Regulation effects of microRNA-1285 and its target DDX3X on Senecavirus A infected PK-15 cells
-
摘要:目的
探究MicroRNA-1285(miR-1285)及其靶标DDX3X在猪塞内卡病毒(Senecavirus A,SVA)感染PK-15细胞中的调控作用。
方法利用qRT-PCR、双荧光素酶活性及Western blot等方法研究miR-1285和DDX3X对I型干扰素(IFN-β)分泌及RIG-I信号通路的作用,分析miR-1285及DDX3X对SVA 3C蛋白基因表达的影响。
结果SVA感染PK-15细胞后,miR-1285表达量显著升高,并且miR-1285与DDX3X存在负靶向关系,二者可促进IFN-β转录及蛋白水平的表达。miR-1285通过靶向DDX3X对RIG-I信号通中的MAVS、TRAF3信号分子起调控作用。对于SVA 3C蛋白基因,DDX3X可以显著抑制其转录,并且可以逆转miR-1285所诱导的上调趋势。
结论SVA感染PK-15细胞后,宿主miR-1285及其靶标DDX3X对IFN-β及病毒3C蛋白的表达具有调控作用,研究结果将为明确miRNAs调控SVA感染的分子机制奠定基础,并为SVA的防控和诊断提供新的科学依据。
-
关键词:
- MicroRNA-1285 /
- DDX3X /
- 猪塞内卡病毒 /
- IFN-β /
- RIG-I信号通路
Abstract:ObjectiveTo explore the regulation roles of microRNA-1285 (miR-1285) and its target DDX3X in Senecavirus A (SVA) infected PK-15 cells.
MethodBy qRT-PCR, double luciferase activity and Western blot, the effects of miR-1285 and its target DDX3X on IFN-β secretion and the RIG-I signaling pathway were studied, and their effects on the expression of SVA 3C protein gene were analyzed.
ResultIn SVA infected PK-15 cells, the expression of miR-1285 increased significantly, and there was a negative targeting relationship between miR-1285 and DDX3X. Both miR-1285 and DDX3X promoted the transcription and protein expression of IFN-β. MiR-1285 regulated MAVS and TRAF3 signaling molecules in the RIG-I signaling pathway by targeting DDX3X. For SVA 3C protein, DDX3X significantly inhibited the transcription of 3C and reversed the up-regulation trend induced by miR-1285.
ConclusionAfter infecting PK-15 cells with SVA, host miR-1285 and its target DDX3X can regulate the expression of IFN-β and the viral 3C protein, which will lay a foundation for clarifying the molecular mechanism of miRNAs regulating SVA infection, and provide a new scientific basis for the prevention, control and diagnosis of SVA.
-
Keywords:
- MiRNA-1285 /
- DDX3X /
- Senecavirus A /
- IFN-β /
- RIG-I signal pathway
-
草地贪夜蛾Spodoptera frugiperda为鳞翅目夜蛾科灰翅夜蛾属,该虫源自北美,2019年1月入侵我国云南省,并迅速扩展到全国26个省份[1-3]。作为联合国粮农组织全球预警的跨国界迁飞性重大害虫,草地贪夜蛾具有寄主范围宽、适生区域广、增殖能力强、扩散速度快、突发危害重等特点[4-5]。
与其他鳞翅目昆虫一样,草地贪夜蛾主要在幼虫时期为害。目前草地贪夜蛾雌、雄幼虫为害行为性别差异的研究较少,因为缺乏幼虫性别鉴定的快速简便的手段。与许多鳞翅目昆虫一样,草地贪夜蛾在蛹和成虫时期不再取食,因此幼虫时期的取食量对其化蛹、羽化、产卵、迁飞等行为具有重要影响,不同性别的幼虫取食量存在差异。林玉英等[5]对椰子织蛾Opisina arenosella 1龄幼虫取食量的研究表明,雌虫取食量显著大于雄虫,结合幼虫取食量可作为其龄期的判断依据之一,从而为制定椰子织蛾防控措施奠定基础;同时,大量研究表明,昆虫幼虫在抵抗高温、抗核型多角体病毒等方面有性别差异[6-8],成虫在感光、触角结构等方面也存在显著的性别差异[9],昆虫在取食、感光、抗病等行为上的性别差异研究,可为农业害虫的精准防控提供理论支持。因此,性别鉴定可以作为研究昆虫雌、雄行为差异的一种便捷有效的工具,有助于制定更加精准高效的农业害虫防控治理策略。
目前,草地贪夜蛾的性别主要是通过蛹期和成虫时期的外露生殖器及翅上的斑纹差异进行区分[10-11]。草地贪夜蛾入侵中国后,性信息素诱捕、高空灯诱捕在虫情预测预报中发挥了非常重要的作用。由于缺乏对幼虫形态学有效的判断标准,而田间捕捉的草地贪夜蛾成虫非常活跃,鳞羽容易掉落,给性别鉴定造成了困难,影响了测报结果的准确性。对于鳞羽掉落的草地贪夜蛾样本和未经过性别鉴定的DNA样本,也缺乏有效的性别鉴定手段。因此,根据雌、雄虫性信息素结合蛋白(Pheromone-binding protein, PBP)基因的序列差异,开发简便、准确的功能性分子标记,对鉴定幼虫期乃至成虫期的草地贪夜蛾的性别具有理论和实际应用意义。
1. 材料与方法
1.1 供试材料
草地贪夜蛾为实验室饲养种群,饲养条件参考王世英等[12]方法,温度为(26.0±0.5) ℃;相对湿度为 65%±5%;光周期为16 h光∶8 h暗。
1.2 试验方法
1.2.1 草地贪夜蛾雌、雄虫分子标记引物的设计
通过在线网站( https://pfam.xfam.org)寻找并下载PBP隐马尔科夫模型,使用Bio-Linux软件进行生物信息学分析得到草地贪夜蛾PBP基因家族的氨基酸序列,通过在线网站( http://www.omicsclass.com/article/681)手动确认每个蛋白的结构域,总共筛选得到21个PBP,使用Bio-Linux软件进行生物信息学分析获得对应蛋白的CDS序列等相关信息,所得序列与NCBI上已发表的PBP基因序列进行比对,比对结果为本研究的PBP基因的CDS序列与已发表的4个PBP基因(SfruPBP1、SfruPBP2、SfruPBP3、SfruPBP4)[13]的CDS序列不存在相似性(结果未显示)。对获得的各基因片段进行PCR测序,结果发现Sf-10911基因序列在雌、雄个体中存在较大差异。通过多个已知雌、雄样本检测后,确认该基因为性别差异基因,针对草地贪夜蛾雌、雄虫Sf-10911基因的差异区段设计了3对引物(表1),开发雌、雄性别鉴定的特异标记,引物设计见图1。利用设计合成的引物,对鉴别过已知性别的草地贪夜蛾虫蛹样本进行PCR扩增,筛选得到分子标记。
表 1 引物序列表Table 1. List of primer sequence引物名称1) Primer name 引物序列(5′→3′) Primer sequence Sf-F TAGCCGTGAGTTTGAATAGGGT Sf-female-R-1 CCTGCCAGTGCCTTATTAATTAA Sf-male-R-1 TTTTGGCAGTGCCTTATTGATTA Sf-female-R-2 CTCAGAGGTTTTTGATATGGTTT Sf-male-R-2 TGTATTCTTCTCAGTGCGAAGAC Sf-female-R-3 TTAACAACGCTCCATAATAACCT Sf-male-R-3 TAAGAACCAGTTCTTATAAACAC 1) F、R分别表示正、反向引物
1) F and R respectively represents forward and reverse primers图 1 草地贪夜蛾性别鉴定引物设计深蓝色表示相同的核苷酸序列,浅蓝色表示差异位点,黑点表示缺失位点;Sf-male-R:雄虫基因差异区段;Sf-female-R:雌虫基因差异区段;Sf-F:正向引物;Sf-R:反向引物Figure 1. Primers design for sexual identification of Spodoptera frugiperdaDark blue represents the same nucleotide sequence, light blue represents the differencial sites and black dots represent the missing sites; SF-male-R: Differential gene segment of male; Sf-female-R: Differential gene segment of female; Sf-F: Forward primer; Sf-R: Reverse primer1.2.2 草地贪夜蛾蛹期DNA提取及PCR扩增
根据草地贪夜蛾蛹期雌、雄虫形态差异区分出雌、雄后(图2),利用微量样品基因组DNA 提取试剂盒进行DNA的提取。采用雌、雄特异性引物对提取的DNA样本进行PCR扩增。扩增产物用琼脂糖凝胶电泳检测,筛选分子标记。PCR 扩增的体系为:PrimerSTAR Max 6.25 μL,上游和下游引物(10 μmol/L)各0.5 μL,模板0.5 μL,加 ddH2O至15 μL。PCR 扩增的反应程序为:98 ℃ 预变性2 min;98 ℃变性 10 s,58 ℃退火 30 s,72 ℃延伸 30 s,35 个循环;72 ℃延伸5 min。
图 2 草地贪夜蛾蛹期雌、雄虫腹部末端差异对比a:臀刺;b:肛门;c:第10腹节;d:第9腹节e:半圆形瘤状突起;f:第8腹节;g:产卵孔;h:生殖孔Figure 2. Distinction between abdomen ends of male and female of Spodoptera frugiperda at pupal stagea: Buttocks stab; b: Anus; c: The 10th abdominal segment; d: The 9th abdominal segment; e: Semicircular tumor-like protrusion; f: The 8th abdominal segment; g: Spawning hole; h: Genital hole2. 结果与分析
2.1 草地贪夜蛾性别鉴定引物的开发及筛选
针对草地贪夜蛾雌、雄虫Sf-10911基因的性别差异区段设计了3对引物,开发性别鉴定的特异标记。利用设计合成的3对引物,对已知性别的草地贪夜蛾样本进行PCR扩增,筛选得到分子标记,该分子标记可以扩增出450 bp左右的条带。之后,利用筛选出的分子标记对经过形态鉴定的雌、雄虫样本再次进行PCR扩增。
首先,利用3对标记引物扩增草地贪夜蛾的雌、雄虫DNA样本,所用样本为经过测序鉴定的雌、雄虫DNA样本;图3表明,引物Sf-female-R-1、Sf-male-R-3搭配Sf-F均不能扩增出特异条带;搭配引物Sf-F扩增时,其中雄性样本可以用雄性特异性引物Sf-male-R-2扩增得到特异条带,而雌性样本只有雌性特异性引物Sf-female-R-2可以扩增得到特异条带,与测序结果一致。因此,选择Sf-female-R-2和Sf-male-R-2作为草地贪夜蛾雌、雄虫特异性引物。
2.2 性别分子标记引物对草地贪夜蛾的鉴定
为进一步验证筛选出的标记引物的准确性,对经过形态鉴定的雌、雄虫蛹进行PCR检测(图4)。从图4可以看出,利用雌虫标记引物Sf-female-R-2扩增雌、雄虫DNA样本时,只有雌虫才能扩增出450 bp左右的特异性条带;用雄虫标记引物Sf-male-R-2扩增雌、雄虫DNA样本时,只有雄虫才能扩增出450 bp左右的特异性条带。检测结果与形态鉴定结果一致,说明筛选出的引物适用于草地贪夜蛾的性别鉴定。
图 4 基于PCR扩增对草地贪夜蛾雌、雄虫蛹性别鉴定F1~F5:雌虫蛹DNA;M1~M5:雄虫蛹DNA;a、c:雌虫标记引物对 Sf-F/Sf-female-R-2;b、d:雄虫标记引物对Sf- F/Sf-male-R-2Figure 4. Sex identification of male and female pupae of Spodoptera frugiperdabased on PCR amplificationF1−F5: DNA of female pupae; M1−M5: DNA of male pupae; a and c: Pair of female marker primers of Sf-F/Sf-female-R-2; b and d: Pair of male marker primers of Sf-F/Sf-male-R-23. 讨论与结论
农业害虫的性别鉴定对于害虫的有效防治和农业生产具有重要意义。不同性别的昆虫在虫体形态上往往存在差异,甜菜夜蛾Spodoptera exigua Hübner、桉袋蛾Acanthopsyche subferalbata Hampson以及凤凰木夜蛾Pericyma cruegri在其蛹及成虫时期的形态存在明显的性别差异[14-16],利用这种形态上的差异,研究人员可以快速简便地鉴定雌、雄虫,及时为田间种群动态的监测和预测预报提供数据。
利用雌、雄虫形态差异鉴定性别的方法虽然简单快捷,但却无法对一些不存在性别形态差异或是生长发育早期无形态差异的昆虫进行鉴定。牛宝龙等[17]以棉铃虫Helicoverpa armigera雌、雄虫基因组DNA为模板,筛选了1条雌特异随机扩增多态性DNA(Random amplified polymorphic DNA,RAPD),根据该特异性分子标记的核苷酸序列设计雌性特异引物,并对棉铃虫基因组DNA进行PCR扩增,雌性棉铃虫可以扩增出目的条带,可将此标记用于棉铃虫幼虫乃至胚胎的性别鉴定;王慧超等[18]也早在2004年运用RADP技术对家蚕Bombyx mori Linnaeus上得到的雌特异性片段设计引物并进行了PCR验证。此外,张利娜[19]从外部形态学、血清生化指标建立了鳗鲡Anguilla japonica的性别判定函数,用SRAP分子标记获得F5R2雌性特异DNA序列,根据测序结果设计序列特定扩增区域(Sequence characterized amplified regions,SCAR)特异引物并进行性别鉴定;Masaru等[20]用日本青鳉Oryzias latipes的雄性Y特异性DM结构域基因开发引物鉴定了弓背青鳉Oryzias curvinotus的遗传性别;中国大鲵Andrias davidianus、双须骨舌鱼Osteoglossum bicirrhosum的性别鉴定也利用雌、雄虫基因差异序列开发分子标记引物并进行了有效的验证[21-22]。
PBP在草地贪夜蛾的信息素识别过程中发挥着重要作用,雄虫通过触角感受雌虫性腺释放的性信息素,寻找合适的交配对象。PBP的功能特征决定了其基因序列以及表达模式在雌、雄虫之间必然存在差异,具有明显的性二型性[23]。牛小慧[24]对甜菜夜蛾的不同PBP进行RT-PCR检测发现,PBP在雌、雄虫之间的表达量存在显著差异;刘苏等[13]通过对草地贪夜蛾4个PBP基因的克隆及表达模式分析发现,定位于成虫触角上的SfruPBP1和SfruPBP2蛋白在雄虫中具有更高的表达量。本研究发现草地贪夜蛾雌、雄虫中的PBP基因Sf-10911存在核苷酸序列差异,进而根据该差异设计了针对雌、雄虫扩增的引物对,通过琼脂糖凝胶电泳检测出450 bp左右的特异条带,作为其性别鉴定的分子标记,以期为研究草地贪夜蛾某些性状可能存在的性别差异提供快速有效的手段。
-
图 1 不同SVA感染时间(A)和感染剂量(B)条件下PK-15细胞中miR-1285的表达量
“*”“**”分别表示处理与对照在P < 0.05和P < 0.01水平差异显著(Duncan’s法)
Figure 1. Expression of miR-1285 in PK-15 cells infected by SVA at different infection time (A) and dosages (B)
“*” and “**” represented statistical difference in comparison with control group at P < 0.05 and P < 0.01 levels respectively (Duncan’s method)
图 4 转染miR-1285 mimics、inhibitor至PK-15细胞后DDX3X的mRNA相对表达量
“**”表示处理与对照在P < 0.01水平差异显著 (Duncan’s 法)
Figure 4. The relative expression of DDX3X mRNA after transfection of miR-1285 mimics and inhibitor into PK-15 cells
“**” represented statistical difference in comparison with control group at P < 0.01 level (Duncan’s method)
图 5 转染不同DDX3X重组载体质粒至PK-15细胞后miR-1285双荧光素酶活性
“*”表示处理与对照在P < 0.05水平差异显著 (Duncan’s 法)
Figure 5. The relative dual-luciferase activity of miR-1285 after transfection of different DDX3X recombinant vector plasmids into PK-15 cells
“*” represented statistical difference in comparison with control group at P < 0.05 level (Duncan’s method)
图 6 miR-1285及其靶标DDX3X对IFN-β mRNA表达的调控作用
“*”和“**”分别表示处理与对照在P < 0.05和P < 0.01水平差异显著(Duncan’s法)
Figure 6. Regulation effects of miR-1285 and its target DDX3X on the mRNA expression of IFN-β
“*” and “**” represented statistical difference in comparison with control group at P < 0.05 and P < 0.01 levels respectively (Duncan’s method)
图 9 DDX3X沉默对RIG-I通路信号转导分子的影响
“*”和“**”分别表示处理与对照在P < 0.05和P < 0.01水平差异显著(Duncan’s法)
Figure 9. Effects of DDX3X silencing on signal transduction molecules of the RIG-I pathway
“*” and “**” represented statistical difference in comparison with control group at P < 0.05 and P < 0.01 levels respectively (Duncan’s method)
表 1 基因引物序列
Table 1 Primer sequences of genes
基因名称 Gene name 引物/探针序列(5′→3′) Primer/Probe sequence θ退火/ ℃ Annealing temperature 产物大小/bp Product size 文献 Reference RIG-I F: ATCCCAGCAACGAGAA 60 188 [36] R: GCCACGTCCAGTCAAT MDA5 F: GAGGAATCAGCACGAGGAA 58 73 [37] R: GTCAGTAATCCACTGGGA MAVS F: ATAGCCAGCCTTTCTCGG 60 237 [36] R: TAGCCTCAGTCTTGACCTCTTC TRAF3 F: GTGTCAAGAAGGCATCG 60 164 [36] R: CCTCAAACTGGCAATCA TANK F: GGACGCCTTGAACTACCTGT 60 119 R: GCCTGCCGAAAGGCTTCATA TBK1 F: GCCTTTCTCGGGGTCTTCAA 60 74 R: ACACTTTTCCTGATCCGCCT IRF3 F: CCAGTGGTGCCTACACTCCT 61 191 [38] R: AGAGGTGTCTGGCTCAGGAA IRF7 F: CGCCTCCTGGAAAACCAA 60 76 [37] R: CCCTGAGTTGTCCTGCAACA IFN-β F: GCTAACAAGTGCATCCTCCAAA 60 77 [39] R:AGCACATCATAGCTCATGGAAAGA GAPDH F: ACATGGCCTCCAAGGAGTAAGA 60 106 [40] R: GATCGAGTTGGGGCTGTGACT SVA-3C F: GAGCTTCAATCTCCTAGA 59 115 R: GTGTCATCATTCTCGTTAG 探针 Probe CAGACATTCGAGCCAAGCAACAA 69 -
[1] YATES L A, NORBURY C J, GIBERT R J C. The long and short of microRNA[J]. Cell, 2013, 153(3): 516-519. doi: 10.1016/j.cell.2013.04.003
[2] CHENG J, WU R, LONG L, et al. MiRNA-451a targets IFN regulatory factor 8 for the progression of systemic lupus erythematosus[J]. Inflammation, 2017, 40(2): 676-687. doi: 10.1007/s10753-017-0514-8
[3] WANG L, ZHOU L, HU D, et al. Porcine reproductive and respiratory syndrome virus suppresses post-transcriptionally the protein expression of IFN-β by upregulating cellular microRNAs in porcine alveolar macrophages in vitro[J]. Experimental and Therapeutic Medicine, 2018, 15(1): 115-126.
[4] MORIN R D, O’CONNOR M D, GRIFFITH M, et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells[J]. Genome Research, 2008, 18(4): 610-621. doi: 10.1101/gr.7179508
[5] ANTHON C, TAFER H, HAVGAARD J H, et al. Structured RNAs and synteny regions in the pig genome[J]. BMC Genomics, 2014, 15: 459. doi: 10.1186/1471-2164-15-459.
[6] GAO X, WANG Y, ZHAO H, et al. Plasma miR-324-3p and miR-1285 as diagnostic and prognostic biomarkers for early stage lung squamous cell carcinoma[J]. Oncotarget, 2016, 7(37): 59664-59675. doi: 10.18632/oncotarget.11198
[7] BORRELLI N, DENARO M, UGOLINI C, et al. MiRNA expression profiling of ‘noninvasive follicular thyroid neoplasms with papillary-like nuclear features’ compared with adenomas and infiltrative follicular variants of papillary thyroid carcinomas[J]. Modern Pathology, 2017, 30(1): 39-51. doi: 10.1038/modpathol.2016.157
[8] LIU J, YAN J, ZHOU C, et al. MiR-1285-3p acts as a potential tumor suppressor miRNA via down regulating JUN expression in hepatocellular carcinoma[J]. Tumor Biology, 2015, 36: 219-225. doi: 10.1007/s13277-014-2622-5
[9] HUANG H, XIONG G, SHEN P, et al. MicroRNA-1285 inhibits malignant biological behaviors of human pancreatic cancer cells by negative regulation of YAP1[J]. Neoplasma, 2017, 64(3): 358-366. doi: 10.4149/neo_2017_306
[10] LIAO J, LI Q, HU Z, et al. Mitochondrial miR-1285 regulates copper-induced mitochondrial dysfunction and mitophagy by impairing IDH2 in pig jejunal epithelial cells[J]. Journal of Hazardous Materials, 2022, 422: 126899. doi: 10.1016/j.jhazmat.2021.126899.
[11] VENKATARAMANNAN S, GADEK M, CALVIELLO L, et al. DDX3X and DDX3Y are redundant in protein synthesis[J]. RNA, 2021, 27(12): 1577-1588. doi: 10.1261/rna.078926.121
[12] VAN VOSS M R H, KAMMERS K, VESUNA F, et al. Global effects of DDX3 inhibition on cell cycle regulation identified by a combined phosphoproteomics and single cell tracking approach[J]. Translational Oncology, 2018, 11(3): 755-763. doi: 10.1016/j.tranon.2018.04.001
[13] HEATON S M, BORG N A, DIXIT V M. Ubiquitin in the activation and attenuation of innate antiviral immunity[J]. Journal of Experimental Medicine, 2016, 213(1): 1-13. doi: 10.1084/jem.20151531
[14] HATHAICHOTI S, VISITNONTHACHAI D, NGAMSIRI P, et al. Paraquat induces extrinsic pathway of apoptosis in A549 cells by induction of DR5 and repression of anti-apoptotic proteins, DDX3 and GSK3 expression[J]. Toxicology in Vitro, 2017, 42: 123-129. doi: 10.1016/j.tiv.2017.04.016
[15] LIN T C. DDX3X multifunctionally modulates tumor progression and serves as a prognostic indicator to predict cancer outcomes[J]. International Journal of Molecular Sciences, 2019, 21(1): 281. doi: 10.3390/ijms21010281.
[16] SOULAT D, BŰRCKSTŰMMER T, WESTERMAYER S, et al. The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response[J]. EMBO Journal, 2008, 27(15): 2135-2146. doi: 10.1038/emboj.2008.126
[17] SCHRŐDER M, BARAN M, BOWIE A G. Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKepsilon-mediated IRF activation[J]. EMBO Journal, 2008, 27(15): 2147-2157. doi: 10.1038/emboj.2008.143
[18] OSHIUMI H, SAKAI K, MATSUMOT M, et al. DEAD/H BOX 3 (DDX3) helicase binds the RIG-I adaptor IPS-1 to up-regulate IFN-β-inducing potential[J]. European Journal of Immunology, 2010, 40(4): 940-948. doi: 10.1002/eji.200940203
[19] SZAPPANOS D, TSCHISMAROV R, PERLOT T, et al. The RNA helicase DDX3X is an essential mediator of innate antimicrobial immunity[J]. PLoS Pathogens, 2018, 14(11): e1007397. doi: 10.1371/journal.ppat.1007397
[20] ADAMS M J, LEFKOWITZ E J, KING A M Q, et al. Ratification vote on taxonomic proposals to the international committee on taxonomy of viruses[J]. Archives of Virology, 2016, 161(10): 2921-2949. doi: 10.1007/s00705-016-2977-6
[21] VANNUCCI F A, LINHARES D C L, BARCELLOS D E S N, et al. Identification and complete genome of Seneca Valley virus in vesicular fluid and sera of pigs affected with idiopathic vesicular disease, Brazil[J]. Transboundary Emerging Disease, 2015, 62: 589-593. doi: 10.1111/tbed.12410
[22] CANNING P, CANON A, BATES J L, et al. Neonatal mortality, vesicular lesions and lameness associated with Senecavirus A in a U. S. sow farm[J]. Transboundary and Emerging Disease, 2016, 63(4): 373-378. doi: 10.1111/tbed.12516
[23] ZHANG X L, ZHU Z X, YANG F, et al. Review of Seneca Valley virus: A call for increased surveillance and research[J]. Frontiers in Microbiology, 2018, 9: 940. doi: 10.3389/fmicb.2018.00940.
[24] FERNANDES M H V, MAGGIOLI M F, OTTA J, et al. Senecavirus A 3C protease mediates host cell apoptosis late in infection[J]. Frontiers in Immunology, 2019, 10: 363. doi: 10.3389/fimmu.2019.00363.
[25] LEME R A, OLIVEIRA T E S, ALFIERI A F, et al. Pathological, immunohistochemical and molecular findings associated with Senecavirus A-induced lesions in neonatal piglets[J]. Journal of Comparative Pathology, 2016, 155(2/3): 145-155.
[26] HAUSE B M, MYERS O, DUFF J, et al. Senecavirus A in pigs, United States, 2015[J]. Emerging Infectious Diseases, 2016, 22(7): 1323-1325. doi: 10.3201/eid2207.151591
[27] XU W, HOLE K, GOOLIA M, et al. Genome wide analysis of the evolution of Senecavirus A from swine clinical material and assembly yard environmental samples[J]. PLoS One, 2017, 12(5): e0176964. doi: 10.1371/journal.pone.0176964
[28] WU Q, ZHAO X, BAI Y, et al. The first identification and complete genome of Senecavirus A affecting pig with idiopathic vesicular disease in China[J]. Transboundary and Emerging Disease, 2017, 64(5): 1633-1640. doi: 10.1111/tbed.12557
[29] SAENG-CLUTO K, RODTIAN P, TEMEEYASEN G, et al. The first detection of Senecavirus A in pigs in Thailand, 2016[J]. Transboundary and Emerging Disease, 2018, 65(1): 285-288. doi: 10.1111/tbed.12654
[30] SUN D, VANNUCCI F, KNUTSON T P, et al. Emergence and whole-genome sequence of Senecavirus A in Colombia[J]. Transboundary and Emerging Diseases, 2017, 64(5): 1346-1349. doi: 10.1111/tbed.12669
[31] ARZT J, BERTRAM M R, VU L T, et al. First detection and genome sequence of Senecavirus A in Vietnam[J]. Microbiology Resource Announcements, 2019, 8(3). doi: 10.1128/MRA.01247-18.
[32] SUN Y, CHENG J, WU R T, et al. Phylogenetic and genome analysis of 17 novel Senecavirus A isolates in Guangdong Province, 2017[J]. Frontiers in Veterinary Science, 2018, 5: 314. doi: 10.3389/fvets.2018.00314.
[33] QIAN S, FAN W, QIAN P, et al. Isolation and full-genome sequencing of Seneca Valley virus in piglets from China, 2016[J]. Virology Journal, 2016, 13: 173. doi: 10.1186/s12985-016-0631-2.
[34] ZHU Z, YANG F, CHEN P, et al. Emergence of novel Seneca Valley virus strains in China, 2017[J]. Transboundary and Emerging Diseases, 2017, 64(4): 1024-1029. doi: 10.1111/tbed.12662
[35] WANG H, LI C, ZHAO B, et al. Complete genome sequence and phylogenetic analysis of Senecavirus A isolated in Northeast China in 2016[J]. Archives of Virology, 2017, 162(10): 3173-3176. doi: 10.1007/s00705-017-3480-4
[36] ZHANG J, MIAO J, HOU J, et al. The effects of H3N2 swine influenza virus infection on TLRs and RLRs signaling pathways in porcine alveolar macrophages[J]. Virology Journal, 2015, 12: 61. doi: 10.1186/s12985-015-0284-6.
[37] 谢立兰. 伪狂犬病毒和猪传染性胃肠炎病毒诱导β干扰素产生的分子机制研究[D]. 武汉: 华中农业大学, 2011. [38] ISLAM M A, GROßE-BRINKHAUS C, PRŐLL M J, et al. Deciphering transcriptome profiles of peripheral blood mononuclear cells in response to PRRSV vaccination in pigs[J]. BMC Genomics, 2016, 17: 641. doi: 10.1186/s12864-016-2849-1.
[39] 王荡. 口蹄疫病毒Lpro和3Cpro调控宿主抗病毒天然免疫反应的分子机制研究[D]. 武汉: 华中农业大学, 2011. [40] 王国庆. 口蹄疫病毒2B蛋白拮抗RIG-I抗病毒作用研究[D]. 兰州: 甘肃农业大学, 2015. [41] DERRICK T, ROBERTS C H, RAJASEKHAR M, et al. Conjunctival microRNA expression in inflammatory trachomatous scarring[J]. PLoS Neglected Tropical Diseases, 2013, 7(3): e2117. doi: 10.1371/journal.pntd.0002117
[42] KAUR S, KRISHN S R, RACHAGANI S, et al. Significance of microRNA-based biomarkers for pancreatic cancer[J]. Annals of Translational Medicine, 2015, 3(18): 277.
[43] LIU Y, XU X, XU X, et al. MicroRNA-193a-3p inhibits cell proliferation in prostate cancer by targeting cyclin D1[J]. Oncology Letters, 2017, 14(5): 5121-5128.
[44] MORGUL M H, KLUNK S, ANASTASIADOU Z, et al. Diagnosis of HCC for patients with cirrhosis using miRNA profiles of the tumor-surrounding tissue: A statistical model based on stepwise penalized logistic regression[J]. Experimental and Molecular Pathology, 2016, 101(2): 165-171. doi: 10.1016/j.yexmp.2016.07.014
[45] POIRIER J T, DOBROMILSKAVA I, MORIARTY W F, et al. Selective tropism of Seneca Valley virus for variant subtype small cell lung cancer[J]. Journal of the National Cancer Institute, 2013, 105(14): 1059-1065. doi: 10.1093/jnci/djt130
[46] ZHOU Z H, SUN Y, YAN X L, et al. Swine acute diarrhea syndrome coronavirus (SADS-CoV) antagonizes interferon-β production via blocking IPS-1 and RIG-I[J]. Virus Research, 2020, 278: 197843. doi: 10.1016/j.virusres.2019.197843.
[47] ANDREJEVA J, CHILDS K S, YOUNG D F, et al. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(49): 17264-17269. doi: 10.1073/pnas.0407639101
[48] CAO L, GE X, GAO Y, et al. Porcine epidemic diarrhea virus inhibits dsRNA-induced interferon-beta production in porcine intestinal epithelial cells by blockade of the RIG-I-mediated pathway[J]. Virology Journal, 2015, 12: 127. doi: 10.1186/s12985-015-0345-x.
[49] CHEN Q, LIU Q, LIU D, et al. Molecular cloning, functional characterization and antiviral activity of porcine DDX3X[J]. Biochemical and Biophysical Research Communications, 2014, 443(4): 1169-1175. doi: 10.1016/j.bbrc.2013.12.098
[50] ZHAO X, WU Q, BAI Y, et al. Phylogenetic and genome analysis of seven Senecavirus A isolates in China[J]. Transboundary and Emerging Diseases, 2017, 64(6): 2075-2082. doi: 10.1111/tbed.12619
[51] THOMPSON S R, SARNOW P. Regulation of host cell translation by viruses and effects on cell function[J]. Current Opinion in Microbiology, 2000, 3(4): 366-370. doi: 10.1016/S1369-5274(00)00106-5
[52] QIAN S, FAN W, LIU T, et al. Seneca Valley virus suppresses host type I interferon production by targeting adaptor proteins MAVS, TRIF, and TANK for cleavage[J]. Journal of Virology, 2017, 91(16): e00823-17.
[53] LIU T, LI X, WU M, et al. Seneca Valley virus 2C and 3Cpro induce apoptosis via mitochondrion-mediated intrinsic pathway[J]. Frontiers in Microbiology, 2019, 10: 1202. doi: 10.3389/fmicb.2019.01202.
[54] XUE Q, LIU H, ZHU Z, et al. Seneca Valley Virus 3C protease negatively regulates the type I interferon pathway by acting as a viral deubiquitinase[J]. Antiviral Research, 2018, 160: 183-189. doi: 10.1016/j.antiviral.2018.10.028
-
期刊类型引用(21)
1. 贺青,张静月,顾臻,汪建谊,赵文荣. 基于改进蚁群算法的变电站巡检机器人路径规划. 机械设计与研究. 2025(01): 282-287+292 . 百度学术
2. 孙柱,吕宪勇,孙凯信,李佩霏,齐琪琪. 基于Dubins曲线的轮式机旋耕作业CCPP算法. 农业装备与车辆工程. 2024(05): 9-13 . 百度学术
3. 孟浩德,吴征天,吴闻笛,施坤. 基于记忆模拟退火算法的扫地机器人遍历路径规划. 计算机与数字工程. 2024(03): 821-826+857 . 百度学术
4. 李文峰,徐蕾,杨琳琳,刘文荣,潘坤,李超. 基于改进蚁群算法的农业机器人多田块路径规划方法与试验. 南京农业大学学报. 2024(04): 823-834 . 百度学术
5. 王新彦,盛冠杰,张凯,易政洋. 基于改进A~*算法和DFS算法的割草机器人遍历路径规划. 中国农机化学报. 2023(02): 142-147 . 百度学术
6. 潘富强,曾成,马国红,刘继忠. 一种融合改进A*算法与改进动态窗口法的AGV路径规划. 传感技术学报. 2023(01): 68-77 . 百度学术
7. 沈跃,刘子涵,刘慧,杜伟. 基于多约束条件的果园喷雾机器人路径规划方法. 农业机械学报. 2023(07): 56-67 . 百度学术
8. 董雅文,杨静雯,刘文慧,张宝锋. 基于改进A~*算法的机器人全覆盖衔接路径规划. 传感器与微系统. 2023(09): 125-128 . 百度学术
9. 贺平,张德晖,侯志涛,洪夏明,李盼春,虞洋. 智能割草机路径规划研究现状. 福建农机. 2023(03): 36-40 . 百度学术
10. 周龙港,刘婷,卢劲竹. 基于Floyd和改进遗传算法的丘陵地区农田遍历路径规划. 智慧农业(中英文). 2023(04): 45-57 . 百度学术
11. 姜光,姜久超,李爱宁,李岩,常硕. 基于PLC的农业机器人电气控制系统设计. 农机化研究. 2022(02): 219-223 . 百度学术
12. 田茹,曹茂永,马凤英,纪鹏. 基于改进A*算法的农用无人机路径规划. 现代电子技术. 2022(04): 182-186 . 百度学术
13. 龙洋,苏义鑫,廉城,张丹红. 混合细菌觅食算法求解无人艇路径规划问题. 华中科技大学学报(自然科学版). 2022(03): 68-73 . 百度学术
14. 陈凯,解印山,李彦明,刘成良,莫锦秋. 多约束情形下的农机全覆盖路径规划方法. 农业机械学报. 2022(05): 17-26+43 . 百度学术
15. 王宁,韩雨晓,王雅萱,王天海,张漫,李寒. 农业机器人全覆盖作业规划研究进展. 农业机械学报. 2022(S1): 1-19 . 百度学术
16. 刘胜,张豪,晏齐忠,张志鑫,申永鹏. 基于ACO-SA算法的变电站巡检机器人路径规划. 南方电网技术. 2022(09): 75-82 . 百度学术
17. 宫金良,王伟,张彦斐,兰玉彬. 基于农田环境的农业机器人群协同作业策略. 农业工程学报. 2021(02): 11-19 . 百度学术
18. 黄月琴,罗兵,邓辅秦,李伟科,杨勇. 智能扫地机器人的全覆盖路径规划. 五邑大学学报(自然科学版). 2021(02): 51-58 . 百度学术
19. 董雅文,杨静雯,刘文慧,张宝锋. 基于BSO-GA算法的机器人子区域覆盖路径规划. 轻工机械. 2021(06): 57-64 . 百度学术
20. 武义,欧明敏,段立伟. 基于改进A~*算法和动态窗口法的机器人路径规划研究. 工业控制计算机. 2020(10): 67-70 . 百度学术
21. 刘洋成,耿端阳,兰玉彬,谭德蕾,牟孝栋,孙延成. 基于自动导航的农业装备全覆盖路径规划研究进展. 中国农机化学报. 2020(11): 185-192 . 百度学术
其他类型引用(22)