Regulation effects of microRNA-1285 and its target DDX3X on Senecavirus A infected PK-15 cells
-
摘要:目的
探究MicroRNA-1285(miR-1285)及其靶标DDX3X在猪塞内卡病毒(Senecavirus A,SVA)感染PK-15细胞中的调控作用。
方法利用qRT-PCR、双荧光素酶活性及Western blot等方法研究miR-1285和DDX3X对I型干扰素(IFN-β)分泌及RIG-I信号通路的作用,分析miR-1285及DDX3X对SVA 3C蛋白基因表达的影响。
结果SVA感染PK-15细胞后,miR-1285表达量显著升高,并且miR-1285与DDX3X存在负靶向关系,二者可促进IFN-β转录及蛋白水平的表达。miR-1285通过靶向DDX3X对RIG-I信号通中的MAVS、TRAF3信号分子起调控作用。对于SVA 3C蛋白基因,DDX3X可以显著抑制其转录,并且可以逆转miR-1285所诱导的上调趋势。
结论SVA感染PK-15细胞后,宿主miR-1285及其靶标DDX3X对IFN-β及病毒3C蛋白的表达具有调控作用,研究结果将为明确miRNAs调控SVA感染的分子机制奠定基础,并为SVA的防控和诊断提供新的科学依据。
-
关键词:
- MicroRNA-1285 /
- DDX3X /
- 猪塞内卡病毒 /
- IFN-β /
- RIG-I信号通路
Abstract:ObjectiveTo explore the regulation roles of microRNA-1285 (miR-1285) and its target DDX3X in Senecavirus A (SVA) infected PK-15 cells.
MethodBy qRT-PCR, double luciferase activity and Western blot, the effects of miR-1285 and its target DDX3X on IFN-β secretion and the RIG-I signaling pathway were studied, and their effects on the expression of SVA 3C protein gene were analyzed.
ResultIn SVA infected PK-15 cells, the expression of miR-1285 increased significantly, and there was a negative targeting relationship between miR-1285 and DDX3X. Both miR-1285 and DDX3X promoted the transcription and protein expression of IFN-β. MiR-1285 regulated MAVS and TRAF3 signaling molecules in the RIG-I signaling pathway by targeting DDX3X. For SVA 3C protein, DDX3X significantly inhibited the transcription of 3C and reversed the up-regulation trend induced by miR-1285.
ConclusionAfter infecting PK-15 cells with SVA, host miR-1285 and its target DDX3X can regulate the expression of IFN-β and the viral 3C protein, which will lay a foundation for clarifying the molecular mechanism of miRNAs regulating SVA infection, and provide a new scientific basis for the prevention, control and diagnosis of SVA.
-
Keywords:
- MiRNA-1285 /
- DDX3X /
- Senecavirus A /
- IFN-β /
- RIG-I signal pathway
-
MicroRNA(miRNA)是一类长度为20~24 bp的内源性非编码小RNA,广泛参与各种生理和病理过程,包括抗病毒天然免疫反应[1]等。对大多数细胞来说,干扰素(Interferon,IFN)免疫反应是宿主抵御病毒感染的第1道防线。许多研究指出,miRNA可以靶向抗病毒天然免疫反应的关键信号分子,以调节IFN的表达[2-3]。MiRNA-1285 (miR-1285)于2008年首次在人类胚胎干细胞中被发现[4],并于2014年在猪的1号染色体中被记录[5]。目前,关于miR-1285的研究主要集中在肿瘤方面。如在肺鳞状细胞癌[6]和甲状腺肿瘤[7]中,miR-1285可以作为潜在的生物标记物;在肝细胞癌[8]和胰腺癌[9]中,miR-1285具有抑癌作用。除了肿瘤方面,最近的1项研究还发现,在暴露于铜离子环境的空肠上皮细胞中,线粒体定位的miR-1285具有调控线粒体功能障碍和有丝分裂吞噬的重要作用[10]。X染色体编码的DDX3X属于DEAD-box RNA解旋酶超家族2成员,在各种组织中广泛表达[11]。DDX3X参与众多细胞生理过程,包括细胞周期调节[12]、先天免疫反应[13]、凋亡[14]和肿瘤发生[15]等。在抗病毒先天免疫中,DDX3X可以与RIG-I/MDA5、NF-κB等信号通路的许多重要信号分子相互作用,以诱导IFN表达[16-19]。
猪A型塞内卡病毒(Senecavirus A,SVA)隶属于小RNA病毒科Picornaviridae塞内卡病毒属Senecavirus,是该属唯一成员[20]。SVA是一种新近出现的传染性病原,能引发猪特发性水疱病,临床表现与口蹄疫症状极为相似[21-24]。自2015年巴西[25]报道SVA感染导致大规模仔猪死亡以来,美国[26]、加拿大[27]、中国[28]、泰国[29]、哥伦比亚[30]、越南[31]等多个国家陆续出现了SVA疫情,给全球养猪业造成了巨大的经济损失。SVA感染在我国华南[32]、华中[33]、东南[34]、东北[35]等多个地区的猪场均有报道。上述SVA的研究主要集中于临床症状、传播途径、检测方法、分子流行病学等内容,有关SVA与宿主miRNAs互作的研究鲜见报道。因此,本研究拟从miRNAs角度,探究miR-1285及其靶标DDX3X在抗SVA感染天然免疫应答中的作用,为SVA感染的诊断和防控提供重要依据。
1. 材料与方法
1.1 材料
1.1.1 细胞、病毒株、质粒及菌种
本研究涉及的猪传代肾细胞PK-15由华南农业大学健康养殖与生物安全研究室(本实验室)保存,SVA CH-01-2015分离株(KT321458)由本实验室分离鉴定并保存。pmirGLO载体、pET-32a(+)载体、大肠埃希菌感受态细胞DH5α、BL21(DE3)由本实验室保存,pMD®19-T载体购自广州瑞真生物技术有限公司。
1.1.2 主要试剂与用品
细胞与病毒培养相关试剂:胎牛血清、DMEM、0.25%(w)胰蛋白酶购自GIBCO公司,转染试剂jetPRIME®购自Polyplus公司,miRNA mimics及inhibitor、siRNA由上海吉玛公司合成。
分子生物学相关试剂:RNAiso Plus、PrimeScript™ RT reagent Kit with gDNA Eraser(Perfect Real Time)、2×Ex Taq®、dNTP Mixture、10× Loading Buffer、T4 DNA连接酶、蛋白Marker等购自TaKaRa公司;限制性内切酶Xho I、Sal I、EcoR I等购自NEB公司;Dual-Glo® Luciferase Assay System、GoTaq® Probe qPCR Master Mix 2×购自Promega公司;E.Z.N.A.® Gel Extraction Kit、E.Z.N.A.® Plasmid Mini Kit I 购自Omega公司;ReverTra Ace® qPCR RT Kit购自TOYOBO公司;Zero Background TA TOPO Cloning Kit 为Clone Smarter 产品,购自中美泰和生物技术公司;Ni-NTA Beads购自常州天地人和生物科技有限公司;2× RealStar Green Fast Mixture、RIPA细胞裂解液和BCA法总蛋白测定试剂盒购自北京GenStar公司;SDS-PAGE凝胶配制试剂盒、细胞周期与细胞凋亡检测试剂盒购自碧云天生物技术有限公司;Bulge-LoopTM miRNA qRT-PCR Starter Kit、Bulge-LoopTM miRNA Forward Primer购自广州锐博生物科技有限公司。
蛋白抗体与IFN-β检测试剂盒——Anti-His(mouse)、Anti-β-actin(rabbit)单克隆抗体、Goat-anti-mouse(HRP)酶标二抗购自Proteintech公司,Goat-anti-mouse(Alexa Fluor 594)荧光二抗购自abcam公司,Anti-DDX3X(pig)多克隆抗体购自上海优宁维生物科技股份有限公司。
1.2 方法
1.2.1 细胞培养
以每孔1×106个细胞的密度将PK-15细胞接种至适合的培养皿中,在含10%(φ)胎牛血清的DMEM培养液中于37 ℃、5%(φ)CO2条件下培养。当PK-15细胞聚合密度大于90%时进行传代,吸出培养液后用无菌、pH 7.2的PBS缓冲液清洗2遍,加入含0.25%(w)胰蛋白酶的EDTA,放置培养箱中消化2 min左右,在显微镜下观察,细胞变圆、分散时弃去胰蛋白酶终止消化,加入含10%(φ)胎牛血清的细胞培养液继续培养。
1.2.2 SVA感染
取细胞聚合密度大于80%~90%、生长状态良好的细胞,吸出培养液,PBS缓冲液清洗2遍,SVA CH-01-2015病毒液接毒,感染复数(Multiplicity of infection,MOI)=1.5,2 h后用PBS缓冲液清洗并更换为含有2%(φ)胎牛血清的培养液,在不同时间点分别收取细胞RNA与细胞培养上清液,设未感染SVA组为阴性对照组(CK),每组3次重复,3个平行,装入2 mL离心管于−80 ℃保存。
1.2.3 转染
以每孔1×106个细胞的密度将PK-15细胞接种至6孔细胞培养板,在含10%(φ)胎牛血清的DMEM培养液中于37 ℃、5%(φ)CO2条件下培养,当细胞聚合密度达50%~60%时转染100 pmol miR-1285mimics、inhibitor或pEGFP-DDX3X-p、si-DDX3X质粒至PK-15细胞,转染24 h后以1 MOI剂量SVA接种PK-15细胞,24 h后收集细胞总RNA,48 h收集细胞总蛋白,72 h收集病毒液。所用寡核苷酸序列分别为:miR‐1285 mimics正链5′‐CUGGGCAACAUAGCGAGACCCCGU‐3′、负链5′‐GGGGUCUCGCUAUGUUGCCCAGUU‐3′及miR‐1285 inhibitor 5′‐ACGGGGUCUCGCUAUGUUGCCCAG‐3′;DDX3X正链5′‐ACAGCAGTTTTGGATCCCGT‐3′、负链5′‐GTCACTTCGTCCACGGTCAT‐3′及si-DDX3X正链5′‐GCUGAUGGAUGUUGGAUATT‐3′、负链5′‐UAUCCAACAUCCGAUCAGCTT‐3′。
1.2.4 RNA提取及qRT-PCR
采用RNAiso Plus抽提PK-15细胞样品中总RNA。弃去培养液,用PBS缓冲液清洗细胞,按0.1~0.2 mL/cm2的剂量加入RNAiso Plus后轻微晃动,将内含细胞的裂解液转移至离心管中,室温静置5 min后依次加入三氯甲烷等,具体方法参照RNAiso Plus RNA提取试剂说明书。将抽提出的RNA白色沉淀用30 µL DEPC水溶解,用核酸蛋白测定仪测定总RNA质量浓度,记录RNA质量浓度和D260 nm/D280 nm、D260 nm/D230 nm,分装后−80 ℃保存或直接用于反转录。miRNA qRT-PCR反应参照miRNA 1st Strand cDNA Synthesis Kit (加尾法)说明书,具体反应程序:95 ℃预变性10 min,以95 ℃变性2 s、60 ℃退火20 s、70 ℃延伸10 s 进行40个循环。每个反应设置3次重复,并设立阴性对照(CK)。mRNA qRT-PCR 反应:参照HiScript® III 1st Strand cDNA Synthesis Kit (+gDNA wiper)说明书进行。qRT-PCR反应程序:95 ℃预变性2 min,以95 ℃变性 15 s、各温度退火 20 s、72 ℃延伸30 s 进行40个循环。每个反应设置3次重复,并设立阴性对照(CK)。各基因引物序列见表1。
表 1 基因引物序列Table 1. Primer sequences of genes基因名称 Gene name 引物/探针序列(5′→3′) Primer/Probe sequence θ退火/ ℃ Annealing temperature 产物大小/bp Product size 文献 Reference RIG-I F: ATCCCAGCAACGAGAA 60 188 [36] R: GCCACGTCCAGTCAAT MDA5 F: GAGGAATCAGCACGAGGAA 58 73 [37] R: GTCAGTAATCCACTGGGA MAVS F: ATAGCCAGCCTTTCTCGG 60 237 [36] R: TAGCCTCAGTCTTGACCTCTTC TRAF3 F: GTGTCAAGAAGGCATCG 60 164 [36] R: CCTCAAACTGGCAATCA TANK F: GGACGCCTTGAACTACCTGT 60 119 R: GCCTGCCGAAAGGCTTCATA TBK1 F: GCCTTTCTCGGGGTCTTCAA 60 74 R: ACACTTTTCCTGATCCGCCT IRF3 F: CCAGTGGTGCCTACACTCCT 61 191 [38] R: AGAGGTGTCTGGCTCAGGAA IRF7 F: CGCCTCCTGGAAAACCAA 60 76 [37] R: CCCTGAGTTGTCCTGCAACA IFN-β F: GCTAACAAGTGCATCCTCCAAA 60 77 [39] R:AGCACATCATAGCTCATGGAAAGA GAPDH F: ACATGGCCTCCAAGGAGTAAGA 60 106 [40] R: GATCGAGTTGGGGCTGTGACT SVA-3C F: GAGCTTCAATCTCCTAGA 59 115 R: GTGTCATCATTCTCGTTAG 探针 Probe CAGACATTCGAGCCAAGCAACAA 69 1.2.5 双荧光素酶活性检测
在6孔细胞培养板中培养细胞,待细胞聚合密度达到60%~80%时进行转染试验。根据试验需要在1.5 mL离心管中加入2 µg DNA和80 pmol miR-1285 mimics或者inhibitor以及200 µL jetPRIME® buffer,涡旋震荡混匀。在混合试剂中加入4~6 µL jetPRIME®,涡旋震荡10 s,室温孵育10 min。将转染混合物逐滴加入含2%(φ)胎牛血清细胞培养基的细胞培养6孔板中,轻柔摇匀,根据需要在转染4 h后进行换液。将5× Passive Lysis Buffer (PLB) 用双蒸水稀释为1× PLB,4 ℃条件下储存。细胞转染24 h后,观察细胞状态是否良好,用预冷的PBS清洗细胞3遍,吸尽PBS加入500 µL PLB。室温下在摇床上裂解细胞15 min。在96孔板中每孔加入20 µL PLB裂解液,随后加入100 µL LAR II,检测萤火虫荧光素酶活性。检测结束后,加入100 µL Stop & Glo ® Reagent,测量海肾荧光素酶活性。
1.2.6 Western blot
转染48 h后提取细胞总蛋白,具体步骤参照RIPA强裂解液说明书进行。使用BCA法测定蛋白质质量浓度,然后将样品分装,−20 ℃条件下保存。组装电泳装置,加入电泳液,以70 V电泳40 min,再以恒压140 V电泳,使蛋白充分分离。裂解产物通过100 g/L十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE)分离,并转移到Immobilon-P膜(EMD Millipore,USA)上。在含0.1%(φ)吐温20的TBST(10 mmol/L Tris-HCl、pH 8.0、150 mmol/L NaCl)中用50 g/L脱脂奶粉封闭2 h。封闭后使用稀释好的一抗孵育1 h后使用TBST缓冲液洗涤5次,每次5 min。将PVDF膜放入稀释好的二抗中孵育30 min后洗涤3次,每次5 min。避光配制发光液,将发光液加至PVDF膜表面后放入化学发光仪中显影。
1.2.7 数据统计分析
试验所得数据使用统计软件SPSS 19.0进行分析。针对干扰试验中的3组数据进行单因素方差分析,若差异显著,则对组间进行Duncan’s多重比较;其他数据之间进行独立样本t检验,P < 0.05视为差异显著,数据用平均值±标准误表示。
2. 结果与分析
2.1 SVA感染PK-15细胞后miR-1285表达显著上调
本研究前期转录组学分析发现,SVA感染PK-15细胞后miR-1285显著上调。为了确定miR-1285在SVA感染中的潜在作用,本研究首先利用qRT-PCR检测了miR-1285在SVA感染的PK-15细胞中的表达。如图1A所示,1.5 MOI SVA感染PK-15细胞后,miR-1285的表达随着时间的延长逐渐增加,在感染24 h时极显著增加(P<0.01)。当SVA分别以0.1 MOI、1.0 MOI、5.0 MOI和10.0 MOI的剂量感染PK-15细胞后,miR-1285基因拷贝数在1.0 MOI时达到最高水平;之后,随着病毒接毒剂量的增加,miR-1285的表达逐渐减少,但当SVA感染量为5.0 MOI时,差异仍然显著(P<0.05)(图1B)。上述结果表明,在SVA感染的PK-15细胞中miR-1285的表达上调,并且其表达在一定范围内随着病毒剂量和感染时间的增加而增加。
图 1 不同SVA感染时间(A)和感染剂量(B)条件下PK-15细胞中miR-1285的表达量“*”“**”分别表示处理与对照在P < 0.05和P < 0.01水平差异显著(Duncan’s法)Figure 1. Expression of miR-1285 in PK-15 cells infected by SVA at different infection time (A) and dosages (B)“*” and “**” represented statistical difference in comparison with control group at P < 0.05 and P < 0.01 levels respectively (Duncan’s method)2.2 miR-1285靶基因预测及验证
为了进一步探讨miR-1285在SVA感染中的作用,利用MiRanda软件预测PK-15细胞中miR-1285的潜在靶点。基于生物信息学分析,miR-1285在DDX3X的3'-UTR中具有靶向位点(图2)。为了验证预测结果,将miR-1285 mimics、inhibitor分别转染PK-15细胞,检测细胞中DDX3X的mRNA和蛋白表达。Western blot结果显示,转染miR-1285 mimics的细胞与阴性对照组相比,DDX3X蛋白的表达没有变化;但转染miR-1285 inhibitor的PK-15细胞中,DDX3X蛋白的表达显著增加(图3),且与荧光定量检测结果(P < 0.01)( 图4)一致。为了进一步确定miR-1285和DDX3X之间的靶向关系,将DDX3X野生型质粒、缺失及突变质粒分别转染到PK-15细胞。双荧光素酶分析显示,与对照组相比,在含有DDX3X野生型质粒的细胞中,miR-1285 mimics的相对荧光素酶活性被显著抑制(P < 0.05)( 图5)。上述结果说明,miR-1285通过结合PK-15细胞中的3'-UTR靶向DDX3X,并且miR-1285和DDX3X之间存在负靶向关系。
图 4 转染miR-1285 mimics、inhibitor至PK-15细胞后DDX3X的mRNA相对表达量“**”表示处理与对照在P < 0.01水平差异显著 (Duncan’s 法)Figure 4. The relative expression of DDX3X mRNA after transfection of miR-1285 mimics and inhibitor into PK-15 cells“**” represented statistical difference in comparison with control group at P < 0.01 level (Duncan’s method)图 5 转染不同DDX3X重组载体质粒至PK-15细胞后miR-1285双荧光素酶活性“*”表示处理与对照在P < 0.05水平差异显著 (Duncan’s 法)Figure 5. The relative dual-luciferase activity of miR-1285 after transfection of different DDX3X recombinant vector plasmids into PK-15 cells“*” represented statistical difference in comparison with control group at P < 0.05 level (Duncan’s method)2.3 miR-1285及其靶标DDX3X促进IFN-β表达
为了探究miR-1285与SVA、IFN-β的关系,将miR-1285 mimics、inhibitor转染至PK-15细胞,24 h后感染1 MOI SVA。qRT-PCR结果如图6A所示,与对照组相比,过表达miR-1285后IFN-β mRNA转录水平显著下调,干扰miR-1285时IFN-β则显著上调(P < 0.05);然而当PK-15受到SVA病毒感染后,过表达miR-1285可极显著促进IFN-β的转录( P < 0.01),干扰miR-1285时IFN-β mRNA转录水平显著下调( P < 0.05)。同样,为了研究DDX3X对SVA感染PK-15细胞后IFN-β表达的影响,将DDX3X过表达和干扰质粒分别转染细胞,24 h后以1 MOI SVA攻毒细胞,检测IFN-β表达情况,结果如 图6B所示,过表达DDX3X可极显著促进IFN-β的转录水平(P<0.01),干扰DDX3X可明显抑制IFN-β的表达(P < 0.05)。Western blot分析结果与荧光定量结果一致,在SVA感染48 h的PK-15细胞中,过表达miR-1285可促进IFN-β蛋白的表达,当miR-1285被抑制时,IFN-β的蛋白水平与对照组细胞中的蛋白水平相似( 图7A);同样过表达DDX3X能够促进IFN-β蛋白的表达,干扰DDX3X的INF-β表达量与对照组相似(图7B)。上述结果表明,SVA感染PK-15细胞后miR-1285及其靶标DDX3X都能促进IFN-β分泌。
图 6 miR-1285及其靶标DDX3X对IFN-β mRNA表达的调控作用“*”和“**”分别表示处理与对照在P < 0.05和P < 0.01水平差异显著(Duncan’s法)Figure 6. Regulation effects of miR-1285 and its target DDX3X on the mRNA expression of IFN-β“*” and “**” represented statistical difference in comparison with control group at P < 0.05 and P < 0.01 levels respectively (Duncan’s method)2.4 miR-1285及其靶标DDX3X对RIG-I信号通路中关键信号分子的影响
为了探究miR-1285及其靶标DDX3X与RIG-I信号通路的关系,分别转染miR-1285 mimics、inhibitor或将si-DDX3X转染至PK-15细胞,qRT-PCR检测RIG-I信号通路关键信号分子mRNA相对表达量,结果如图8、9所示。相比于对照组,转染miR-1285 mimics后MAVS、TRAF3、IRF3、IRF7表达量显著降低(P < 0.05),其他分子转录无明显差异。转染miR-1285 inhibitor后IRF3转录水平显著上调( P < 0.05),其他分子的转录水平则无明显变化。当沉默DDX3X时,与对照组相比,接头分子中MDA5、TANK、TBK1表达量显著上调( P < 0.05、 P < 0.05、 P < 0.01),而MAVS、TRAF3表达量显著下调( P < 0.05、 P < 0.05),其他分子无明显变化( 图9)。
图 9 DDX3X沉默对RIG-I通路信号转导分子的影响“*”和“**”分别表示处理与对照在P < 0.05和P < 0.01水平差异显著(Duncan’s法)Figure 9. Effects of DDX3X silencing on signal transduction molecules of the RIG-I pathway“*” and “**” represented statistical difference in comparison with control group at P < 0.05 and P < 0.01 levels respectively (Duncan’s method)2.5 miR-1285及其靶标DDX3X对SVA 3C表达的调控
为了更好地理解miR-1285、DDX3X和SVA之间的关系,将miR-1285-mimics、inhibitor,si-DDX3X和DDX3X过表达质粒转染PK-15细胞,24 h后SVA感染细胞,分析SVA 3C的表达情况。结果(图10)显示,在转染miR-1285 mimics、inhibitor的细胞中,3C mRNA的表达分别略有增加和减少。然而,在DDX3X过表达的细胞中,SVA 3C的产生被极显著阻断(P < 0.01),当DDX3X沉默时,病毒表达极显著增加( P < 0.01)。更重要的是,当miR-1285 mimics和DDX3X过表达质粒共同转染细胞时,SVA 3C表达极显著下调( P < 0.01),当miR-1285 inhibitor和si-DDX3X质粒一起转染细胞时,3C生成极显著增加( P < 0.01)( 图10)。总之,miR-1285可以促进SVA 3C的产生,但这种趋势在统计学上并不显著,而DDX3X能显著阻断3C的表达,并能逆转miR-1285诱导的表达增加趋势。
3. 讨论与结论
3.1 SVA感染PK-15细胞诱发miR-1285高表达
作为小RNA病毒科新发现的成员,宿主miRNAs在SVA感染中的作用尚不明确。本研究试验结果显示miR-1285的表达在SVA感染PK-15细胞后被激活,并且miR-1285的表达量随着SVA感染时间的延长和接毒剂量的提高而增加。大量报道表明,miR-1285在肺癌、胰腺癌、非侵入性滤泡性甲状腺肿瘤等肿瘤细胞和肝硬化、沙眼患者组织中均有差异性表达,提示miR-1285可能在肿瘤细胞行为中起关键作用[7, 41-45],而SVA早期主要作为溶瘤细胞进行研究,可有效治疗一些神经内分泌肿瘤,如非小细胞肺癌等[45]。在SVA感染的PK-15细胞里发现显著差异表达的miR-1285,揭示二者具有潜在的联系。同时,本试验还发现,miR-1285与DDX3X存在着负靶向调控关系,miR-1285可通过与DDX3X的3'-UTR序列结合而抑制后者转录和蛋白水平的表达。在SVA感染的PK-15细胞中发现高表达的miR-1285及其靶标DDX3X,揭示了SVA与宿主miRNAs的互作关系。
3.2 miR-1285及其靶标DDX3X在先天免疫应答中的作用
先天免疫是宿主抵抗病毒感染的第一道防线,而I型IFN在抗病毒免疫应答中起着重要作用[46]。对于大多数RNA病毒而言,双链RNA(dsRNA)是一种复制中间产物,先天免疫反应中主要被宿主的RIG-I和MDA5蛋白基因识别,从而激活下游IFN的产生[47-48]。本研究结果表明,在SVA感染的PK-15细胞里,miR-1285及其靶标DDX3X均能在转录和蛋白水平显著促进IFN-β的分泌。进一步探究二者对RIG-I信号通路关键分子的作用,发现当过表达miR-1285时,RIG-I信号通路中MAVS、TRAF3转录水平显著降低,此结果与干扰DDX3X时一致,提示miR-1285可能通过靶向DDX3X作用于MAVS、TRAF3,从而调控IFN的表达。本试验结果还显示,当干扰DDX3X时,MDA-5、TANK、TBK1表达量显著上调。众多报道表明,DDX3X与RIG-I信号通路关系密切。例如,DDX3X可通过影响MAVS而上调IFN-β的表达[18]。Chen等[49]发现,DDX3X与MAVS、TBK1、IKKε共定位,过表达DDX3X可抑制PRRSV复制。其他研究则表明,PRRSV的Nsp2蛋白能阻碍DDX3X激活MAVS诱导的IFN-β启动子,从而促进病毒复制[50]。本研究揭示了在SVA感染的PK-15细胞中,miR-1285及其靶标DDX3X在先天免疫应答中的潜在作用机制,丰富了对miR-1285及DDX3X功能的认识。
3.3 miR-1285及其靶标DDX3X对SVA 3C蛋白基因复制的影响
小RNA病毒的3C蛋白对促进病毒mRNA的翻译和复制有重要的作用[51]。有关SVA 3C的研究表明,3C蛋白可以通过切割MAVS、TRIF和TANK以及具有蛋白酶活性的IRF3/7来抑制宿主的先天免疫反应[52]。还有报道发现,3C可诱导细胞凋亡[53]或作为一种病毒性二肽酶促进病毒复制[54]。上述研究提示,SVA 3C蛋白在病毒感染过程中发挥重要功能。因此,本研究分析了miR-1285及其靶标DDX3X对SVA 3C表达的影响。结果显示,相对于对照组,过表达miR-1285对SVC 3C的转录有促进作用,miR-1285受抑制时SVC 3C的表达量下调,但上述作用均不明显。相反,DDX3X过表达可以显著抑制SVA 3C的表达;并且,同时过表达miR-1285及其靶标DDX3X,SVA 3C表达量仍然显著下调;说明,DDX3X可以逆转miR-1285诱导的上调趋势。虽然DDX3X对SVA的复制有抑制作用,但推测SVA感染后,这种作用被miR-1285阻断,因为miR-1285负靶向调控DDX3X,即抑制其表达。本研究探究了miR-1285及其靶标DDX3X对SVA 3C蛋白基因复制的作用,以期为SVA的防控提供参考。
3.4 结论
SVA感染PK-15细胞后,miR-1285表达量显著上调,miR-1285可显著促进IFN-β转录和蛋白水平的表达。miR-1285通过靶向DDX3X对RIG-I信号通路发挥作用。DDX3X对SVA3C蛋白的表达有抑制作用,并且可逆转miR-1285诱导的上调趋势。本研究探究了SVA感染PK-15细胞后,宿主miR-1285及其靶标DDX3X的作用,研究结果将为SVA的防控提供新的思路和方法。
-
图 1 不同SVA感染时间(A)和感染剂量(B)条件下PK-15细胞中miR-1285的表达量
“*”“**”分别表示处理与对照在P < 0.05和P < 0.01水平差异显著(Duncan’s法)
Figure 1. Expression of miR-1285 in PK-15 cells infected by SVA at different infection time (A) and dosages (B)
“*” and “**” represented statistical difference in comparison with control group at P < 0.05 and P < 0.01 levels respectively (Duncan’s method)
图 4 转染miR-1285 mimics、inhibitor至PK-15细胞后DDX3X的mRNA相对表达量
“**”表示处理与对照在P < 0.01水平差异显著 (Duncan’s 法)
Figure 4. The relative expression of DDX3X mRNA after transfection of miR-1285 mimics and inhibitor into PK-15 cells
“**” represented statistical difference in comparison with control group at P < 0.01 level (Duncan’s method)
图 5 转染不同DDX3X重组载体质粒至PK-15细胞后miR-1285双荧光素酶活性
“*”表示处理与对照在P < 0.05水平差异显著 (Duncan’s 法)
Figure 5. The relative dual-luciferase activity of miR-1285 after transfection of different DDX3X recombinant vector plasmids into PK-15 cells
“*” represented statistical difference in comparison with control group at P < 0.05 level (Duncan’s method)
图 6 miR-1285及其靶标DDX3X对IFN-β mRNA表达的调控作用
“*”和“**”分别表示处理与对照在P < 0.05和P < 0.01水平差异显著(Duncan’s法)
Figure 6. Regulation effects of miR-1285 and its target DDX3X on the mRNA expression of IFN-β
“*” and “**” represented statistical difference in comparison with control group at P < 0.05 and P < 0.01 levels respectively (Duncan’s method)
图 9 DDX3X沉默对RIG-I通路信号转导分子的影响
“*”和“**”分别表示处理与对照在P < 0.05和P < 0.01水平差异显著(Duncan’s法)
Figure 9. Effects of DDX3X silencing on signal transduction molecules of the RIG-I pathway
“*” and “**” represented statistical difference in comparison with control group at P < 0.05 and P < 0.01 levels respectively (Duncan’s method)
表 1 基因引物序列
Table 1 Primer sequences of genes
基因名称 Gene name 引物/探针序列(5′→3′) Primer/Probe sequence θ退火/ ℃ Annealing temperature 产物大小/bp Product size 文献 Reference RIG-I F: ATCCCAGCAACGAGAA 60 188 [36] R: GCCACGTCCAGTCAAT MDA5 F: GAGGAATCAGCACGAGGAA 58 73 [37] R: GTCAGTAATCCACTGGGA MAVS F: ATAGCCAGCCTTTCTCGG 60 237 [36] R: TAGCCTCAGTCTTGACCTCTTC TRAF3 F: GTGTCAAGAAGGCATCG 60 164 [36] R: CCTCAAACTGGCAATCA TANK F: GGACGCCTTGAACTACCTGT 60 119 R: GCCTGCCGAAAGGCTTCATA TBK1 F: GCCTTTCTCGGGGTCTTCAA 60 74 R: ACACTTTTCCTGATCCGCCT IRF3 F: CCAGTGGTGCCTACACTCCT 61 191 [38] R: AGAGGTGTCTGGCTCAGGAA IRF7 F: CGCCTCCTGGAAAACCAA 60 76 [37] R: CCCTGAGTTGTCCTGCAACA IFN-β F: GCTAACAAGTGCATCCTCCAAA 60 77 [39] R:AGCACATCATAGCTCATGGAAAGA GAPDH F: ACATGGCCTCCAAGGAGTAAGA 60 106 [40] R: GATCGAGTTGGGGCTGTGACT SVA-3C F: GAGCTTCAATCTCCTAGA 59 115 R: GTGTCATCATTCTCGTTAG 探针 Probe CAGACATTCGAGCCAAGCAACAA 69 -
[1] YATES L A, NORBURY C J, GIBERT R J C. The long and short of microRNA[J]. Cell, 2013, 153(3): 516-519. doi: 10.1016/j.cell.2013.04.003
[2] CHENG J, WU R, LONG L, et al. MiRNA-451a targets IFN regulatory factor 8 for the progression of systemic lupus erythematosus[J]. Inflammation, 2017, 40(2): 676-687. doi: 10.1007/s10753-017-0514-8
[3] WANG L, ZHOU L, HU D, et al. Porcine reproductive and respiratory syndrome virus suppresses post-transcriptionally the protein expression of IFN-β by upregulating cellular microRNAs in porcine alveolar macrophages in vitro[J]. Experimental and Therapeutic Medicine, 2018, 15(1): 115-126.
[4] MORIN R D, O’CONNOR M D, GRIFFITH M, et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells[J]. Genome Research, 2008, 18(4): 610-621. doi: 10.1101/gr.7179508
[5] ANTHON C, TAFER H, HAVGAARD J H, et al. Structured RNAs and synteny regions in the pig genome[J]. BMC Genomics, 2014, 15: 459. doi: 10.1186/1471-2164-15-459.
[6] GAO X, WANG Y, ZHAO H, et al. Plasma miR-324-3p and miR-1285 as diagnostic and prognostic biomarkers for early stage lung squamous cell carcinoma[J]. Oncotarget, 2016, 7(37): 59664-59675. doi: 10.18632/oncotarget.11198
[7] BORRELLI N, DENARO M, UGOLINI C, et al. MiRNA expression profiling of ‘noninvasive follicular thyroid neoplasms with papillary-like nuclear features’ compared with adenomas and infiltrative follicular variants of papillary thyroid carcinomas[J]. Modern Pathology, 2017, 30(1): 39-51. doi: 10.1038/modpathol.2016.157
[8] LIU J, YAN J, ZHOU C, et al. MiR-1285-3p acts as a potential tumor suppressor miRNA via down regulating JUN expression in hepatocellular carcinoma[J]. Tumor Biology, 2015, 36: 219-225. doi: 10.1007/s13277-014-2622-5
[9] HUANG H, XIONG G, SHEN P, et al. MicroRNA-1285 inhibits malignant biological behaviors of human pancreatic cancer cells by negative regulation of YAP1[J]. Neoplasma, 2017, 64(3): 358-366. doi: 10.4149/neo_2017_306
[10] LIAO J, LI Q, HU Z, et al. Mitochondrial miR-1285 regulates copper-induced mitochondrial dysfunction and mitophagy by impairing IDH2 in pig jejunal epithelial cells[J]. Journal of Hazardous Materials, 2022, 422: 126899. doi: 10.1016/j.jhazmat.2021.126899.
[11] VENKATARAMANNAN S, GADEK M, CALVIELLO L, et al. DDX3X and DDX3Y are redundant in protein synthesis[J]. RNA, 2021, 27(12): 1577-1588. doi: 10.1261/rna.078926.121
[12] VAN VOSS M R H, KAMMERS K, VESUNA F, et al. Global effects of DDX3 inhibition on cell cycle regulation identified by a combined phosphoproteomics and single cell tracking approach[J]. Translational Oncology, 2018, 11(3): 755-763. doi: 10.1016/j.tranon.2018.04.001
[13] HEATON S M, BORG N A, DIXIT V M. Ubiquitin in the activation and attenuation of innate antiviral immunity[J]. Journal of Experimental Medicine, 2016, 213(1): 1-13. doi: 10.1084/jem.20151531
[14] HATHAICHOTI S, VISITNONTHACHAI D, NGAMSIRI P, et al. Paraquat induces extrinsic pathway of apoptosis in A549 cells by induction of DR5 and repression of anti-apoptotic proteins, DDX3 and GSK3 expression[J]. Toxicology in Vitro, 2017, 42: 123-129. doi: 10.1016/j.tiv.2017.04.016
[15] LIN T C. DDX3X multifunctionally modulates tumor progression and serves as a prognostic indicator to predict cancer outcomes[J]. International Journal of Molecular Sciences, 2019, 21(1): 281. doi: 10.3390/ijms21010281.
[16] SOULAT D, BŰRCKSTŰMMER T, WESTERMAYER S, et al. The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response[J]. EMBO Journal, 2008, 27(15): 2135-2146. doi: 10.1038/emboj.2008.126
[17] SCHRŐDER M, BARAN M, BOWIE A G. Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKepsilon-mediated IRF activation[J]. EMBO Journal, 2008, 27(15): 2147-2157. doi: 10.1038/emboj.2008.143
[18] OSHIUMI H, SAKAI K, MATSUMOT M, et al. DEAD/H BOX 3 (DDX3) helicase binds the RIG-I adaptor IPS-1 to up-regulate IFN-β-inducing potential[J]. European Journal of Immunology, 2010, 40(4): 940-948. doi: 10.1002/eji.200940203
[19] SZAPPANOS D, TSCHISMAROV R, PERLOT T, et al. The RNA helicase DDX3X is an essential mediator of innate antimicrobial immunity[J]. PLoS Pathogens, 2018, 14(11): e1007397. doi: 10.1371/journal.ppat.1007397
[20] ADAMS M J, LEFKOWITZ E J, KING A M Q, et al. Ratification vote on taxonomic proposals to the international committee on taxonomy of viruses[J]. Archives of Virology, 2016, 161(10): 2921-2949. doi: 10.1007/s00705-016-2977-6
[21] VANNUCCI F A, LINHARES D C L, BARCELLOS D E S N, et al. Identification and complete genome of Seneca Valley virus in vesicular fluid and sera of pigs affected with idiopathic vesicular disease, Brazil[J]. Transboundary Emerging Disease, 2015, 62: 589-593. doi: 10.1111/tbed.12410
[22] CANNING P, CANON A, BATES J L, et al. Neonatal mortality, vesicular lesions and lameness associated with Senecavirus A in a U. S. sow farm[J]. Transboundary and Emerging Disease, 2016, 63(4): 373-378. doi: 10.1111/tbed.12516
[23] ZHANG X L, ZHU Z X, YANG F, et al. Review of Seneca Valley virus: A call for increased surveillance and research[J]. Frontiers in Microbiology, 2018, 9: 940. doi: 10.3389/fmicb.2018.00940.
[24] FERNANDES M H V, MAGGIOLI M F, OTTA J, et al. Senecavirus A 3C protease mediates host cell apoptosis late in infection[J]. Frontiers in Immunology, 2019, 10: 363. doi: 10.3389/fimmu.2019.00363.
[25] LEME R A, OLIVEIRA T E S, ALFIERI A F, et al. Pathological, immunohistochemical and molecular findings associated with Senecavirus A-induced lesions in neonatal piglets[J]. Journal of Comparative Pathology, 2016, 155(2/3): 145-155.
[26] HAUSE B M, MYERS O, DUFF J, et al. Senecavirus A in pigs, United States, 2015[J]. Emerging Infectious Diseases, 2016, 22(7): 1323-1325. doi: 10.3201/eid2207.151591
[27] XU W, HOLE K, GOOLIA M, et al. Genome wide analysis of the evolution of Senecavirus A from swine clinical material and assembly yard environmental samples[J]. PLoS One, 2017, 12(5): e0176964. doi: 10.1371/journal.pone.0176964
[28] WU Q, ZHAO X, BAI Y, et al. The first identification and complete genome of Senecavirus A affecting pig with idiopathic vesicular disease in China[J]. Transboundary and Emerging Disease, 2017, 64(5): 1633-1640. doi: 10.1111/tbed.12557
[29] SAENG-CLUTO K, RODTIAN P, TEMEEYASEN G, et al. The first detection of Senecavirus A in pigs in Thailand, 2016[J]. Transboundary and Emerging Disease, 2018, 65(1): 285-288. doi: 10.1111/tbed.12654
[30] SUN D, VANNUCCI F, KNUTSON T P, et al. Emergence and whole-genome sequence of Senecavirus A in Colombia[J]. Transboundary and Emerging Diseases, 2017, 64(5): 1346-1349. doi: 10.1111/tbed.12669
[31] ARZT J, BERTRAM M R, VU L T, et al. First detection and genome sequence of Senecavirus A in Vietnam[J]. Microbiology Resource Announcements, 2019, 8(3). doi: 10.1128/MRA.01247-18.
[32] SUN Y, CHENG J, WU R T, et al. Phylogenetic and genome analysis of 17 novel Senecavirus A isolates in Guangdong Province, 2017[J]. Frontiers in Veterinary Science, 2018, 5: 314. doi: 10.3389/fvets.2018.00314.
[33] QIAN S, FAN W, QIAN P, et al. Isolation and full-genome sequencing of Seneca Valley virus in piglets from China, 2016[J]. Virology Journal, 2016, 13: 173. doi: 10.1186/s12985-016-0631-2.
[34] ZHU Z, YANG F, CHEN P, et al. Emergence of novel Seneca Valley virus strains in China, 2017[J]. Transboundary and Emerging Diseases, 2017, 64(4): 1024-1029. doi: 10.1111/tbed.12662
[35] WANG H, LI C, ZHAO B, et al. Complete genome sequence and phylogenetic analysis of Senecavirus A isolated in Northeast China in 2016[J]. Archives of Virology, 2017, 162(10): 3173-3176. doi: 10.1007/s00705-017-3480-4
[36] ZHANG J, MIAO J, HOU J, et al. The effects of H3N2 swine influenza virus infection on TLRs and RLRs signaling pathways in porcine alveolar macrophages[J]. Virology Journal, 2015, 12: 61. doi: 10.1186/s12985-015-0284-6.
[37] 谢立兰. 伪狂犬病毒和猪传染性胃肠炎病毒诱导β干扰素产生的分子机制研究[D]. 武汉: 华中农业大学, 2011. [38] ISLAM M A, GROßE-BRINKHAUS C, PRŐLL M J, et al. Deciphering transcriptome profiles of peripheral blood mononuclear cells in response to PRRSV vaccination in pigs[J]. BMC Genomics, 2016, 17: 641. doi: 10.1186/s12864-016-2849-1.
[39] 王荡. 口蹄疫病毒Lpro和3Cpro调控宿主抗病毒天然免疫反应的分子机制研究[D]. 武汉: 华中农业大学, 2011. [40] 王国庆. 口蹄疫病毒2B蛋白拮抗RIG-I抗病毒作用研究[D]. 兰州: 甘肃农业大学, 2015. [41] DERRICK T, ROBERTS C H, RAJASEKHAR M, et al. Conjunctival microRNA expression in inflammatory trachomatous scarring[J]. PLoS Neglected Tropical Diseases, 2013, 7(3): e2117. doi: 10.1371/journal.pntd.0002117
[42] KAUR S, KRISHN S R, RACHAGANI S, et al. Significance of microRNA-based biomarkers for pancreatic cancer[J]. Annals of Translational Medicine, 2015, 3(18): 277.
[43] LIU Y, XU X, XU X, et al. MicroRNA-193a-3p inhibits cell proliferation in prostate cancer by targeting cyclin D1[J]. Oncology Letters, 2017, 14(5): 5121-5128.
[44] MORGUL M H, KLUNK S, ANASTASIADOU Z, et al. Diagnosis of HCC for patients with cirrhosis using miRNA profiles of the tumor-surrounding tissue: A statistical model based on stepwise penalized logistic regression[J]. Experimental and Molecular Pathology, 2016, 101(2): 165-171. doi: 10.1016/j.yexmp.2016.07.014
[45] POIRIER J T, DOBROMILSKAVA I, MORIARTY W F, et al. Selective tropism of Seneca Valley virus for variant subtype small cell lung cancer[J]. Journal of the National Cancer Institute, 2013, 105(14): 1059-1065. doi: 10.1093/jnci/djt130
[46] ZHOU Z H, SUN Y, YAN X L, et al. Swine acute diarrhea syndrome coronavirus (SADS-CoV) antagonizes interferon-β production via blocking IPS-1 and RIG-I[J]. Virus Research, 2020, 278: 197843. doi: 10.1016/j.virusres.2019.197843.
[47] ANDREJEVA J, CHILDS K S, YOUNG D F, et al. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(49): 17264-17269. doi: 10.1073/pnas.0407639101
[48] CAO L, GE X, GAO Y, et al. Porcine epidemic diarrhea virus inhibits dsRNA-induced interferon-beta production in porcine intestinal epithelial cells by blockade of the RIG-I-mediated pathway[J]. Virology Journal, 2015, 12: 127. doi: 10.1186/s12985-015-0345-x.
[49] CHEN Q, LIU Q, LIU D, et al. Molecular cloning, functional characterization and antiviral activity of porcine DDX3X[J]. Biochemical and Biophysical Research Communications, 2014, 443(4): 1169-1175. doi: 10.1016/j.bbrc.2013.12.098
[50] ZHAO X, WU Q, BAI Y, et al. Phylogenetic and genome analysis of seven Senecavirus A isolates in China[J]. Transboundary and Emerging Diseases, 2017, 64(6): 2075-2082. doi: 10.1111/tbed.12619
[51] THOMPSON S R, SARNOW P. Regulation of host cell translation by viruses and effects on cell function[J]. Current Opinion in Microbiology, 2000, 3(4): 366-370. doi: 10.1016/S1369-5274(00)00106-5
[52] QIAN S, FAN W, LIU T, et al. Seneca Valley virus suppresses host type I interferon production by targeting adaptor proteins MAVS, TRIF, and TANK for cleavage[J]. Journal of Virology, 2017, 91(16): e00823-17.
[53] LIU T, LI X, WU M, et al. Seneca Valley virus 2C and 3Cpro induce apoptosis via mitochondrion-mediated intrinsic pathway[J]. Frontiers in Microbiology, 2019, 10: 1202. doi: 10.3389/fmicb.2019.01202.
[54] XUE Q, LIU H, ZHU Z, et al. Seneca Valley Virus 3C protease negatively regulates the type I interferon pathway by acting as a viral deubiquitinase[J]. Antiviral Research, 2018, 160: 183-189. doi: 10.1016/j.antiviral.2018.10.028
-
期刊类型引用(0)
其他类型引用(1)