Parameters calibration of discrete element simulation for fresh lotus seeds
-
摘要:目的
确定鲜莲籽机械化加工过程中离散元仿真模型参数,为鲜莲籽机械化加工仿真试验提供数据参考。
方法本研究利用EDEM仿真软件开展鲜莲籽离散元仿真参数标定。以产自湖北洪湖的‘太空莲36号’为试验对象,通过落种试验测定鲜莲籽实际落种的堆积角和休止角。基于Hertz-Mindlin (no slip)接触模型进行鲜莲籽落种仿真试验,以鲜莲籽堆积角和休止角的实测值与仿真值之间的误差为试验指标,通过Plackett-Burman试验确定对堆积角和休止角影响显著的接触参数,通过最陡爬坡试验确定鲜莲籽离散元模型最优接触参数组合。采用料斗进行实际落种验证试验,以莲籽落种速率为试验指标,对比实际与仿真落种验证试验莲籽落种速率,验证最优参数组合可靠性。
结果莲籽间静摩擦系数、莲籽间滚动摩擦系数对堆积角影响极显著(P<0.01);莲籽间滚动摩擦系数对休止角影响极显著(P<0.01),莲籽间静摩擦系数、莲籽−有机玻璃静摩擦系数对休止角影响显著(P<0.05)。最优接触参数组合为莲籽间静摩擦系数0.4、莲籽间滚动摩擦系数0.02、莲籽−有机玻璃静摩擦系数0.4。落料验证试验结果表明,实际试验与仿真试验的鲜莲籽落种速率最大相对误差不超过3.65%。
结论标定的鲜莲籽离散元仿真模型接触参数准确可靠,研究结果可为莲籽加工机械的结构优化设计提供数据参考。
Abstract:ObjectiveTo determine the parameters of discrete element simulation model in the mechanized processing of fresh lotus seeds, and provide data references for the mechanized processing simulation test of fresh lotus seeds.
MethodThe calibration of discrete element simulation parameters of fresh lotus seeds was carried out by EDEM simulation software. The accumulation angle and repose angle of the actual fresh lotus seeds were measured by seed drop test with ‘Space lotus 36’ from Honghu, Hubei. Based on the Hertz-Mindlin (no slip) contact model, a simulation test of fresh lotus seed drop was conducted, and the error between the measured and simulated values of fresh lotus seed accumulation angle and repose angle was used as the test index to determine the contact parameters with significant effects on accumulation angle and repose angle through the Plackett-Burman test. The steepest climb test was conducted to determine the optimal contact parameter combinations in discrete element model for fresh lotus seeds. The actual seed drop verification test was carried out using the hopper with seed drop rate as the test index. The seed drop rates in actual and simulated seed drop verification tests were compared to verify the reliability of the optimal parameter combination.
ResultThe effects of static friction coefficient between lotus seeds and rolling friction coefficient between lotus seeds on the accumulation angle were highly significant (P<0.01); The effects of rolling friction coefficient between lotus seeds on the repose angle were highly significant (P<0.01), and the effects of static friction coefficient between lotus seeds and static friction coefficient between lotus seeds and plexiglass on the repose angle were significant (P<0.05). The optimal combination of contact parameters was 0.4 for static friction coefficient between lotus seeds, 0.02 for rolling friction coefficient between lotus seeds, and 0.4 for static friction coefficient between lotus seeds and plexiglass. The results of the drop verification test showed that the maximum relative error of fresh lotus seed drop rate between the actual test and the simulation test was not exceeding 3.65%.
ConclusionThe contact parameters of the calibrated discrete element simulation model for fresh lotus seeds are accurate and reliable, and the findings can provide data references for the structural design optimization of lotus seed processing machinery.
-
Keywords:
- Fresh lotus seed /
- EDEM /
- Accumulation angle /
- Repose angle /
- Parameter calibration
-
-
图 2 实际落种试验
1:台架,2:种箱,3:鲜莲籽,4:挡板,5:落种盘,a1:台架长度,a2:种箱长度,a3:落种盘直径,a4:挡板长度,b1:台架宽度,b2:种箱宽度、挡板宽度,h1:台架高度,h2:种箱高度,h3:落种盘高度,h4:挡板到落种盘底面的距离,θ:休止角,φ:堆积角
Figure 2. Actual drop test
1: Bench, 2: Seed box, 3: Fresh lotus seeds, 4: Baffle, 5: Seed drop tray, a1: Length of benchtop, a2: Length of seed box, a3: Diameter of seed drop tray, a4: Length of bench, b1: Width of bench, b2: Width of seed box and baffle, h1: Height of bench, h2: Height of seed box, h3: Height of seed drop tray, h4: Distance from baffle to bottom of seed drop tray, θ: Repose angle, φ: Accumulation angle
表 1 鲜莲籽实际落种试验堆积角和休止角测量结果
Table 1 Measurement results of accumulation angle and repose angle of fresh lotus seeds in actual seed drop test
(°) 试验编号 Test No. 堆积角 Accumulation angle 休止角 Repose angle 1 2 3 4 1 2 1 31.47 28.97 29.96 26.50 38.73 35.42 2 29.70 28.22 26.27 29.62 31.78 37.98 3 27.91 31.49 23.97 33.84 32.98 36.84 4 30.26 35.43 29.42 29.36 36.66 33.09 5 28.52 24.97 32.76 33.83 33.25 36.99 6 34.32 27.34 27.56 28.50 38.39 37.86 7 32.89 29.84 29.43 32.89 36.23 34.54 8 32.92 33.37 32.34 29.62 33.29 37.03 9 31.90 32.54 26.32 30.14 41.89 35.59 10 31.85 31.44 27.03 33.19 34.37 36.00 平均值 Average value 30.20 35.95 表 2 Plackett-Burman试验设计与结果1)
Table 2 Design and results of Plackett-Burman test scheme
试验编号 Test No. x1 x2 x3 x4 x5 x6 堆积角/(°) Accumulation angle 休止角/(°) Repose angle 1 0.5 0.3 0.10 0.5 0.3 0.01 32.24 35.10 2 0.1 0.9 0.01 0.1 0.9 0.10 35.78 36.03 3 0.5 0.9 0.10 0.5 0.9 0.10 44.56 50.07 4 0.5 0.9 0.10 0.1 0.9 0.01 47.02 49.41 5 0.5 0.3 0.01 0.1 0.9 0.01 25.04 27.62 6 0.5 0.3 0.10 0.1 0.3 0.10 34.48 35.01 7 0.5 0.9 0.01 0.5 0.3 0.01 31.39 22.80 8 0.5 0.9 0.01 0.1 0.3 0.10 32.66 29.52 9 0.1 0.9 0.01 0.5 0.9 0.01 28.58 32.92 10 0.5 0.3 0.01 0.5 0.9 0.10 24.02 32.17 11 0.1 0.3 0.01 0.5 0.3 0.10 25.53 27.68 12 0.1 0.3 0.10 0.5 0.9 0.01 39.48 40.63 13 0.1 0.3 0.10 0.1 0.9 0.10 37.71 38.43 14 0.1 0.9 0.10 0.5 0.3 0.10 44.42 40.10 15 0.1 0.9 0.10 0.1 0.3 0.01 46.27 44.42 16 0.1 0.3 0.01 0.1 0.3 0.01 30.09 28.64 1)x1:莲籽间碰撞恢复系数,x2:莲籽间静摩擦系数,x3:莲籽间滚动摩擦系数,x4:莲籽−有机玻璃碰撞恢复系数,x5:莲籽−有机玻璃静摩擦系数,x6:莲籽−有机玻璃动摩擦系数 1)x1: Coefficient of collision recovery between lotus seeds, x2: Coefficient of static friction between lotus seeds, x3: Coefficient of rolling friction between lotus seeds, x4: Coefficient of collision recovery between lotus seeds and plexiglass, x5: Coefficient of static friction between lotus seeds and plexiglass, x6: Coefficient of dynamic friction between lotus seeds and plexiglass 表 3 Plackett-Burman 试验参数显著性分析1)
Table 3 Significance analysis of Plackett-Burman test parameters
方差来源 Source of variance 自由度 Degree of freedom 均方和 Sum of square F P 堆积角 Accumulation angle 模型 Model 6 137.22 21.49 <0.000 1** x1 1 16.91 2.65 0.138 0 x2 1 240.95 37.74 0.000 2** x3 1 541.61 84.84 <0.000 1** x4 1 22.16 3.47 0.095 3 x5 1 1.63 0.26 0.625 3 x6 1 0.06 0.01 0.927 2 残差 Residual 9 6.38 总和 Total 15 休止角 Repose angle 模型 Model 6 134.13 9.90 0.001 6** x1 1 3.20 0.24 0.638 9 x2 1 99.95 7.37 0.023 8* x3 1 573.48 42.31 0.000 1** x4 1 3.62 0.27 0.617 8 x5 1 121.06 8.93 0.015 2* x6 1 3.49 0.26 0.624 2 残差 Residual 9 13.55 总和 Total 15 1)x1:莲籽间碰撞恢复系数,x2:莲籽间静摩擦系数,x3:莲籽间滚动摩擦系数,x4:莲籽−有机玻璃碰撞恢复系数,x5:莲籽−有机玻璃静摩擦系数,x6:莲籽−有机玻璃动摩擦系数;“*”和“**”分别表示在P<0.05和P<0.01水平差异显著(F检验) 1) x1: Coefficient of collision recovery between lotus seeds, x2: Coefficient of static friction between lotus seeds, x3: Coefficient of rolling friction between lotus seeds, x4: Coefficient of collision recovery between lotus seeds and plexiglass, x5: Coefficient of static friction between lotus seeds and plexiglass, x6: Coefficient of dynamic friction between lotus seeds and plexiglass; “*” and “**” indicate significant differences at P<0.05 andP<0.01 levels, respectively (F test) 表 4 最陡爬坡试验I设计方案及相对误差1)
Table 4 Steepest climb test I design scheme and relative error
试验编号 Test No. x2 x3 x5 堆积角/% Accumulation angle 休止角/% Repose angle 1 0.3 0.010 0.3 11.51 6.68 2 0.4 0.025 0.4 9.79 6.27 3 0.5 0.040 0.5 13.39 18.62 4 0.6 0.055 0.6 24.29 29.31 5 0.7 0.070 0.7 31.54 38.57 6 0.8 0.085 0.8 38.73 41.71 7 0.9 0.100 0.9 43.89 46.34 1)x2:莲籽间静摩擦系数,x3:莲籽间滚动摩擦系数,x5:莲籽−有机玻璃静摩擦系数 1) x2: Coefficient of static friction between lotus seeds, x3: Coefficient of rolling friction between lotus seeds, x5: Coefficient of static friction between lotus seeds and plexiglass 表 5 最陡爬坡试验II设计方案及相对误差1)
Table 5 Design scheme and relative error of steepest climb test II
试验编号 Test No. x2 x3 x5 堆积角/% Accumulation angle 休止角/% Repose angle 1 0.30 0.01 0.30 12.43 13.49 2 0.35 0.02 0.35 7.07 8.27 3 0.40 0.02 0.40 3.66 1.83 4 0.45 0.03 0.45 4.48 8.49 5 0.50 0.03 0.50 10.38 12.53 1) x2:莲籽间静摩擦系数,x3:莲籽间滚动摩擦系数,x5:莲籽−有机玻璃静摩擦系数 1) x2: Coefficient of static friction between lotus seeds, x3: Coefficient of rolling friction between lotus seeds, x5: Coefficient of static friction between lotus seeds and plexiglass 表 6 料斗排种试验实测值与仿真值误差表
Table 6 Error table of measurement value and simulation value in hopper seeding test
试验 Test 试验编号 Test No. 斜率/排种速率(v)/(kg·s−1) Slope/seed discharge rate 截距/莲籽总质量(m0)/kg Intercept/total mass of lotus seeds R2 相对误差/% Relative Error v m0 仿真 Simulated 1.672 10.167 0.999 9 实测 Actual 1 1.634 10.098 0.999 4 2.30 0.68 2 1.659 10.174 0.999 1 0.75 0.07 3 1.670 10.063 0.999 3 0.12 1.02 4 1.636 10.027 0.999 4 2.18 0.39 5 1.652 10.169 0.999 1 1.17 0.02 6 1.643 10.209 0.999 2 1.73 0.41 7 1.663 10.068 0.998 6 0.52 0.97 8 1.632 10.199 0.999 3 2.40 0.31 9 1.611 10.019 0.999 3 3.65 1.46 10 1.642 9.982 0.999 4 1.81 1.82 -
[1] 郑宝东, 郑金贵, 曾绍校. 我国主要莲子品种中三种功效成分的研究[J]. 营养学报, 2004, 26(2): 158-160. doi: 10.3321/j.issn:0512-7955.2004.02.021 [2] 郑宝东. 莲子科学与工程[M]. 北京: 科学出版社, 2010: 21-47. [3] ZHANG Y, ZENG H L, WANG Y, et al. Structural characteristics and crystalline properties of lotus seed resistant starch and its prebiotic effects[J]. Food chemistry, 2014, 155: 311-318. doi: 10.1016/j.foodchem.2014.01.036
[4] BHAT R, SRIDHAR K R. Nutritional quality evaluation of electron beam-irradiated lotus (Nelumbo nucifera) seeds[J]. Food Chemistry, 2008, 107(1): 174-184. doi: 10.1016/j.foodchem.2007.08.002
[5] 侯群喜, 曾荣, 张国忠, 等. 不同成熟度莲籽力学特性试验[J]. 华中农业大学学报, 2020, 39(5): 159-166. doi: 10.13300/j.cnki.hnlkxb.2020.05.022 [6] 马秋成, 郭耿君, 马婕, 等. 莲仁力学特性参数测定及挤压破碎特性试验[J]. 农业工程学报, 2018, 34(6): 263-271. doi: 10.11975/j.issn.1002-6819.2018.06.033 [7] 谢丽娟. 莲子破裂最佳位置的有限元模拟及试验研究[D]. 武汉: 华中农业大学, 2005. [8] 谢丽娟, 宗力. 莲子受力有限元分析[J]. 农业机械学报, 2006, 37(6): 94-97. doi: 10.3969/j.issn.1000-1298.2006.06.024 [9] 徐谐庆, 饶洪辉, 李涛, 等. 全自动莲子剥壳去皮机的设计与试验[J]. 农业工程学报, 2014, 30(13): 28-34. doi: 10.3969/j.issn.1002-6819.2014.13.004 [10] 梁诗华, 林毅鑫, 范泽泽, 等. 鲜莲剥壳技术研究进展与探讨[J]. 湖北农业科学, 2017, 56(4): 603-607. doi: 10.14088/j.cnki.issn0439-8114.2017.04.002 [11] 廖宜涛, 廖庆喜, 周宇, 等. 饲料油菜薹期收获茎秆破碎离散元仿真参数标定[J]. 农业机械学报, 2020, 51(6): 73-82. doi: 10.6041/j.issn.1000-1298.2020.06.008 [12] 马文鹏, 尤泳, 王德成, 等. 基于RSM和NSGA-Ⅱ的苜蓿种子离散元模型参数标定[J]. 农业机械学报, 2020, 51(8): 136-144. doi: 10.6041/j.issn.1000-1298.2020.08.015 [13] UCGUL M, FIELKE J M, SAUNDERS C. Three-dimensional discrete element modelling of tillage: Determination of a suitable contact model and parameters for a cohesionless soil[J]. Biosystems Engineering, 2014, 121: 105-117. doi: 10.1016/j.biosystemseng.2014.02.005
[14] 彭才望, 许道军, 贺喜, 等. 黑水虻处理的猪粪有机肥离散元仿真模型参数标定[J]. 农业工程学报, 2020, 36(17): 212-218. doi: 10.11975/j.issn.1002-6819.2020.17.025 [15] 郭访全, 钟艳. 太空莲36号高产栽培技术[J]. 农家致富顾问, 2016(8): 4. doi: 10.3969/j.issn.1003-9902.2016.08.004 [16] 张刘炜, 王海滨, 郭艳玲, 等. 基于响应面法的蓝莓离散元参数标定[J]. 沈阳农业大学学报, 2020, 51(5): 540-548. [17] 马秋成, 卢安舸, 高连兴, 等. 莲子物料空气动力学特性与壳仁分离装置试验[J]. 农业工程学报, 2015, 31(6): 297-303. [18] 马秋成, 雷林韬, 卢安舸, 等. 基于CFD-DEM耦合法的莲子壳仁分离装置优化与试验分析[J]. 食品与机械, 2016, 32(12): 87-91. doi: 10.13652/j.issn.1003-5788.2016.12.019 [19] 刘文政, 何进, 李洪文, 等. 基于离散元的微型马铃薯仿真参数标定[J]. 农业机械学报, 2018, 49(5): 125-135. doi: 10.6041/j.issn.1000-1298.2018.05.014 [20] 侯群喜. 小型鲜食莲籽剥壳通芯一体机设计及剥壳性能试验研究[D]. 武汉: 华中农业大学, 2021. [21] 侯占峰, 戴念祖, 陈智, 等. 冰草种子物性参数测定与离散元仿真参数标定[J]. 农业工程学报, 2020, 36(24): 46-54. doi: 10.11975/j.issn.1002-6819.2020.24.006 [22] 何为, 薛卫东, 唐斌. 优化试验设计方法及数据分析[M]. 北京: 化学工业出版社, 2012: 218-231. [23] 吴孟宸, 丛锦玲, 闫琴, 等. 花生种子颗粒离散元仿真参数标定与试验[J]. 农业工程学报, 2020, 36(23): 30-38. doi: 10.11975/j.issn.1002-6819.2020.23.004 [24] 于庆旭, 刘燕, 陈小兵, 等. 基于离散元的三七种子仿真参数标定与试验[J]. 农业机械学报, 2020, 51(2): 123-132. doi: 10.6041/j.issn.1000-1298.2020.02.014