Effect of drip irrigation and nitrogen management on inorganic nitrogen content and nitrous oxide emission in maize-planting soil
-
摘要:目的
获得玉米种植土壤氧化亚氮(N2O)减排的滴灌施肥模式,揭示不同滴灌灌水量和施氮比例下土壤无机氮含量对土壤N2O排放的影响。
方法在移动防雨棚内开展2季玉米3种滴灌灌水量(W60、W80和W100分别为田间持水量的50%~60%、70%~80%和90%~100%)和2种滴灌施氮比例(等N量为180 kg · hm−2,其中,F55为50%氮肥作基肥土施、50%氮肥作滴灌施肥,F37为30%氮肥作基肥土施、70%氮肥作滴灌施肥)的田间试验,测定生育期内土壤N2O通量和不同生育时期土壤无机氮含量,计算不同生育时期和全生育期土壤N2O排放量,分析土壤N2O通量与土壤无机氮含量之间的关系。
结果2季玉米土壤的N2O排放规律相似;相同施氮比例下,W100水分处理下土壤N2O排放通量在多数玉米生育时期高于W60和W80,表明高水分处理下土壤N2O排放通量高于中、低水分处理;相同水分处理下,除夏季玉米苗期外,土壤N2O排放通量施氮比例F55比F37更低。从整个生育时期土壤N2O累积排放量来看,春季玉米种植土壤W60F55处理N2O累积排放量低于其他处理,W80F55次之,夏季玉米种植土壤则是W60F37和W80F55处理的N2O累积排放量均较低。另外,2季玉米的土壤N2O通量与硝态氮和亚硝态氮含量之间显著相关,相关系数分别为0.433~0.579和0.396~0.532。
结论W80F55处理(田间持水量的70%~80%,以及50%氮肥作基肥土施,50%氮肥作滴灌施肥)降低种植玉米的土壤N2O排放。此外,土壤硝态氮和亚硝态氮含量显著影响土壤N2O排放。
Abstract:ObjectiveThe objectives of this study were to obtain a rational drip fertigation mode for reducing nitrous oxide (N2O) emission in maize-planting soil, and reveal the effects of soil inorganic nitrogen content on N2O emission under different drip irrigation amount and nitrogen fertigation ratios.
MethodIn the mobile rainproof shelter, two-season maize experiments with three drip irrigation amount (W60, W80 and W100 were 50%−60%, 70%−80% and 90%−100% of field water holding capacity, respectively) and two nitrogen fertigation proportions (F55: 50% nitrogen fertilizer applied to soil as basal fertilizer, and 50% nitrogen fertilizer as fertigation, F37: 30% nitrogen fertilizer applied to soil as basal fertilizer, and 70% nitrogen fertilizer as fertigation; Both of F55and F37 had the equal nitrogen rate of 180 kg·hm−2) were carried out. The soil N2O flux over the whole growth stage and soil inorganic nitrogen content at different growth stages were measured. Soil N2O emissions at the different growth stages and over the whole growth stage were calculated and the relationships between soil N2O flux and soil inorganic nitrogen content were analyzed.
ResultThe N2O emission fluxes of corn soil in two seasons were similar. Under the same nitrogen application ratio, soil N2O emission fluxes under W100 water treatment were higher than those under W60 and W80 in most maize growth periods, indicating that soil N2O emission fluxes under high water treatment were higher than those under medium and low water treatment. Under the same water treatment, soil N2O emission flux ratio of F55 was lower than that of F37 except in summer maize seedling stage. During the whole growth period, the cumulative emission of soil N2O under W60F55 treatment in spring was lower than that under other treatments, followed by W80F55, while those under W60F37 and W80F55 treatments in summer were lower. In addition, in two seasons, soil N2O flux was significantly correlated with nitrate nitrogen and nitrite nitrogen contents, with correlation coefficients ranging from 0.433 to 0.579 and 0.396 to 0.532, respectively.
ConclusionW80F55 treatment (70%−80% field water holding capacity, 50% nitrogen fertilizer as basal fertilizer and 50% nitrogen fertilizer as fertigation) reduces N2O emission from maize-planting soil. In addition, soil nitrate nitrogen and nitrite nitrogen contents significantly affect soil N2O emission.
-
Keywords:
- Drip fertigation /
- Nitrate nitrogen /
- Nitrite nitrogen /
- Cumulative N2O emission
-
母猪适宜的体况是保证其繁殖性能的关键,妊娠期是恢复体储的过程,泌乳期为保证泌乳量则是损失体储的过程。研究表明泌乳期体况损失过多会对下一胎次产生不利影响,当母猪采食量满足不了泌乳营养需要时, 母猪就会分解体储以满足泌乳需求,导致母猪背膘损失和体重下降,从而降低其下一胎次的繁殖性能[1]。这往往也是产生“二胎综合征”的原因之一。为研究体况损失对二胎母猪繁殖性能的影响,本研究通过测量一胎母猪的临产背膘厚及其下一胎次的开配背膘厚以计算一胎转二胎的背膘损失,来评估背膘损失对繁殖性能的影响,以期为生产应用提供参考。
1. 材料与方法
1.1 试验材料
本试验在温氏种猪公司下属的核心育种场开展,试验母猪为大白原种猪,试验从2017年7月开始,到2018年5月结束,全程测量一胎母猪的临产背膘厚及其下一胎次的开配背膘厚。
1.2 试验方法
使用超声波背膘仪(美国Renco)测量一胎母猪妊娠第110天及其下一胎次开配的P2点(最后肋骨上距背中线约6.5 cm处)背膘厚,计算母猪一胎转二胎的背膘损失,将背膘损失分为6个组,分别为掉膘≥5 mm,掉膘3~4 mm,掉膘2 mm,掉膘1 mm,不变和增膘。
1.3 数据处理
母猪分娩后收集相应的繁殖数据,包括总产仔和健仔数(初生重≥0.8 kg),并计算无效仔率,记录初生窝重并计算初生均重。
无效仔率=(总仔数-健仔数)/总仔数×100%。
使用Excel 2013进行数据的初步整理,采用SAS 9.2统计软件对试验数据进行单因素方差分析,并用Duncan's法进行多重比较,由于母猪损耗等原因,共有666头母猪的完整数据进入后续的分析。
2. 结果与分析
2.1 母猪一胎转二胎背膘损失情况
一胎母猪临产背膘厚越高,其在产房损失的背膘就会越多,当一胎猪临产背膘厚超过16 mm时,其在产房就会出现掉膘现象,临产背膘厚达到19 mm时,背膘损失高达5 mm以上;反之,一胎母猪临产背膘越薄,其在产房往往会增膘,详情见表 1。
表 1 母猪一胎转二胎背膘损失情况mm 背膘损失/mm 数量 1胎临产
背膘厚2胎开配
背膘厚背膘厚变化 ≥5 32 19.03 13.78 -5.25 3~4 171 17.54 14.16 -3.38 2 141 16.55 14.55 -2.00 1 126 16.11 15.11 -1.00 0 105 15.97 15.97 0.00 <0 91 16.00 17.58 1.58 合计 666 16.67 15.16 -1.52 2.2 一胎转二胎背膘损失对母猪繁殖性能的影响
一胎转二胎背膘损失对二胎总产仔数有显著的影响,掉膘≥5和掉膘3~4 mm组总产仔数显著少于掉膘1 mm、不变和增膘组,掉膘2 mm组与其他各组差异均不显著。掉膘≥5 mm组健仔数显著少于掉膘1 mm、不变和增膘组,掉膘3~4 mm和掉膘2 mm组健仔与其他各组差异均不显著。掉膘≥5 mm组的无效仔率显著高于其他组,除掉膘≥5 mm组外,其他各组无效仔率间无显著差异。掉膘1 mm和不变组窝重显著高于掉膘3~4 mm和增膘组的,掉膘≥5 mm和掉膘2 mm组和其他各组窝重无显著差异。掉膘≥5 mm组仔猪均重显著高于掉膘3~4 mm、掉膘1 mm、不变和增膘组,掉膘2 mm组仔猪均重显著高于不变组,具体数据见表 2。
表 2 一胎转二胎背膘损失对二胎繁殖性能的影响1)背膘损失/mm 母猪/头 总仔/头 健仔/头 无效仔率/% 初生窝重/kg 初生均重/kg ≥5 32 14.59b 11.56b 21.04a 20.62ab 1.53a 3~4 171 14.89b 12.38ab 15.87b 19.11b 1.43bc 2 141 15.21ab 12.37ab 18.07ab 19.97ab 1.47ab 1 126 16.05a 12.94a 17.91ab 20.20a 1.43bc 0 105 15.70a 12.57a 18.59ab 20.95a 1.39c <0 91 15.97a 12.86a 18.72ab 18.92b 1.41bc 平均标准误 0.39 0.30 0.01 0.46 0.03 P 0.03 0.11 0.15 0.01 0.07 1)同列数据后凡具有一个相同小写字母者表示差异不显著(P>0.05,Duncan's法) 2.3 一胎猪临产背膘厚和背膘损失的线性回归分析
本试验数据显示,大白高产母猪在泌乳期摄入的营养物质满足不了泌乳需求,会通过损失体况来满足泌乳需要,平均背膘损失高达1.52 mm。对临产背膘(x)和背膘损失(y)进行一元线性回归分析,回归方程为y=-0.468 7x+6.279 6(图 1)。回归方程拟合度较好(R2=0.944 9),该方程显示一胎母猪临产背膘厚与背膘损失呈高度负相关,当背膘损失为2 mm时,临产背膘厚为17.67 mm,为了避免因产房背膘损失过大而带来的不良后果,一胎母猪的临产背膘厚不宜超过18 mm。
3. 结论与讨论
经过多年的选育,大白母猪的繁殖性能已得到了极大的提高,窝产总仔和健仔数显著增多,但在母猪育种过程中,母猪泌乳期采食量并没有得到相应提高,为了满足仔猪生长发育的需要,母猪需要更多的营养物质来维持泌乳,泌乳期往往会造成体况的损失。体况包含体蛋白和体脂肪,由于体蛋白不易测量,所以通常用背膘(体脂肪)来代表体况,背膘反映的是母猪在不同生理阶段的体况和能量储备情况,母猪背膘变化与繁殖性能密切相关。研究表明母猪泌乳期体重损失很小时,不会影响母猪下一胎次的繁殖性能,但当母猪体重损失超过其体重的10%时,将会延长母猪下一胎次断奶到发情的时间间隔、阻碍卵母细胞发育和降低排卵率[2-3]。
本研究表明,一胎转二胎背膘损失对二胎母猪总产仔数有显著的影响,掉膘≥5 mm和掉膘3~4 mm组的总产仔数少于15头且显著低于掉膘1 mm、不变和增膘组,掉膘2 mm组总产仔数虽与其他各组差异不显著,但掉膘2 mm组与掉膘1 mm相比总产仔数有减少的趋势。一胎母猪在产房有一定的背膘损失是正常而且可以接受的,当背膘损失超过2 mm时,意味着在二胎开配前的母猪体况储备不足,会导致母猪排卵数减少,从而降低二胎的总产仔数。从健仔数来看,虽然掉膘3~4 mm组的总产仔数较少,但其无效仔率是最少的,说明其健仔数保持在较高的水平,可能是因为其弱仔死胎数比较少,具体原因还有待进一步的研究。初生窝重和均重的差异主要是由于总产仔数的差异导致的,掉膘1 mm、不变和增膘组仔猪重均无显著差异。
线性回归分析结果表明,为了避免因产房背膘损失过大而带来的不良后果,一胎母猪的临产背膘厚不宜超过18 mm。这提示在生产上,减少泌乳母猪体重和背膘损失是饲养母猪的重要目标,一胎母猪在妊娠期背膘增长不能过多,临产背膘厚不宜超过18 mm,同时在泌乳期要提高母猪的采食量以减少背膘损失,确保背膘损失不超过2 mm,以保证下一胎次的繁殖性能。
-
图 1 不同处理下春季和夏季玉米土壤N2O通量的变化
图中向下箭头所指为施肥时间;W60、W80和W100分别为田间持水量的50%~60%、70%~80%和90%~100%;F55:50%氮肥作基肥土施、50%氮肥作滴灌施肥;F37:30%氮肥作基肥土施、70%氮肥作滴灌施肥
Figure 1. Changes of N2O fluxes in spring and summer maize soil under different treatments
The downward arrow in the figure represents each fertilization time; W60, W80 and W100 were 50%−60%, 70%−80% and 90%−100% of field water holding capacity, respectively; F55: 50% nitrogen fertilizer applied to soil as basal fertilizer and 50% nitrogen fertilizer as fertigation; F37: 30% nitrogen fertilizer applied to soil as basal fertilizer and 70% nitrogen fertilizer as fertigation
表 1 玉米各生育期不同水肥处理的灌水量1)
Table 1 Irrigation amount at each growth stage of maize in different water and fertilizer treatments
mm 季节 Season 生育期 Growth stage W60F37 W60F55 W80F37 W80F55 W100F37 W100F55 春季 Spring 苗期 Seedling stage 57.9 57.9 90.0 91.3 114.6 115.3 拔节期 Jointing stage 103.1 108.2 142.2 156.6 216.6 214.2 抽穗期 Heading stage 95.1 70.9 117.4 96.0 153.9 153.5 成熟期 Maturing stage 36.3 52.5 84.9 89.2 119.2 119.7 合计 Total 292.3 289.5 434.5 433.1 604.3 602.7 夏季 Summer 苗期 Seedling stage 57.9 57.9 69.4 69.4 81.0 81.0 拔节期 Jointing stage 147.3 139.8 215.3 232.7 283.5 286.9 抽穗期 Heading stage 93.8 105.6 143.2 119.1 199.5 190.3 成熟期 Maturing stage 19.1 11.7 47.7 56.5 70.2 74.4 合计 Total 318.0 314.9 475.6 477.7 634.2 632.7 1) W60、W80和W100分别为田间持水量的50%~60%、70%~80%和90%~100%;F55: 50%氮肥作基肥土施、50%氮肥作滴灌施肥;F37:30%氮肥作基肥土施、70%氮肥作滴灌施肥 1) W60, W80 and W100 are 50%−60%, 70%−80% and 90%−100% of field water holding capacity, respectively; F55: 50% nitrogen fertilizer applied to soil as basal fertilizer and 50% nitrogen fertilizer as fertigation; F37: 30% nitrogen fertilizer applied to soil as basal fertilizer and 70% nitrogen fertilizer as fertigation 表 2 不同处理下玉米各生育期土壤N2O累积排放量及方差分析1)
Table 2 Cumulative emissions of N2O at each growth stage of maize under different treatments
g·hm−2 季节 Season 水分处理(W) Water treatment 施氮比例(F) Fertigation proportion 苗期 Seedling stage 拔节期 Jointing stage 抽穗期 Heading stage 成熟期 Maturing stage 总计 Total 春季 W60 F37 45.20±2.94a 32.36±0.60a 23.02±1.17bc 15.01±1.14a 115.59±3.25a Spring F55 22.30±1.66c 24.54±1.22b 14.59±1.96d 11.51±0.86a 72.94±3.91c W80 F37 37.72±2.29ab 21.80±1.90b 27.62±3.24ab 15.59±1.83a 102.74±8.19ab F55 25.18±1.37bc 20.89±1.90b 18.63±0.73cd 14.98±0.23a 79.68±3.46bc W100 F37 50.81±7.95a 24.59±1.99b 29.90±2.20ab 19.02±5.95a 124.31±16.48a F55 42.41±6.53a 23.81±2.82b 34.00±2.60a 13.16±1.52a 113.38±3.37a 夏季 W60 F37 19.09±0.99b 22.66±1.24c 16.14±0.13d 11.80±0.25c 69.69±2.55c Summer F55 21.47±0.33ab 16.05±0.63d 20.59±1.54b 15.89±0.89a 74.01±2.46bc W80 F37 23.21±0.17a 26.34±0.34b 32.11±0.13a 13.00±0.18bc 94.66±0.67a F55 21.38±1.64ab 18.87±0.76d 17.83±0.24cd 10.08±0.06d 68.60±0.89c W100 F37 22.31±1.41ab 32.24±0.58a 20.77±0.03b 16.56±0.23a 91.88±2.01a F55 20.95±0.42ab 22.67±1.55c 19.21±0.38bc 13.79±0.41bc 76.62±1.50b 春季 P W < 0.05 < 0.01 < 0.01 0.569 < 0.01 Spring F < 0.01 0.060 < 0.05 0.155 < 0.01 W×F 0.297 0.141 < 0.05 0.631 0.181 夏季 W 0.120 < 0.01 < 0.01 < 0.01 < 0.01 Summer F 0.883 < 0.01 < 0.01 0.156 < 0.01 W×F 0.136 0.309 < 0.01 < 0.01 < 0.01 1)表中数据为平均值±标准误;相同玉米季的同列数据后,不同小写字母表示处理间差异显著 (P<0.05,Duncanʼs法);W60、W80和W100分别为田间持水量的50%~60%、70%~80%和90%~100%;F55:50%氮肥作基肥土施、50%氮肥作滴灌施肥;F37:30%氮肥作基肥土施、70%氮肥作滴灌施肥 1)The values in the table are means ± standard errors; Different lowercase letters in the same column of the same maize-season indicate significant difference among treatments (P<0.05, Duncan’s test); W60, W80 and W100 were 50%−60%, 70%−80% and 90%−100% of field water holding capacity, respectively; F55: 50% nitrogen fertilizer applied to soil as basal fertilizer and 50% nitrogen fertilizer as fertigation; F37: 30% nitrogen fertilizer applied to soil as basal fertilizer and 70% nitrogen fertilizer as fertigation 表 3 不同处理下玉米各生育期土壤铵态氮含量1)
Table 3 Soil ammonium nitrogen content at each growth stage of maize under different treatments
g·hm−2 季节 Season 水分处理 Water treatment 施氮比例 Fertigation proportion 苗期 Seedling stage 拔节期 Jointing stage 抽穗期 Heading stage 成熟期 Maturing stage 春季 Spring W60 F37 12.38±0.64c 20.76±0.60c 25.05±0.66d 18.03±0.40c F55 13.43±0.91bc 21.02±0.67c 25.72±0.76d 18.13±0.68c W80 F37 15.11±0.48b 26.86±0.30b 30.12±0.23c 20.87±0.66b F55 14.98±0.86b 27.22±0.63b 33.77±0.25b 20.48±0.79b W100 F37 21.02±0.78a 28.81±1.08a 39.68±0.70a 26.74±0.73a F55 20.11±0.73a 28.46±0.14a 39.70±0.49a 26.92±0.76a 夏季 Summer W60 F37 21.57±0.01d 27.22±0.06d 29.19±0.05f 25.62±0.33d F55 20.40±0.65d 31.82±0.22c 30.95±0.05e 25.72±0.51d W80 F37 23.27±0.37c 32.47±0.32c 39.71±0.46c 37.96±0.58c F55 25.04±0.05b 34.06±0.03b 37.66±0.68d 37.06±1.02c W100 F37 27.60±0.78a 32.74±0.71c 46.59±0.12b 40.87±0.38b F55 27.50±0.77a 39.20±0.44a 50.58±0.21a 44.40±0.31a 1)表中数据为平均值±标准误;相同玉米季的同列数据后,不同小写字母表示处理间差异显著(P<0.05,Duncanʼs法);W60、W80和W100分别为田间持水量的50%~60%、70%~80%和90%~100%;F55:50%氮肥作基肥土施、50%氮肥作滴灌施肥;F37:30%氮肥作基肥土施、70%氮肥作滴灌施肥 1)The values in the table are means ± standard errors; Different lowercase letters in the same column of the same maize-season indicate significant difference among treatments (P<0.05, Duncan’s test); W60, W80 and W100 were 50%−60%, 70%−80% and 90%−100% of field water holding capacity, respectively; F55: 50% nitrogen fertilizer applied to soil as basal fertilizer and 50% nitrogen fertilizer as fertigation; F37: 30% nitrogen fertilizer applied to soil as basal fertilizer and 70% nitrogen fertilizer as fertigation 表 4 不同处理下玉米各生育期土壤硝态氮含量1)
Table 4 Soil nitrate nitrogen content at each growth stage of maize under different treatments
g·hm−2 季节 Season 水分处理 Water treatment 施氮比例 Fertigation proportion 苗期 Seedling stage 拔节期 Jointing stage 抽穗期 Heading stage 成熟期 Maturing stage 春季 Spring W60 F37 4.39±0.21c 4.18±0.07b 2.77±0.03d 2.88±0.08c F55 4.17±0.25c 4.72±0.27b 3.30±0.13c 2.46±0.04d W80 F37 7.69±0.16b 5.70±0.15a 3.90±0.20b 2.35±0.03d F55 8.23±0.16a 6.27±0.08a 5.96±0.01a 2.46±0.06d W100 F37 8.37±0.09a 6.17±0.32a 3.76±0.12b 3.42±0.12a F55 8.33±0.06a 4.50±0.12b 3.95±0.05b 3.19±0.03b 夏季 Summer W60 F37 4.07±0.01c 3.46±0.47d 2.72±0.02c 1.77±0.02e F55 4.31±0.02c 4.06±0.02b 3.00±0.02b 3.09±0.10b W80 F37 4.73±0.10b 4.03±0.02bc 3.24±0.02a 2.89±0.05c F55 6.65±0.12a 3.55±0.01bc 3.27±0.01a 3.37±0.03a W100 F37 6.59±0.12a 4.66±0.02a 2.99±0.03b 2.54±0.02d F55 4.32±0.08c 4.14±0.08ab 2.40±0.08d 2.57±0.05d 1)表中数据为平均值±标准误;相同玉米季的同列数据后,不同小写字母表示处理间差异显著(P<0.05,Duncanʼs法);W60、W80和W100分别为田间持水量的50%~60%、70%~80%和90%~100%;F55:50%氮肥作基肥土施、50%氮肥作滴灌施肥;F37:30%氮肥作基肥土施、70%氮肥作滴灌施肥 1)The values in the table are means ± standard errors; Different lowercase letters in the same column of the same maize-season indicate significant difference among treatments (P<0.05, Duncan’s test); W60, W80 and W100 were 50%−60%, 70%−80% and 90%−100% of field water holding capacity, respectively; F55: 50% nitrogen fertilizer applied to soil as basal fertilizer and 50% nitrogen fertilizer as fertigation; F37: 30% nitrogen fertilizer applied to soil as basal fertilizer and 70% nitrogen fertilizer as fertigation 表 5 不同处理下玉米各生育期土壤亚硝态氮含量1)
Table 5 Soil nitrite nitrogen content at each growth stage of maize under different treatments
μg·hm−2 季节 Season 水分处理 Water treatment 施氮比例 Fertigation proportion 苗期 Seedling stage 拔节期 Jointing stage 抽穗期 Heading stage 成熟期 Maturing stage 春季 Spring W60 F37 13.57±3.83d 22.44±2.39c 18.72±3.48b 4.24±0.51ab F55 35.36±2.41c 46.58±7.07b 14.60±4.68b 3.38±0.08ab W80 F37 113.26±8.24a 22.08±4.26c 24.29±4.95ab 0.00±0.00b F55 114.43±7.68a 47.37±10.22b 2.90±2.50c 0.00±0.00b W100 F37 127.11±7.38a 86.28±4.89a 24.12±2.75ab 5.91±4.9ab F55 72.25±7.70b 98.23±4.15a 34.70±1.23a 9.04±0.88a 夏季 Summer W60 F37 3.03±1.92b 0.00±0.00c 1.74±1.74b 0.00±0.00c F55 0.00±0.00c 72.38±9.67c 1.53±1.53b 0.00±0.00c W80 F37 0.00±0.00c 42.10±16.94b 3.57±1.41b 0.00±0.00c F55 0.00±0.00c 37.97±12.75b 0.00±0.00b 0.00±0.00c W100 F37 15.86±0.22a 83.16±9.73a 21.99±4.22a 27.99±6.69b F55 16.88±0.89a 87.64±0.23a 20.17±7.73a 37.25±0.32a 1)表中数据为平均值±标准误;相同玉米季的同列数据后,不同小写字母表示处理间差异显著(P<0.05,Duncanʼs法);W60、W80和W100分别为田间持水量的50%~60%、70%~80%和90%~100%;F55:50%氮肥作基肥土施、50%氮肥作滴灌施肥;F37:30%氮肥作基肥土施、70%氮肥作滴灌施肥 1)The values in the table are means ± standard errors; Different lowercase letters in the same column of the same maize-season indicate significant difference among treatments (P<0.05, Duncan’s test); W60, W80 and W100 were 50%−60%, 70%−80% and 90%−100% of field water holding capacity, respectively; F55: 50% nitrogen fertilizer applied to soil as basal fertilizer and 50% nitrogen fertilizer as fertigation; F37: 30% nitrogen fertilizer applied to soil as basal fertilizer and 70% nitrogen fertilizer as fertigation 表 6 土壤N2O通量与无机氮含量的相关性分析1)
Table 6 Correlation analysis of soil N2O flux and inorganic nitrogen content
季节 Season 指标 Index 铵态氮 Ammonium nitrogen 硝态氮 Nitrate nitrogen 亚硝态氮 Nitrite nitrogen 春季 Spring N2O通量 N2O flux −0.107 0.579** 0.532** 夏季 Summer N2O通量 N2O flux −0.075 0.433** 0.396** 1) “**”:P<0.01,r0.01=0.300,n=72 -
[1] PACHAURI R K, MEYER L, PLATTNER G K, et al. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change [R/OL]// IPCC. Climate change 2014: Synthesis report. Geneva, Switzerland: IPCC, 2014: 87. [2022-03-20]. https://boris.unibe.ch/id/eprint/71642.
[2] DAVIDSON E A, KANTER D. Inventories and scenarios of nitrous oxide emissions[J]. Environmental Research Letters, 2014, 9(10): 105012. doi: 10.1088/1748-9326/9/10/105012.
[3] TIAN H Q, YANG J, XU R T, et al. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution, and uncertainty[J]. Global Change Biology, 2019, 25(2): 640-659. doi: 10.1111/gcb.14514
[4] GOMEZ-CASANOVAS N, MATAMALA R, COOK D R, et al. Net ecosystem exchange modifies the relationship between the autotrophic and heterotrophic components of soil respiration with abiotic factors in prairie grasslands[J]. Global Change Biology, 2012, 18(8): 2532-2545. doi: 10.1111/j.1365-2486.2012.02721.x
[5] XU X, SHI Z, LI D J, et al. , Soil properties control decomposition of soil organic carbon: Results from data-assimilation analysis[J]. Geoderma, 2016, 262: 235-242. doi: 10.1016/j.geoderma.2015.08.038
[6] 隽英华, 孙文涛, 韩晓日, 等. 春玉米土壤矿质氮累积及酶活性对施氮的响应[J]. 植物营养与肥料学报, 2014, 20(6): 1368-1377. doi: 10.11674/zwyf.2014.0606 [7] 侯云鹏, 尹彩侠, 孔丽丽, 等. 氮肥对吉林春玉米产量、农学效率和氮养分平衡的影响[J]. 中国土壤与肥料, 2016(6): 93-98. [8] 朱艳, 蔡焕杰, 宋利兵, 等. 加气灌溉改善温室番茄根区土壤通气性[J]. 农业工程学报, 2017, 33(21): 163-172. doi: 10.11975/j.issn.1002-6819.2017.21.019 [9] 黎会仙, 王文娥, 胡笑涛, 等. 水肥一体化膜下滴灌水肥及速效氮分布特征研究[J]. 灌溉排水学报, 2018, 37(3): 51-57. doi: 10.13522/j.cnki.ggps.2017.0159 [10] 奚雅静, 汪俊玉, 李银坤, 等. 滴灌水肥一体化配施有机肥对土壤N2O排放与酶活性的影响[J]. 中国农业科学, 2019, 52(20): 3611-3624. doi: 10.3864/j.issn.0578-1752.2019.20.012 [11] 谢海宽, 李贵春, 徐驰, 等. 不同灌溉方式对设施菜地N2O排放的影响及其年际差异[J]. 农业环境科学学报, 2018, 37(4): 825-832. doi: 10.11654/jaes.2017-1485 [12] 于亚泽, 焦燕, 杨文柱, 等. 不同灌溉方式旱田土壤N2O排放和氮素淋溶特征[J]. 中国环境科学, 2021, 41(2): 813-825. doi: 10.3969/j.issn.1000-6923.2021.02.036 [13] 李银坤, 郭文忠, 薛绪掌, 等. 不同灌溉施肥模式对温室番茄产量、品质及水肥利用的影响[J]. 中国农业科学, 2017, 50(19): 3757-3765. doi: 10.3864/j.issn.0578-1752.2017.19.012 [14] 强浩然, 张国斌, 郁继华, 等. 不同水分和氮素供应对日光温室辣椒栽培基质氮转化细菌和酶活性的影响[J]. 园艺学报, 2018, 45(5): 943-958. doi: 10.16420/j.issn.0513-353x.2017-0122 [15] 廖桂堂, 崔阔澍, 乔善宝, 等. 四川省玉米生产发展的现状、问题及对策研究[J]. 四川农业科技, 2021(2): 57-60. doi: 10.3969/j.issn.1004-1028.2021.02.023 [16] 史亚兴, 张保民. 鲜食玉米的发展与前景: 探索我国甜玉米的北方市场![J]. 蔬菜, 2016(12): 1-6. doi: 10.3969/j.issn.1001-8336.2016.12.001 [17] 龙鹏宇, 农梦玲, 白雪, 等. 滴灌施肥蔗田土壤氧化亚氮排放与反硝化酶活性的关系[J]. 土壤通报, 2020, 51(1): 122-129. doi: 10.19336/j.cnki.trtb.2020.01.16 [18] 杨靖民, 张忠庆, 曹国军. 应用间隔流动分析仪测定土壤硝态氮和亚硝态氮含量[J]. 中国土壤与肥料, 2014(2): 101-105. doi: 10.11838/sfsc.20140221 [19] 马智勇, 贾俊香, 熊正琴, 等. 典型菜地土壤剖面N2O浓度、扩散通量与净周转率变化[J]. 应用与环境生物学报, 2019, 25(3): 611-616. [20] 张珂彬, 王毅, 刘新亮, 等. 茶园氧化亚氮排放机制及减排措施研究进展[J]. 生态与农村环境学报, 2020, 36(4): 413-424. doi: 10.19741/j.issn.1673-4831.2019.0709 [21] GELFAND I, YAKIR D. Influence of nitrite accumulation in association with seasonal patterns and mineralization of soil nitrogen in a semi-arid pine forest[J]. Soil Biology and Biochemistry, 2008, 40(2): 415-424. doi: 10.1016/j.soilbio.2007.09.005
[22] 刘广深, 徐文彬, 洪业汤, 等. 土壤N2O释放通量季节变化的主要环境驱动因素研究[J]. 矿物学报, 2002, 22(3): 229-234. doi: 10.3321/j.issn:1000-4734.2002.03.008 [23] 杜娅丹, 张倩, 崔冰晶, 等. 加气灌溉水氮互作对温室芹菜地N2O排放的影响[J]. 农业工程学报, 2017, 33(16): 127-134. doi: 10.11975/j.issn.1002-6819.2017.16.017 [24] DI H J, CAMERON K C, PODOLYAN A, et al. Effect of soil moisture status and a nitrification inhibitor, dicyandiamide, on ammonia oxidizer and denitrifier growth and nitrous oxide emissions in a grassland soil[J]. Soil Biology and Biochemistry, 2014, 73: 59-68. doi: 10.1016/j.soilbio.2014.02.011
[25] 王艳丽, 李虎, 孙媛, 等. 水肥一体化条件下设施菜地的N2O排放[J]. 生态学报, 2016, 36(7): 2005-2014. [26] HE L, SONG X, FENG W, et al. Improved remote sensing of leaf nitrogen concentration in winter wheat using multi-angular hyperspectral data[J]. Remote Sensing of Environment, 2016, 174: 122-133. doi: 10.1016/j.rse.2015.12.007
[27] 杨杉, 吴胜军, 蔡延江, 等, 硝态氮异化还原机制及其主导因素研究进展[J]. 生态学报, 2016, 36(5): 1224-1232. [28] 马兰, 李晓波, 马舒坦. 双氰胺减少铵态氮肥施用后潮土N2O排放的机制[J]. 农业环境科学学报, 2021, 40(12): 2801-2808. doi: 10.11654/jaes.2021-0459 [29] 张艺磊, 韩建, 张丽娟, 等. 新型尿素对农田土壤N2O排放、氨挥发及土壤氮素转化的影响[J]. 江苏农业科学, 2019, 47(11): 313-316. -
期刊类型引用(5)
1. 李扬,谷战英,冯楠可,熊荟璇,邓黎明,卢雨析,罗彪. 不同混作模式下施氮对花椒光合特性及养分吸收的影响. 经济林研究. 2024(01): 159-167 . 百度学术
2. 金梦然,刘雅兰,赵丹,袁航,刘煜光,史宝胜. 吲哚-3-乙酸对不同遮光条件下红丁香幼苗生长及光合的影响. 东北林业大学学报. 2023(05): 48-54 . 百度学术
3. 朱颖墨,窦小东,王瑞芳,解明恩,黄玮,李蒙. 气候变化对云南省小粒咖啡适生区的影响. 气象学报. 2021(05): 878-887 . 百度学术
4. 章宇阳,刘小刚,余宁,赵志浩,杨启良,高燕俐,范诚,董建华. 不同遮荫条件下施肥量对西南干热区小粒咖啡产量和肥料利用的影响. 应用生态学报. 2020(02): 515-523 . 百度学术
5. 王佳佳,张明如,高磊,金迪,何云核. 遮荫和氮素添加对芒萁光合特性与抗氧化酶活性的影响. 西南林业大学学报(自然科学). 2019(06): 24-32 . 百度学术
其他类型引用(7)