mechanisms for coping with Al toxicity in plants[J]. International Journal of Molecular Sciences, 2019, 20(7): 1551. doi: 10.3390/ijms20071551.
[5] 渠心静. 磷缓解油茶幼苗铝胁迫的生理机制研究[D]. 长沙: 中南林业科技大学, 2021. [6] 谢会雅, 陈舜尧, 张阳, 等. 中国南方土壤酸化原因及土壤酸性改良技术研究进展[J]. 湖南农业科学, 2021(2): 104-107. doi: 10.16498/j.cnki.hnnykx.2021.002.027 [7] CHEN Z C, LIAO H. Organic acid anions: An effective defensive weapon for plants against aluminum toxicity and phosphorus deficiency in acidic soils[J]. Journal of Genetics and Genomics, 2016, 43(11): 631-638. doi: 10.1016/j.jgg.2016.11.003
[8] YANG T, LIU G, LI Y, et al. Rhizosphere microbial communities and organic acids secreted by aluminum-tolerant and aluminum-sensitive soybean in acid soil[J]. Biology and Fertility of Soils, 2011, 48(1): 97-108.
[9] 金婷婷, 刘鹏, 黄朝表, 等. 铝胁迫下大豆根系分泌物对根际土壤微生态的影响[J]. 土壤学报, 2008(3): 526-534. doi: 10.3321/j.issn:0564-3929.2008.03.020 [10] LI W, SUN Y, WANG B, et al. Transcriptome analysis of two soybean cultivars identifies an aluminum responsive antioxidant enzyme GmCAT1[J]. Bioscience, Biotechnology and Biochemistry, 2020, 84(7): 1394-1400. doi: 10.1080/09168451.2020.1740970
[11] 吴彩玉, 陈珠, 李育军, 等. 不同浓度铝胁迫下水分胁迫对大豆幼苗生理代谢的影响[J]. 长江蔬菜, 2018(14): 39-44. [12] 周莹. 铝胁迫下大豆(Glycine Max L. )根系柠檬酸分泌相关基因功能分析[D]. 长春: 吉林大学, 2018. [13] 邓晓霞, 李月明, 姚堃姝, 等. 植物适应酸铝胁迫机理的研究进展[J]. 生物工程学报, 2022, 38(8): 2754-2766. doi: 10.13345/j.cjb.210954 [14] 陈士勇, 王锐, 陈志青, 等. 纳米锌和离子锌对水稻产量形成及籽粒锌含量的影响[J]. 作物杂志, 2022(4): 107-114. doi: 10.16035/j.issn.1001-7283.2022.04.015 [15] CHANG Y, ZHANG M, XIA L, et al. The toxic effects and mechanisms of CuO and ZnO nanoparticles[J]. Materials, 2012, 5(12): 2850-2871. doi: 10.3390/ma5122850
[16] 方清. 纳米氧化锌对镉胁迫下水稻生长及吸收镉的影响[D]. 合肥: 安徽农业大学, 2020. [17] 陈娟妮, 鲁梅, 丁伟. 纳米氧化锌对烟草疫霉菌的抑菌作用研究[J]. 植物医生, 2021, 34(2): 34-40. doi: 10.13718/j.cnki.zwys.2021.02.008 [18] 孙露莹, 宋凤斌, 李向楠, 等. 纳米氧化锌对玉米种子萌发及根系碳代谢的影响[J]. 土壤与作物, 2020, 9(1): 40-49. doi: 10.11689/j.issn.2095-2961.2020.01.005 [19] NAIR R. Effects of nanoparticles on plant growth and development[M]//KOLE C, KUMAR D S, KHODAKOVS-KAYA M V. Plant Nanotechnology. Switzerland: Springer International Publishing, 2016, Chapter 5: 95-118.
[20] RIZWAN M, ALI S, QAYYUM M F, et al. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review[J]. Journal of Hazardous Materials, 2017, 322: 2-16. doi: 10.1016/j.jhazmat.2016.05.061
[21] CAI Z, CHENG Y, XIAN P, et al. Fine-mapping QTLs and the validation of candidate genes for aluminum tolerance using a high-density genetic map[J]. Plant and Soil, 2019, 444(1/2): 119-137.
[22] 邱念伟, 王修顺, 杨发斌, 等. 叶绿素的快速提取与精密测定[J]. 植物学报, 2016, 51(5): 667-678. doi: 10.11983/CBB15190 [23] 张凤翔. 黄嘌呤氧化酶法测定血清中超氧化物歧化酶活力的影响因素[J]. 云南医药, 2001(6): 473-474. [24] GARCIA Y J, RODRÍGUEZ-MALAVER A J, PEÑALOZA N. Lipid peroxidation measurement by thiobarbituric acid assay in rat cerebellar slices[J]. Journal of Neuroscience Methods, 2005, 144(1): 127-135. doi: 10.1016/j.jneumeth.2004.10.018
[25] SINGH A, PRASAD S M, SINGH S. Impact of nano ZnO on metabolic attributes and fluorescence kinetics of rice seedlings[J]. Environmental Nanotechnology, Monitoring & Management, 2018, 9: 42-49.
[26] KHAN M R, ADAM V, RIZVI T F, et al. Nanoparticle-plant interactions: Two-way traffic[J]. Small, 2019, 15(37): 1901794. doi: 10.1002/smll.201901794.
[27] KARUNAKARAN G, SURIYAPRABHA R, RAJENDRAN V, et al. Influence of ZrO2, SiO2, Al2O3 and TiO2 nanoparticles on maize seed germination under different growth conditions[J]. IET Nanobiotechnology, 2016, 10(4): 171-177. doi: 10.1049/iet-nbt.2015.0007
[28] YANG Z, CHEN J, DOU R, et al. Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.)[J]. International Journal of Environmental Research and Public Health, 2015, 12(12): 15100-15109. doi: 10.3390/ijerph121214963
[29] VAN DE MORTEL J E, VILLANUEVA L A, SCHAT H, et al. Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens[J]. Plant Physiology, 2006, 142(3): 1127-1147. doi: 10.1104/pp.106.082073
[30] NEOGY M, DATTA J, ROY A K, et al. Studies on phytotoxic effect of aluminium on growth and some morphological parameters of Vigna radiata L. Wilczek[J]. Journal of Environmental Biology, 2002, 23(4): 411-416.
[31] ZHANG X B, LIU P, YANG Y S, et al. Effect of Al in soil on photosynthesis and related morphological and physiological characteristics of two soybean genotypes[J]. Botanical Studies, 2007, 48(4): 435-444.
[32] BASHIR A, RIZWAN M, ALI S, et al. Effect of composted organic amendments and zinc oxide nanoparticles on growth and cadmium accumulation by wheat; A life cycle study[J]. Environmental Science and Pollution Research, 2020, 27(19): 23926-23936. doi: 10.1007/s11356-020-08739-8
[33] PIRZADAH T B, MALIK B, TAHIR I, et al. Aluminium stress modulates the osmolytes and enzyme defense system in Fagopyrum species[J]. Plant Physiology and Biochemistry, 2019, 144: 178-186. doi: 10.1016/j.plaphy.2019.09.033
[34] LI Y, LIANG L, LI W, et al. ZnO nanoparticle-based seed priming modulates early growth and enhances physio-biochemical and metabolic profiles of fragrant rice against cadmium toxicity[J]. Journal of Nanobiotechnology, 2021, 19(1): 75. doi: 10.1186/s12951-021-00820-9.
-
期刊类型引用(6)
1. 马亚娟,苏恺,林依丹,王亚文,张亚楠,袁洪兴,袁晨,宋勤叶. 盐霉素体外对猪流行性腹泻病毒的抑制效果. 畜牧兽医学报. 2024(04): 1661-1671 . 百度学术
2. 胡泽奇,李润成,谭祖明,谢秀艳,王江平,秦乐娟,李荣,葛猛. PEDV、PoRVA和PDCoV TaqMan三重RT-qPCR检测方法的建立与初步应用. 畜牧兽医学报. 2024(05): 2267-2272 . 百度学术
3. 路浩,丁雪燕,袁晋,魏战勇. 猪肠道冠状病毒检测方法的研究进展. 中国兽医科学. 2024(10): 1391-1398 . 百度学术
4. 王恋春,郑辉,张慧,沙洲,房琳琳,尼博,董雅琴,魏荣,崔进,郑泽中. 猪流行性腹泻病毒实时荧光RT-RAA检测方法的建立及应用. 黑龙江畜牧兽医. 2024(20): 63-68+74 . 百度学术
5. 宋雪莹. 猪流行性腹泻研究热点检索与分析. 福建畜牧兽医. 2023(02): 40-42 . 百度学术
6. 李洁森,孙荣航,邝燕齐,陈路漫,刘青,郭霄峰. 猪流行性腹泻病毒S1D蛋白的优化表达及其单克隆抗体的制备. 中国畜牧兽医. 2021(12): 4641-4651 . 百度学术
其他类型引用(18)