Detection method of high temperature stress of tomato at seedling stage based on thermal infrared and RGB images
-
摘要:目的
针对实际生产场景中番茄苗期生长遇到的高温胁迫问题,提出一种基于热红外和RGB图像的番茄苗期高温胁迫检测方法。
方法首先,通过番茄苗期热红外图像反演获取番茄冠层温度参数,采用偏最小二乘(Partial least squares, PLS)模型提取冠层温度特征指标;然后,建立采用3种不同主干特征提取网络的Mask-RCNN模型,通过迁移学习的方式将番茄苗期RGB图像输入Mask-RCNN模型,进行高温胁迫症状实例分割,得到番茄苗期胁迫症状特征指标;最后,利用提取的温度和胁迫症状特征指标构建分级数据集,输入高温胁迫分级模型,得到高温胁迫等级。
结果基于PLS模型提取的冠层温度特征指标累计贡献率达95.45%;基于ResNet101+Mask-RCNN的高温胁迫症状分割网络对番茄苗期轻度和重度胁迫的分割精度最高,均值平均查准率(Mean average precision, mAP)分别为77.3%和73.8%;基于温度和胁迫症状特征指标构建的4种高温胁迫分级模型中,反向传播神经网络(Back propagation neural network, BPNN)获得最好的高温胁迫分级效果,分级准确率达95.6%。
结论该方法对番茄苗期高温胁迫检测效果较好,可为番茄苗期高温胁迫早期精准检测和快速自动预警提供技术支撑。
Abstract:ObjectiveAiming at the problem of high temperature stress encountered in the growth of tomato at seedling stage in actual production scenarios, a method for detecting high temperature stress of tomato at seedling stage based on thermal infrared and RGB images was proposed.
MethodFirstly, the tomato canopy temperature parameters were obtained by inversion through the thermal infrared image of tomato plant at seedling stage, and the canopy temperature characteristic indicators were extracted by the partial least squares (PLS) model. Then, a Mask-RCNN model using three different backbone feature extraction networks was established, and the RGB images of tomato seedlings were input into the Mask-RCNN model by means of transfer learning for instance segmentation of high temperature stress symptoms. The characteristic indicators of tomato stress symptoms at seedling stage were obtained. Finally, the extracted temperature and stress symptom characteristic indicators were used to construct a hierarchical data set and fed into the high temperature stress classification model to obtain the high temperature stress level.
ResultThe cumulative contribution rate of the canopy temperature characteristic indicators extracted based on the PLS model reached 95.45%. The high temperature stress symptom segmentation network based on ResNet101+Mask-RCNN had the highest segmentation accuracy for mild and severe stress of tomato at seedling stage, with mean average precision (mAP) of 77.3% and 73.8% respectively. Among the four high temperature stress grading models constructed based on temperature and stress symptom characteristic indicators, the back propagation neural network (BPNN) showed the best high temperature stress grading performance with the grading accuracy rate of 95.6%.
ConclusionThe proposed method in this study achieves better detection performance for high temperature stress of tomato at seedling stage, and provides a technical support for early detection and rapid automatic warning of high temperature stress of tomato at seedling stage.
-
Keywords:
- Seedling stage /
- Tomato /
- High temperature /
- Thermal infrared image /
- Mask-RCNN /
- Stress detection
-
世界上最早报道柑橘黄龙病(Citurs Huanglongbing, HLB)的地区为我国广东潮汕地区[1-2],该病现已广泛分布于亚洲、美洲和非洲的多个国家,对全球多个柑橘产区造成严重威胁[3]。该病由候选的韧皮部杆菌“Candidatus Liberibacter spp.”引起,我国发现的黄龙病病原菌为该菌的亚洲种“Ca. L. asiaticus”(CLas)[4]。黄龙病可为害包括橙类、橘类、柚类和香橼等柑橘属植物的所有栽培品种。鉴于尚未发现可行的黄龙病治疗手段,目前防控该病害的措施主要为植物检疫、培养无病苗木、及时挖除病株和控制媒介昆虫亚洲柑橘木虱Diaphorina citri等[2-3]。
柑橘黄龙病可对柑橘的营养生长和果实品质造成严重影响,发病植株表现出复杂多样的症状,包括生长逐渐衰退、产量减少、病果畸形、果皮变软、果小味酸、经济寿命短、植株抗病性下降甚至死亡[5];不同生长季节的叶片表现出的病害症状存在差异,病害显症时表现为斑驳黄化、均匀黄化、缺素状黄化等症状[2]。随着发病程度加剧,病树容易早期落果,虽有部分果实仍可供采摘收获,但果实品质也发生了变化[6]。目前研究发现,多个柑橘品种感染黄龙病后,可溶性固形物及维生素C含量降低,外观和着色变差,可食用部分减少[7-10]。此外,黄龙病还可降低一些柑橘品种果实的甜味度、综合风味和果肉饱满度,并增加酸度、异味度,使得口感明显变差[7, 10]。
抗病柑橘品种选育一直都是黄龙病研究的重要领域。不同柑橘品种的抗性反应存在差异,多项研究表明柚类植物具有一定的黄龙病抗性或耐性,很少感染黄龙病[11-12],但也有研究表明黄龙病可使柚类植物出现新叶发黄、老叶斑驳、果小味苦、产量减少等症状[13-15];Folimonova等[16]发现不同柑橘品种对黄龙病的反应存在差异,其中3种柚类植物同样可感染黄龙病,其感病性较其他敏感品种低,症状表现多样且易变。目前关于柑橘黄龙病对柚类植物生长和果实品质影响的评价指标仍然不够丰富,难以做到客观判断,需系统性研究柑橘黄龙病对柚类植物的影响。
本研究以沙田柚Citrus maxima和砂糖橘Citrus reticulata为材料,在分析病菌浓度与植株感染黄龙病后的叶片症状的关系基础上,分析黄龙病病菌浓度对沙田柚树势、产量、果实内外品质和感官品质的影响。研究结果将为评价黄龙病对沙田柚生长以及果实品质的影响提供科学依据,同时也为解析柚类植物的黄龙病耐性机理提供一定的理论支撑。
1. 材料与方法
1.1 病原物的检测
称取0.1 g采自防虫网室或田间的柚树成熟叶片中脉并剪碎,采用植物DNA提取试剂盒(OMEGA)提取DNA,用去离子水将DNA调整到同一浓度,使用Li等[17]报道的CLas 16S rDNA的特异性引物和探针进行实时荧光定量PCR(qPCR)检测,统计各样品的扩增循环数(Cycle threshold,Ct),确定其带菌情况。
鉴于柑橘植原体“Candidatus Phytoplasmaasteri”和柑橘衰退病病毒Citrus tristeza virus可能导致相似的黄化症状[12,18],会干扰沙田柚的黄龙病症状观察,本研究所使用和调查的植物材料(嫁接病原芽条、无病苗圃样品和田间调查样品)均通过qPCR确保不含有上述2种病原微生物。各阳性、阴性样品和后续嫁接试验所用黄龙病接穗均来源于华南农业大学柑橘黄龙病研究室网室(23.09°N,113.21°E)。
1.2 病芽嫁接后黄龙病症状观察和病菌浓度检测
所用沙田柚和砂糖橘盆栽苗来源于华南农业大学园艺学院苗圃场(23.16°N,113.36°E),均为2年生无病苗,隔离种植于防虫网室中。选择对应的柑橘品种,通过qPCR检测后,分别将黄龙病菌浓度较一致(Ct=25±0.5)的接穗嫁接到健康沙田柚和砂糖橘上,每个品种嫁接10株(10个重复),嫁接苗隔离种植于防虫网室中,每隔30 d记载各植株嫁接后1年内的症状表现,并对其带菌情况进行检测。
1.3 田间症状调查和指标测定
选取广东省梅州市梅县石扇镇较高树龄(15年)和较低树龄(6年)沙田柚果园各1个进行调查。果园栽培管理条件较一致,均为平地种植,调查时间为果实成熟期。为了确定果园黄龙病发病情况,每个果园根据5点取样法(东西南北中)采集75个带有柚果的枝条上的叶片,进行编号和检测。分别从2个果园中选取健康(Ct>35)、低黄龙病菌浓度(28<Ct<32)和高黄龙病菌浓度(Ct<26)植株各10株(共60株),记录这些植株的树势、产量,鉴定田间叶片和果实症状。植株树势指标包括株高(cm)、树冠直径(cm)和树冠表面积(m2)。产量测定包括单株柚果总产量(kg)、总结果数和落果数,最后计算经济果产量(kg)。
1.4 果实外在品质的测定
每个果园分别选取健康、低菌浓度和高菌浓度枝条上的果实各10个,使用电子天平称量单果质量(g)和果皮质量(g),量尺测定每个柚果的纵径(cm)和横径(cm),游标卡尺测定果皮厚度(cm);计算果形指数和果皮率(%);评估果实着色指数(%);将种子剥离后,对种子计数(粒),称量种子质量(g),计算种子率(%)。
$${\text{果形指数}} = {\text{纵径}}/{\text{横径}}{\text{,}}$$ $${\text{果皮率}} = {\text{果皮质量}}/{\text{果实质量}}\times100{\text{%}}{\text{,}}$$ $$ {\text{果实着色指数}} = {\text{成熟果实黄色面积}}/{\text{果实总面积}}\times100{\text{%}}{\text{,}} $$ $${\text{种子率}} = {\text{种子质量}}/{\text{果实质量}}\times100{\text{%}}{\text{。}}$$ 1.5 果实内在品质的测定
用手动榨汁机分别对已测完外在品质的果实榨取汁液,4层纱布过滤后,称量果汁质量(g),
$${\text{出汁率}} = {\text{果汁质量}} / {\text{单果质量}}\times100{\text{%}}{\text{,}} $$ $$\begin{array}{c}{\text{可食率}} =\left( {\text{果实质量}}- {\text{果皮质量}}-{\text{种子质量}} \right)/\\{\text{果实质量}}\times100{\text{%}}{\text{。}} \end{array}$$ 用改良后的2,6−二氯酚靛酚钠滴定法测定汁液的维生素C含量[7, 19],用PAL-BX/ACID糖酸折射仪(日本ATAGO Co.,Ltd)测定可溶性固形物含量(%)和可滴定酸(以柠檬酸质量浓度计,g/L)。
1.6 果实风味感官品质的评价
采用改良后的Obenland法进行果实风味感官品质评价[20],由10名经过专业培训的人员对2个果园健康、低菌浓度和高菌浓度植株果实进行感官品质打分,健康、低菌和高菌浓度植株果实各取10个。打分标准包括甜味度(浓甜9分,中甜5分,无甜味1分)、酸味度(浓酸9分,中度酸5分,无酸味1分)、果肉饱满度(饱满9分,一般5分,干瘪1分)、异味度(较重9分,一般5分,无异味1分)和综合风味(极好9分,一般5分,极差1分)。
1.7 数据处理
基于数据重复数量和预测的数据分布模式,两样本间的显著性差异比较采用非参数分析Wilcoxon Mann–Whitney检验(P<0.05),多组数据结合Tukey’s studentized range test多重比较和非参数分析Kruskal–Wallis秩和检验(P<0.05)进行验证。统计分析通过SAS 9.0软件完成,图形由Origin v.9.0制作。
2. 结果与分析
2.1 病芽嫁接后沙田柚和砂糖橘盆栽苗黄龙病病菌浓度及症状
健康沙田柚植株嫁接带黄龙病接穗150 d后,没有发病(图1),经PCR检测没有发现黄龙病菌的存在(图2),植株正常生长,叶片青绿;嫁接180 d后有20%可检测到低浓度黄龙病菌(Ct=31.44),植株仍无明显症状(图1);嫁接病毒330和360 d后,所有柚苗均可检测到黄龙病菌,但病菌浓度保持在较低水平(Ct>28)(图2),老叶轻微斑驳黄化,新叶轻微均匀黄化,且抽梢正常。
图 2 沙田柚和砂糖橘盆栽苗嫁接黄龙病接穗后的阳性植株带菌量Ct指黄龙病菌16SrDNA的实时荧光扩增循环数;同折线不同字母表示差异显著(P<0.05,Tukey’s studentized range检验),相同时间“*”和“**”分别表示不同植物差异显著(P<0.05)和极显著(P<0.01)(Wilcoxon Mann–Whitney检验)Figure 2. Concentration of HLB pathogens in disease positive Citrus maxima and Citrus reticulata after grafting HLB-infected scionsCt refers to qPCR cycle threshold for 16S rDNA of HLB pathogen; Different letters in the same line indicate significant difference (Tukey’s studentized range test, P<0.05); “*” and “**” at the same time indicate the difference between two plant species reaches 0.05 and 0.01 significance levels, respectively (Wilcoxon Mann-Whitney test)砂糖橘嫁接病毒90 d后,有30%的植株可检测到低浓度黄龙病菌(Ct=29.49)(图2),这些植株新长出的叶片开始出现轻微黄化;嫁接150 d后,所有接种植株均可检测到病原菌(图1),且病菌浓度显著提高(Ct=26.56)(图2),整株叶片明显黄化,新叶细小;嫁接病毒180~210 d,病菌浓度进一步升高,老叶出现轻微斑驳黄化症状,有落叶现象,此时仍能正常抽发新叶;嫁接病毒240 d以后,菌浓度达到最高且保持在比较稳定的水平(Ct<25),老叶典型斑驳黄化,落叶明显,新叶转绿不正常,出现缺素型花叶。
通过对比2个柑橘品种的显症进程和病菌浓度变化,沙田柚的发病速度较慢,程度较轻(图1),当2种柑橘都能检测到黄龙病菌时(接种后180~360 d),带病沙田柚的带菌量显著低于砂糖橘(图2)。此外,相同条件下种植的健康未接种病原的沙田柚和砂糖橘苗在调查期间均检测不到黄龙病菌,叶片始终保持青绿状态。
2.2 柑橘黄龙病菌浓度对沙田柚田间症状、树势和产量的影响
2个沙田柚果园中,病菌浓度较低(28<Ct<32)的病树,6年生和15年生果园叶片均没有明显的黄龙病典型黄化症状或只表现轻微的均匀黄化,果实外观或纵切面(果实大小、着色情况和厚度等)均与健康的果实相似(图3a、3b),低浓度病树分别占6年生和15年生果园的13.33%(10/75)和16%(12/75);植株病菌浓度较高时(Ct<26),2个果园叶片均表现出典型的黄龙病斑驳黄化症状,叶片基部症状最明显,果实变小变轻,果皮着色不均匀,严重的情况下果实畸形、果皮增厚(图3c),高浓度病树分别占6年生和15年生果园的14.67%和13.33%。
图 3 健康和感染柑橘黄龙病沙田柚的叶片和果实图示a、b、c分别表示健康树(Ct>35)、低菌浓度病树(28<Ct<32)和高菌浓度病树(Ct<26)样品Figure 3. Leaves and fruits from healthy and HLB-infected Citrus maximaa, b and c indicate the samples collected from healthy trees (Ct>35), trees with low pathogen concentration (28<Ct<32), and trees with high pathogen concentration (Ct<26)黄龙病菌浓度对沙田柚的树势和产量的影响情况见表1。黄龙病菌浓度对相同树龄沙田柚的树势各指标(株高、树冠直径和表面积)并没有显著影响;树势主要受树龄因素调控:15年生沙田柚植株株高、树冠直径和表面积显著高于6年生植株。
表 1 柑橘黄龙病菌浓度对沙田柚树势和产量的影响1)Table 1. Effects of different concentrations of HLB pathogen on tree vigor and yield of Citrus maxima测定指标
Measured index健康树(Ct>35)
Healthy trees低菌浓度病树(28<Ct<32)
Trees with low pathogen concentration高菌浓度病树(Ct<26)
Trees with high pathogen concentration6年生果园
6-year old orchard15年生果园
15-year old orchard6年生果园
6-year old orchard15年生果园
15-year old orchard6年生果园
6-year old orchard15年生果园
15-year old orchard株高/cm
Plant height263.90±9.91b 440.60±14.58a 253.00±15.13b 436.00±11.98a 249.90±11.65b 432.50±13.52a 树冠直径/cm
Crown diameter309.60±11.34b 503.70±11.24a 307.80±7.63b 511.00±9.10a 278.50±16.90b 498.75±11.82a 树冠表面积/m2
Crown superficial area26.09±1.70b 70.35±3.30a 24.78±1.48b 70.52±2.84a 22.34±2.12b 68.39±3.15a 单株总产量/kg
Total yield per plant43.11±2.11b 136.22±9.79a 42.79±1.73b 125.17±6.28a 25.44±3.52b 44.14±7.87b 总结果数/个
Total fruit number31.90±1.43bc 93.50±4.48a 28.80±2.69c 90.40±4.86a 22.80±2.86c 52.30±7.71b 落果数量/个
Number of drop fruit1.30±0.37b 2.70±0.99b 1.40±0.51b 1.60±0.81b 12.80±2.12b 40.60±7.13a 经济果总产量/kg
Total yield of economic fruit39.22±1.76b 129.73±7.97a 41.18±2.11b 121.30±5.71a 16.00±1.26cd 10.95±1.78d 1)同行数据后具有不同字母者表示差异显著(P<0.05,HSD法)
1)Different letters in the same row indicate significant difference(P<0.05, HSD test)沙田柚产量指标(单株柚果总产量、单株总结果数、落果数和经济果总产量)同时受到树龄和黄龙病菌浓度的影响,15年生柚树的单株柚果总产量和总结果数显著高于6年生柚树。与健康植株相比,携带低浓度(28<Ct<32)黄龙病菌对相同树龄沙田柚产量各指标没有显著影响。相比同树龄健康树和低菌浓度病树,15年生高菌浓度(Ct<26)病树的产量显著降低,落果数最多,经济果总产量最低,仅为对应健康植株的8.44%;6年生柚树可能由于总产量相对较低,高菌浓度病树单株总产量和结果数没有显著性变化,但因较高的落果数量,亦造成经济果总产量显著减少,为对应健康植株的40.80%。
2.3 柑橘黄龙病菌浓度对沙田柚果实外在品质的影响
表2表明,与健康果实相比,染病后低病菌浓度(28<Ct<32)病树的果实外在品质均无显著性差异;高病菌浓度(Ct<26)病树单果质量、果实纵径、横径、着色指数、果皮质量和种子数量显著降低,果皮率显著提高,果形指数、果皮厚度和种子数无显著性差异。此外,关于相同染病情况2个不同树龄的柚果,除了6年生高菌浓度柚果着色指数(65.50%)显著高于15年生(44.00%)高菌浓度柚果,其他各指标间均无显著性差异。
表 2 柑橘黄龙病菌浓度对沙田柚果实外在品质的影响1)Table 2. Effects of different concentrations of HLB pathogen on external qualities of Citrus maxima测定指标
Measured index健康树(Ct>35)
Healthy trees低菌浓度病树(28<Ct<32)
Trees with low pathogen concentration高菌浓度病树(Ct<26)
Trees with high pathogen concentration6年生果园
6-year old orchard15年生果园
15-year old orchard6年生果园
6-year old orchard15年生果园
15-year old orchard6年生果园
6-year old orchard15年生果园
15-year old orchard单果质量/g
Fruit mass1 446.00±46.31a 1 455.60±49.14a 1 390.80±13.07a 1 409.20±13.77a 802.10±44.69b 906.60±32.11b 果实纵径/cm
Fruit vertical diameter18.58±0.42a 19.13±0.42a 18.44±0.25ab 19.17±0.27a 15.77±0.29c 16.79±0.33bc 果实横径/cm
Fruit transverse diameter15.14±0.27a 15.58±0.27a 14.87±0.28a 15.04±0.10a 12.96±0.24b 12.40±0.17b 果形指数
Fruit shape index1.27±0.03a 1.23±0.03a 1.24±0.02a 1.27±0.02a 1.33±0.02a 1.34±0.04a 果皮厚度/cm
Pericarp thickness1.93±0.05a 2.10±0.09a 1.98±0.04a 2.14±0.10a 2.01±0.07a 2.06±0.10a 果皮质量/g
Pericarp mass461.00±11.10ab 504.90±13.17a 453.00±16.38ab 491.20±8.77a 398.00±7.12bc 3 365.00±19.68c 果皮率/%
Rate of pericarp31.25±1.22b 36.02±0.90ab 31.28±1.17b 33.73±2.16b 43.00±2.38a 43.66±1.83a 着色指数/%
Color index90.50±1.38a 86.00±2.87ab 89.00±1.87ab 91.00±1.87a 65.50±5.70b 444.00±8.49c 种子数/粒
Seed number33.70±0.88a 39.30±1.74a 34.40±1.96a 36.00±1.61a 35.30±1.17a 35.10±1.97a 种子率/%
Seed rate0.97±0.05ab 1.23±0.07a 1.08±0.11ab 1.09±0.04ab 0.79±0.07b 0.78±0.12b 1)同行数据后具有不同字母者表示差异显著(P<0.05,HSD法)
1) Different letters in the same row indicate significant difference(P<0.05, HSD test)2.4 柑橘黄龙病菌浓度对沙田柚果实内在品质的影响
如表3所示,树龄对沙田柚果实各内在品质均无显著性影响。与健康树果实相比,低菌浓度(28<Ct<32)病树果实各内在品质指标无显著性变化,而高菌浓度(Ct<26)病树果实的可食率、出汁率、可溶性固形物含量和维生素C含量均显著降低,可滴定酸含量显著升高。
表 3 柑橘黄龙病菌浓度对沙田柚果实内在品质的影响1)Table 3. Effects of different concentrations of HLB pathogen on internal qualities of Citrus maxima测定指标
Measured index健康树(Ct>35)
Healthy trees低菌浓度病树(28<Ct<32)
Trees with low pathogen concentration高菌浓度病树(Ct<26)
Trees with high pathogen concentration6年生果园
6-year old orchard15年生果园
15-year old orchard6年生果园
6-year old orchard15年生果园
15-year old orchard6年生果园
6-year old orchard15年生果园
15-year old orchard可食率/%
Percentage of edible fruit66.95±1.04a 63.94±0.80ab 66.32±1.30a 64.05±0.63ab 47.13±4.68c 55.57±2.27bc 出汁率/%
Juice extraction rate39.40±1.29a 39.82±1.04a 38.31±1.16ab 39.06±0.98ab 26.43±1.39c 31.99±2.32bc 可溶性固形物/%
Soluble solid content11.86±0.34ab 12.78±0.31a 11.62±0.27ab 11.86±0.21a 9.17±0.61c 10.23±0.32bc ρ(可滴定酸)/(g·L−1)
Titratable acid content7.16±0.37c 8.08±0.50bc 7.46±0.38c 7.66±0.66bc 11.47±0.49ab 11.67±1.40a w(维生素C)/(mg·kg−1)
Vitamin C content70.63±3.41ab 68.10±4.62ab 74.29±4.16a 71.22±2.47ab 58.42±2.95c 56.33±2.56c 1)同行数据后具有不同字母者表示差异显著(P<0.05,HSD法)
1) Different letters in the same row indicate significant difference (P<0.05, HSD test)2.5 柑橘黄龙病菌浓度对沙田柚果实风味感官品质的影响
如表4所示,在带病情况一致的条件下,不同树龄沙田柚果实风味的人为感官品质评价的各项指标均没有显著性差异。相同树龄条件下,低菌浓度病树(28<Ct<32)与健康树果实感官品质各项指标无显著性差异;高菌浓度(Ct<26)病树的柚果甜味度、饱满度和综合风味均显著降低,而酸味度和异味度均显著提高。
表 4 柑橘黄龙病菌浓度对沙田柚果实风味感官品质的影响1)Table 4. Effects of different concentrations of HLB pathogen on sensory qualities of Citrus maxima测定指标
Measured index健康树(Ct>35)
Healthy trees低菌浓度病树(28<Ct<32)
Trees with low pathogen concentration高菌浓度病树(Ct<26)
Trees with high pathogen concentration6年生果园
6-year old orchard15年生果园
15-year old orchard6年生果园
6-year old orchard15年生果园
15-year old orchard6年生果园
6-year old orchard15年生果园
15-year old orchard甜味度
Sweetness7.06±0.20a 6.79±0.20a 6.75±0.19a 6.65±0.22a 2.53±0.36b 3.18±0.57b 酸味度
Acidity2.89±0.17c 3.01±0.18c 3.09±0.14bc 3.07±0.18c 4.31±0.30a 4.01±0.31ab 饱满度
Plumpness7.01±0.30a 6.81±0.20a 6.28±0.23a 6.91±0.26a 4.16±0.14b 4.96±0.22b 异味度
Odor degree2.20±0.14b 2.38±0.13b 2.43±0.14b 2.91±0.19b 5.39±0.26a 4.61±0.39a 综合风味Overall flavor 6.74±0.16a 6.52±0.23a 6.51±0.19a 6.12±0.17a 2.85±0.21b 3.76±0.44b 1)同行数据后具有不同字母者表示差异显著(P<0.05,HSD法)
1) Different letters in the same row indicate significant difference (P<0.05, HSD test)3. 讨论与结论
关于柚类品种耐黄龙病的相关研究很多,刘新华等[11]根据田间症状调查发现,同区域内沙田柚的田间发病率(2.6%)远低于柑橙类(21.5%);后续通过嫁接和分子试验证明,相比感病的椪柑Citrus reticulata Blanco cv. Ponkan,琯溪蜜柚Citrus maxima的症状表现和病菌侵染速度明显更慢[12]。在本研究中,相比同等种植条件下的砂糖橘,嫁接1年内的沙田柚叶片无明显黄龙病症状,抽梢正常,病原菌仍保持在较低水平,且低菌浓度对果实产量、果实内外观品质和风味人为感官品质均无明显影响,这可能与沙田柚自身特有的黄龙病抗性相关。植物叶片黄化主要是由于细胞叶绿体内淀粉颗粒异常膨大,挤压破坏类囊体基粒和片层造成[21-23],说明黄龙病引起的黄化症状可能与淀粉积累相关。戴泽翰等[24]通过显微观察发现发病沙田柚的维管形成层比感病品种具有更旺盛的分化能力,可形成更多的次生韧皮部细胞,且光合细胞合成和容纳淀粉的能力更强。更发达的韧皮部可缓解淀粉的局部累积,这可能就是柚类植物较耐黄龙病的原因之一。
本研究发现沙田柚同样具有较高的黄龙病菌感染率,在嫁接病穗330 d后全部植株均染病,且高浓度黄龙病菌可影响沙田柚叶片症状、果实产量、内外品质和感官品质,使叶片斑驳黄化、果实变小变轻、严重时果实畸形、果轴歪斜,这些表现与前期关于沙田柚的田间调查结果相一致[25-26];产量、品质、出汁率、可溶性固形物和维生素C含量显著下降,酸含量升高,该现象同样发生在砂糖橘、纽荷尔脐橙Citrus sinensis Osbeck cv. Newhall、哈姆林甜橙Citrus sinensis Osbeck cv. Hamlin、瓦伦西亚橙Citrus sinensis Osbeck cv. Valencia、瓯柑Citrus reticulata Blanco cv. Suavissima等其他柑橘品种中[6, 8, 10, 27-28]。其中,可溶性固形物含量在沙田柚果实感官和品质鉴定中起关键作用,直接影响甜度和苦味,间接影响果汁含量[29]。本研究发现果实出汁率及感官和品质确实与可溶性固形物含量存在相关性,随着可溶性固形物含量的降低,果实出汁率、甜味度、饱满度及综合风味明显下降,酸味度和异味度加强,食用感官明显变差。此外,不同柑橘品种对黄龙病的反应存在差异,可能与不同品种的果实品质和栽培环境存在差异有关,因此需明确黄龙病对柚类植物树势、产量、果实内外品质、感官品质的系统性影响,从而深入研究柚类植物的耐性机制。
因柚类植物存在一定的黄龙病耐病性,种植者往往对其发病情况关注较少,也忽略了对传病媒介柑橘木虱的防治。虽然症状不明显的病树仍有一定的经济价值,但这些带病植株有病原菌的侵染和分布,可作为田间黄龙病菌的来源,通过人为嫁接或虫媒自然传播感染其他健康植株,并且随着发病程度的进一步加剧,柚类植物的经济价值会受到严重影响,甚至颗粒无收,造成无法挽回的损失。因此,在柚园管理的过程中,应及时发现病株,对其进行铲除或隔离,并注意防控柑橘木虱,以免病害扩散蔓延。
致谢:感谢嘉应学院生命科学学院师生在部分植物材料收集上给予的支持与帮助!
-
图 9 4种不同模型测试集分类结果混淆矩阵
绿色方格代表分类正确样本,其中数字为样本数量和所占总体样本的比例;红色方格代表分类错误样本;浅灰色方格中数字代表测试集样本每一行和列的真阳性率(绿色)和假阴性率(红色);深灰色方格中数字代表测试集样本的总体准确率(绿色)和总体错误率(红色)
Figure 9. Confusion matrices of classification results of test sets of four different models
Green squares represent correctly classified samples, where the numbers are the number of samples and the proportion of the total sample; Red squares represent misclassified samples; The numbers in the light gray squares represent the true positive rate (green) and false negative rate (red) for each row and column of the test set sample; The numbers in the dark gray squares represent the overall accuracy (green) and overall error (red) of the test set samples
表 1 番茄幼苗冠层热红外温度参数变化表
Table 1 Variation table of thermal infrared temperature parameters of tomato seedling canopy
℃ 试验时刻1)Experiment time 最大温度 Maximum temperature 最小温度 Minimum temperature 最大温差 Maximum temperature difference 平均温度 Average temperature 温度标准差 Temperature standard deviation D1 12:00 30.3 21.7 8.6 24.6230 1.5155 D1 16:00 31.6 21.7 9.9 25.1910 1.8274 D2 12:00 32.4 22.9 9.5 25.1721 1.3691 D2 16:00 31.2 22.7 8.5 25.9238 1.4817 D3 12:00 31.1 23.1 8.0 26.8236 1.7791 D3 16:00 32.0 23.1 8.9 27.3416 1.7418 D4 12:00 31.8 24.3 7.5 27.0165 1.3433 D4 16:00 32.9 24.1 8.8 27.5235 1.5168 D5 12:00 33.1 24.6 8.5 29.0355 1.7989 D5 16:00 34.2 25.2 9.0 30.0699 1.8027 D6 12:00 33.5 24.8 8.7 29.7350 1.7264 D6 16:00 34.4 25.2 9.2 30.1302 1.8432 1) D1~D6分别表示第1~6天 1) D1-D6 indicate day 1-6, respectively 表 2 主干特征提取网络性能参数
Table 2 Performance parameters of backbone feature extraction network
网络 Network 深度 Depth 大小/MB Size 参数量 Millions parameter quantity 图像输 入大小 Image input size 特征提取层 Feature extraction layer 池化层输出大小 Output size of pooling layer ResNet50 50 96 25.6 224×224 Block_13_expand_relu 14×14 ResNet101 101 167 44.6 224×224 Mixed7 17×17 MobileNet 54 13 3.5 224×224 Res4b_22_relu 14×14 表 3 温度特征指标的相关系数和主成分贡献率
Table 3 Correlation coefficient and principal component contribution rate of temperature characteristic indicators
特征指标 Characteristic indicator 相关系数 Correlation coefficient 主成分贡献率/% Principal component contribution rate 最大值( $ {T}_{1} $) Maximum 0.1451 3.24 最小值( $ {T}_{2} $) Minimum −0.0385 0.07 平均值( $ {T}_{3} $) Average −0.1328 0.23 标准差( $ {T}_{4} $) Standard deviation −0.0437 0.01 规范标准化值( $ {T}_{5} $) Canonical normalized −0.1466 4.17 规范替换值( $ {T}_{6} $) Canonical replacement −0.1657 6.44 变异系数( $ {T}_{7} $) Coefficient of variation 0.2749 34.37 冠气温差( $ {T}_{8} $) Crown temperature difference 0.1563 2.28 信息熵( $ {T}_{9} $) Information entropy 0.2134 16.62 20~23 ℃温度频率( $ {T}_{10} $) Temperature frequency −0.1360 0.25 23~26 ℃温度频率( $ {T}_{11} $) Temperature frequency −0.2041 9.76 26~29 ℃温度频率( $ {T}_{12} $) Temperature frequency 0.0826 0.03 29~32 ℃温度频率( $ {T}_{13} $) Temperature frequency 0.2279 21.85 32~35 ℃温度频率( $ {T}_{14} $) Temperature frequency 0.1491 0.68 表 4
${\rm{IoU}}=0.5$ 时3种不同主干特征提取网络Mask-RCNN模型分割精度Table 4 Segmentation accuracy of Mask-RCNN model of three different backbone feature extraction networks when IoU=0.5
主干特征提取网络 Backbone feature extraction network 胁迫等级 Image stress level 查准率/% Precision 查全率/% Recall $ {F}_{1} $/% $ \mathrm{m}\mathrm{A}\mathrm{P} $/% ResNet50 中度 Mild 90.4 50.5 64.8 75.7 重度 Severe 83.2 45.9 59.2 71.6 ResNet101 中度 Mild 91.3 52.4 66.6 77.3 重度 Severe 85.7 47.2 60.9 73.8 MobileNet 中度 Mild 86.0 46.8 60.6 69.9 重度 Severe 80.5 43.4 56.4 66.5 表 5 不同分类网络模型的苗期番茄高温胁迫分级精度
Table 5 Classification accuracy of high temperature stress of tomato at seedling stage with different classification network model
模型类别 Model category 准确率/% Accuracy 查准率/% Precision 查全率/% Recall $ {F}_{1} $/% ${{\rm{MCC}}}$/% 朴素贝叶斯 Naive Bayesian (NB) 90.6 92.7 89.9 91.3 81.0 支持向量机 Support vector machine (SVM) 93.3 96.8 91.0 93.8 86.8 k−最近邻 k-nearest neighbor (kNN) 91.7 92.7 91.8 92.2 83.3 BP神经网络 BP neural network (BPNN) 95.6 96.9 94.9 95.9 91.1 -
[1] ZHANG J, JIANG X D, LI T L, et al. Photosynthesis and ultrastructure of photosynthetic apparatus in tomato leaves under elevated temperature[J]. Photosynthetica, 2014, 52(3): 430-436. doi: 10.1007/s11099-014-0051-8
[2] 巩文睿, 金萍, 钟启文. 设施农业物联网技术应用现状与发展建议[J]. 农业科技管理, 2017, 36(4): 20-23. doi: 10.16849/j.cnki.issn1001-8611.2017.04.006 [3] ZHOU R, KONG L, WU Z, et al. Physiological response of tomatoes at drought, heat and their combination followed by recovery[J]. Physiologia Plantarum, 2019, 165(2): 144-154.
[4] WEN J Q, JIANG F L, LIU M, et al. Identification and expression analysis of Cathepsin B-like protease 2 genes in tomato at abiotic stresses especially at high temperature[J]. Scientia Horticulturae, 2021, 277(10): 109799.
[5] TORRES G M, LOLLATO R P, OCHSNER T E. Comparison of drought probability assessments based on atmospheric water deficit and soil water deficit[J]. Agronomy Journal, 2013, 105(2): 428-436. doi: 10.2134/agronj2012.0295
[6] WISHART J, GEORGE T S, BROWN L K, et al. Field phenotyping of potato to assess root and shoot characteristics associated with drought tolerance[J]. Plant and Soil, 2014, 378(1/2): 351-363.
[7] ZHOU Z, MAJEED Y, DIVERRES NARANJO G, et al. Assessment for crop water stress with infrared thermal imagery in precision agriculture: A review and future prospects for deep learning applications[J]. Computers and Electronics in Agriculture, 2021, 182: 106019.
[8] CHANDEL A K, KHOT L R, YU L X. Alfalfa (Medicago sativa L. ) crop vigor and yield characterization using high-resolution aerial multispectral and thermal infrared imaging technique[J]. Computers and Electronics in Agriculture, 2021, 182: 105999.
[9] HOU M J, TIAN F, ORTEGA-FARIAS S, et al. Estimation of crop transpiration and its scale effect based on ground and UAV thermal infrared remote sensing images[J]. European Journal of Agronomy, 2021, 131: 126389. doi: 10.1016/j.eja.2021.126389
[10] DAS S, CHAPMAN S, CHRISTOPHER J, et al. UAV-thermal imaging: A technological breakthrough for monitoring and quantifying crop abiotic stress to help sustain productivity on sodic soils: A case review on wheat[J]. Remote Sensing Applications Society and Environment, 2021, 23: 100583. doi: 10.1016/j.rsase.2021.100583
[11] ZHU W, CHEN H, CIECHANOWSKA I, et al. Application of infrared thermal imaging for the rapid diagnosis of crop disease[J]. IFAC-PapersOnLine, 2018, 51(17): 424-430. doi: 10.1016/j.ifacol.2018.08.184
[12] LACERDA L N, SNIDER J L, COHEN Y, et al. Using UAV-based thermal imagery to detect crop water status variability in cotton[J]. Smart Agricultural Technology, 2022, 2: 100029. doi: 10.1016/j.atech.2021.100029
[13] TIAN F, HOU M, QIU Y, et al. Salinity stress effects on transpiration and plant growth under different salinity soil levels based on thermal infrared remote (TIR) technique[J]. Geoderma, 2020, 357: 113961. doi: 10.1016/j.geoderma.2019.113961
[14] MA S, BI Y, ZHANG Y, et al. Thermal infrared imaging study of water status and growth of arbuscular mycorrhizal soybean (Glycine max) under drought stress[J]. South African Journal of Botany, 2022, 146: 58-65. doi: 10.1016/j.sajb.2021.09.037
[15] BANERJEE K, KRISHNAN P. Normalized sunlit shaded index (NSSI) for characterizing the moisture stress in wheat crop using classified thermal and visible images[J]. Ecological Indicators, 2020, 110: 47-59.
[16] SINGH A, GANAPATHYSUBRAMANIAN B, SINGH A K, et al. Machine learning for high-throughput stress phenotyping in plants[J]. Trends in Plant Science, 2016, 21(2): 110-124. doi: 10.1016/j.tplants.2015.10.015
[17] SINGH A K, SINGH, GANAPATHYSUBRAMANIAN B, SARKAR S, et al. Deep learning for plant stress phenotyping: Trends and future perspectives[J]. Trends in Plant Science, 2018, 23(10): 883-898. doi: 10.1016/j.tplants.2018.07.004
[18] ANAMI B S, MALVADE N N, PALAIAH S. Deep learning approach for recognition and classification of yield affecting paddy crop stresses using field images[J]. Artificial Intelligence in Agriculture, 2020, 4: 12-20. doi: 10.1016/j.aiia.2020.03.001
[19] ZHOU J, LI J X, WANG C S, et al. Crop disease identification and interpretation method based on multimodal deep learning[J]. Computers and Electronics in Agriculture, 2021, 189: 106408.
[20] MOON S K, AMJAD M, QURESHI M, et al. Use of deep learning techniques for identification of plant leaf stresses: A review[J]. Sustainable Computing: Informatics and Systems, 2020, 28: 100443. doi: 10.1016/j.suscom.2020.100443
[21] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. arXiv: 1409. 1556. (2014-01-01) [2022-01-10]. https://arXiv.org/abs/1409.1556.
[22] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE. 2016: 2818-2826.
[23] WU S J, ZHONG S H, LIU Y. Deep residual learning for image steganalysis[J]. Multimedia Tools and Applications, 2018, 77(9): 10437-10453. doi: 10.1007/s11042-017-4440-4
[24] JI M M, WU Z B. Automatic detection and severity analysis of grape black measles disease based on deep learning and fuzzy logic[J]. Computers and Electronics in Agriculture, 2022, 193: 106718. doi: 10.1016/j.compag.2022.106718
[25] LIPPMANN R, BABBEN S, MENGER A, et al. Development of wild and cultivated plants under global warming conditions[J]. Current Biology, 2019, 29(24): R1326-R1338. doi: 10.1016/j.cub.2019.10.016
[26] 易平涛, 李伟伟, 郭亚军. 线性无量纲化方法的结构稳定性分析[J]. 系统管理学报, 2014, 23(1): 104-110. doi: 10.3969/j.issn.1005-2542.2014.01.015 [27] MA J Y, MA Y, LI C. Infrared and visible image fusion methods and applications: A survey[J]. Information Fusion, 2019, 45: 153-178.
[28] WESTERHUIS J A, KOURTI T, MACGREGOR J F. Analysis of multiblock and hierarchical PCA and PLS models[J]. Journal of Chemometrics, 1998, 12(5): 301-321.
[29] HE K M, GKIOXARI G, DOLLÁR P, et al. Mask-R-CNN[C]// 2017 IEEE International Conference on Computer Vision. Veniu, Italy: IEEE, 2017: 2961-2969.
[30] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[31] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015: 640-651.
[32] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2015: 1512-1516.
[33] RUSSELL B C, TORRALBA A, MURPHY K P, et al. LabelMe: A database and web-based tool for image annotation[J]. International Journal of Computer Vision, 2008, 77(1/2/3): 157-173. doi: 10.1007/s11263-007-0090-8
[34] 穆龙涛, 高宗斌, 崔永杰, 等. 基于改进AlexNet的广域复杂环境下遮挡猕猴桃目标识别[J]. 农业机械学报, 2019, 50(10): 24-34. doi: 10.6041/j.issn.1000-1298.2019.10.003 [35] 乔虹, 冯全, 赵兵, 等. 基于Mask R-CNN的葡萄叶片实例分割[J]. 林业机械与木工设备, 2019, 47(10): 15-22. doi: 10.3969/j.issn.2095-2953.2019.10.003 [36] AMARO E G, CANALES J C, CABRERA J E, et al. Identification of diseases and pests in tomato plants through artificial vision[M]//Intelligent Computing Methodologies. Cham: Springer International Publishing, 2020: 98-109.
[37] LI Y R, YANG K M, GAO W, et al. A spectral characteristic analysis method for distinguishing heavy metal pollution in crops: VMD-PCA-SVM[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 255: 119649. doi: 10.1016/j.saa.2021.119649
[38] ANAMI B S, MALVADE N N, PALAIAH S. Classification of yield affecting biotic and abiotic paddy crop stresses using field images[J]. Information Processing in Agriculture, 2020, 7(2): 272-285.