防风枯萎病拮抗真菌的筛选鉴定及防效评价

    王妍, 张福军, 孙卓, 马锋敏, 韩忠明, 赵淑杰, 王云贺, 韩梅, 杨利民

    王妍, 张福军, 孙卓, 等. 防风枯萎病拮抗真菌的筛选鉴定及防效评价[J]. 华南农业大学学报, 2023, 44(2): 263-269. DOI: 10.7671/j.issn.1001-411X.202203035
    引用本文: 王妍, 张福军, 孙卓, 等. 防风枯萎病拮抗真菌的筛选鉴定及防效评价[J]. 华南农业大学学报, 2023, 44(2): 263-269. DOI: 10.7671/j.issn.1001-411X.202203035
    WANG Yan, ZHANG Fujun, SUN Zhuo, et al. Screening, identification and biological control effect of antagonistic fungus against fusarium wilt of Saposhnikovia divaricata[J]. Journal of South China Agricultural University, 2023, 44(2): 263-269. DOI: 10.7671/j.issn.1001-411X.202203035
    Citation: WANG Yan, ZHANG Fujun, SUN Zhuo, et al. Screening, identification and biological control effect of antagonistic fungus against fusarium wilt of Saposhnikovia divaricata[J]. Journal of South China Agricultural University, 2023, 44(2): 263-269. DOI: 10.7671/j.issn.1001-411X.202203035

    防风枯萎病拮抗真菌的筛选鉴定及防效评价

    基金项目: 国家重点研发计划(2019YFC1710700,2019YFC1710702);吉林省科技发展计划(20200404010YY,20210204011YY,20200402104NC);中央财政林业科技推广示范项目(JLT2020-22,JLT2021-03); 国家现代农业产业技术体系建设专项(CARS-21)
    详细信息
      作者简介:

      王妍,硕士研究生,主要从事药用植物病害生物防治研究,E-mail: 2439273609@qq.com

      通讯作者:

      韩忠明,教授,博士,主要从事中药资源生态学研究,E-mail: hanzm2008@126.com

    • 中图分类号: R282.2;S432.1

    Screening, identification and biological control effect of antagonistic fungus against fusarium wilt of Saposhnikovia divaricata

    • 摘要:
      目的 

      从防风根际土中分离筛选出对防风枯萎病具有较强防治效果的生防真菌。

      方法 

      采用对峙培养法从根际土壤中筛选出1株可拮抗尖孢镰刀菌的真菌菌株MR-97,并测定其抑菌谱;根据真菌菌落特征、显微特征,结合ITS序列分析等方法对拮抗菌株进行鉴定;通过显微观察MR-97对尖孢镰刀菌菌丝生长的影响;采用抗生素标记法测定拮抗菌株在土壤中的定殖能力;进行田间盆栽试验,检验MR-97对防风枯萎病的防治效果。

      结果 

      本研究筛选出1株对尖孢镰刀菌抑菌效果为64.44%的拮抗菌株MR-97,其对木贼镰刀菌、灰葡萄孢等8种常见病原菌具有较强的抑菌效果,经鉴定菌株MR-97为土曲霉Aspergillus terreus。MR-97与尖孢镰刀菌对峙培养可使病原菌菌丝产生膨大、畸形、菌丝破损、内含物凝集等现象;在土壤中具有良好的定殖效果,土壤含菌量最高为9.8×106 CFU/g。盆栽试验中,MR-97对防风枯萎病防效为67.86%,防治效果较好。

      结论 

      土曲霉MR-97可有效抑制尖孢镰刀菌等多种病原菌菌丝生长,可在土壤中较快定殖并发挥生防效力。作为优质的生防菌源,MR-97具有一定的开发应用潜力。

      Abstract:
      Objective 

      The present study aimed to screen and isolate the antagonistic fungal strains with strong control effect against fusarium wilt from rhizosphere soil ofSaposhnikovia divaricata.

      Method 

      The strain MR-97, which was antagonistic to Fusarium oxysporum, was isolated from the rhizosphere soil of S. divaricata by confrontation culture method, and its bacteriostatic spectrum was determined. The strain was identified by fungal colony characteristics, microscopic characteristics and ITS sequence analysis. The effect of strain MR-97 on hyphae growth of pathogenic fungus were recorded by microscopic examination. The colonization ability of strain MR-97 in the soil was evaluated by antibiotic marker method. The control effect of strain MR-97 on fusarium wilt of S. divaricata were evaluated by pot experiment in the field.

      Result 

      The antagonistic strain MR-97 was screened with antibacterial rate of 64.44% againstF. oxysporum. It also had strong antibacterial effect against eight common pathogens including F. equiseti and Botrytis cinerea, etc. The strain MR-97 was identified asAspergillus terreus. The hyphal of pathogen enlargement, malformation, damage and agglutinated with inclusions, etc. when the strain MR-97 and F. oxysporum were cultured in confrontation. It had a good colonization effect in the soil, and the highest content of soil bacteria was 9.8×106 CFU/g. The biocontrol effect of MR-97 on fusarium wilt of S. divaricata was 67.86% in pot experiment, which had good control efficiency.

      Conclusion 

      Aspergillus terrestris MR-97 can effectively inhibit the mycelia growth of F. oxysporum and other pathogens, can colonize quickly in soil and has strong biocontrol effect. MR-97 strain, as a good source of biocontrol bacteria, has certain potentials of development and utilization.

    • 图  1   菌株MR-97菌落(a)及显微形态特征(b)

      Figure  1.   Colony (a) and micromorphological characteristics (b) of strain MR-97

      图  2   菌株MR-97基于 rDNA-ITS建立系统发育树

      Figure  2.   The phylogenetic tree of strain MR-47 based on rDNA-ITS sequence

      图  3   菌株MR-97对尖孢镰刀菌菌丝生长的影响

      a:尖孢镰刀菌正常生长状态;b:粗细不均,表面粗糙;c:膨大畸形; d: 干瘪、皱缩、扭曲、折叠

      Figure  3.   Antibacterial effect of strain MR-97 on mycelium growth ofFusarium oxysporum

      a: Normal growth state; b: Uneven thickness and rough surface; c: Swollen malformation; d: Wizened, shrunken, twisted and folded

      表  1   菌株MR-97对盆栽防风枯萎病防病效果1)

      Table  1   Control effect of strain MR-97 on Fusarium wilt of potted Saposhnikovia divaricata

      处理 Treatment 病情指数 Disease index 防效/% Control effect
      清水对照 Water control 50.59±4.29a
      多菌灵500倍液 Carbendazim 500× liquid 16.00±4.23b 68.37±8.36
      枯草芽孢杆菌可湿性粉剂 Bacillus subtilis wettable powder 22.18±3.72b 56.15±7.35
      哈茨木霉可湿性粉剂 Trichoderma harzianum wettable powder 19.59±2.28b 61.27±4.51
      MR-97 16.25±4.47b 67.86±8.84
       1)表中数据为平均值±标准差;同列数据后不同小写字母表示差异显著(P<0.05,Duncan’s法)  1) Data are means ± standard deviations; Different lowercase letters in the same column indicate significant difference(P<0.05, Duncan’s method)
      下载: 导出CSV

      表  2   不同处理对盆栽防风的促生效果1)

      Table  2   Promotion effect of different treatments on growth of potted Saposhnikovia divaricata

      处理 Treatment 株高/cm Plant height 根长/cm Root length 全株鲜质量/g Whole fresh biomass 根鲜质量/g Root fresh biomass 全株干质量/g Whole dry biomass 根干质量/g Root dry biomass
      清水对照 Water control 51.86±2.24a 28.24±1.99a 7.52±0.72b 2.01±0.35b 2.24±0.63a 0.45±0.13b
      多菌灵500倍液 Carbendazim 500× liquid 53.44±3.24a 30.93±3.8a 10.63±2.07b 3.86±0.83ab 2.73±0.08a 1.02±0.39ab
      枯草芽孢杆菌可湿性粉剂 Bacillus subtilis wettable powder 50.63±2.33a 29±0.38a 7.67±1.03b 2.32±0.58b 1.94±0.78a 0.52±0.03b
      哈茨木霉可湿性粉剂 Trichoderma harzianum wettable powder 48.95±1.92a 27.88±2.57a 7.43±1.87b 3.44±1.57b 2.09±0.53a 1.02±0.3ab
      MR-97 55.21±10.95a 32.71±4.34a 18.11±2.5a 6.69±2.92a 4.55±2.8a 1.55±0.63a
       1)表中数据为平均值±标准差;同列数据后不同小写字母表示差异显著(P<0.05,Duncan’s法)  1) Data are means ± standard deviations; Different lowercase letters in the same column indicate significant difference (P<0.05, Duncan’s method)
      下载: 导出CSV
    • [1] 国家药典委员会. 中华人民共和国药典一部: 2020年版[M]. 北京: 中国医药科技出版社, 2020: 156-157.
      [2] 高微微. 常用中草药病虫害防治手册[M]. 北京: 中国农业出版社, 2004: 142-144.
      [3] 董超, 方香玲. 植物病原真菌尖孢镰刀菌检测与定量研究进展[J]. 草地学报, 2021, 29(7): 1599-1604.
      [4] 文增叶, 李定华, 代梦瑶, 等. 三七根腐病病原菌尖孢镰刀菌的生物学特性分析[J]. 中药材, 2019, 42(9): 1978-1984. doi: 10.13863/j.issn1001-4454.2019.09.003
      [5] 沈宝宇, 刘坤, 张天静, 等. 辽五味根腐病的病原菌鉴定与室内药剂筛选[J]. 中药材, 2021, 44(7): 1554-1558. doi: 10.13863/j.issn1001-4454.2021.07.003
      [6] 黄幸鸽, 李美芽, 杨蒋舜, 等. 白术根腐病病原菌的分离鉴定及特性研究[J]. 中华中医药杂志, 2021, 36(5): 2908-2911.
      [7] 吴依婷, 姚传威, 邓波侠, 等. 黄精根腐病分离菌及其拮抗内生细菌的鉴定[J]. 浙江农业学报, 2018, 30(12): 2087-2093. doi: 10.3969/j.issn.1004-1524.2018.12.14
      [8] 王泽华, 方香玲. 尖孢镰刀菌遗传多样性研究进展[J]. 中国草地学报, 2021, 43(5): 106-114. doi: 10.16742/j.zgcdxb.20200275
      [9] 雷艳宜, 韩文节, 欧志鹏, 等. QuEChERS结合质谱法测定食用菌中13种农药残留[J]. 食品安全质量检测学报, 2021, 12(16): 6544-6551. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.16.033
      [10] 张余杰, 陈文龙, 杨琳, 等. 小贯小绿叶蝉的化防农药及其抗药性发展状况[J]. 农药, 2017, 56(4): 239-245. doi: 10.16820/j.cnki.1006-0413.2017.04.002
      [11] 陆涛, 李燕, 傅正伟, 等. 农药对根际微生物群落的影响及潜在风险[J]. 农药学学报, 2019, 21(5): 865-870.
      [12]

      UEYAMA J, HARADA K, KOIZUMI A, et al. Temporal levels of urinary neonicotinoid and dialkylphosphate concentrations in Japanese women between 1994 and 2011[J]. Environmental Science & Technology, 2015, 49(24): 14522-14528.

      [13] 杨利民. 中药材生态种植理论与技术前沿[J]. 吉林农业大学学报, 2020, 42(4): 355-363.
      [14] 孙卓, 杨利民. 人参灰霉病拮抗细菌的筛选及鉴定[J]. 植物保护学报, 2016, 43(6): 935-942. doi: 10.13802/j.cnki.zwbhxb.2016.06.008
      [15]

      SWEHLA A, PANDEY A K, NAIR R M. Bioactivity of Trichoderma harzianum isolates against the fungal root rot pathogens with special reference to Macrophomina phaseolina causing dry root rot of mungbean[J]. Indian Phytopathology, 2020, 73(4): 787-792. doi: 10.1007/s42360-020-00288-x

      [16]

      DAROODI Z, TAHERI P, TARIGHI S. Direct antagonistic activity and tomato resistance induction of the endophytic fungus Acrophialophora jodhpurensis against Rhizoctonia solani[J]. Biological Control, 2021, 160(2): 104696. doi: 10.1016/j.biocontrol.2021.104696.

      [17] 高芬, 赵晓霞, 闫欢, 等. 黄芪根腐病拮抗芽孢杆菌的筛选鉴定及其对根围细菌群落的影响[J]. 中国中药杂志, 2019, 44(18): 3942-3947. doi: 10.19540/j.cnki.cjcmm.20190701.108
      [18] 薛伟. 防风病害的病原鉴定及室内药剂筛选[D]. 长春: 吉林农业大学, 2008.
      [19] 马静, 田义新, 王志清, 等. 防风内生拮抗细菌的分离与鉴定[J]. 吉林农业大学学报, 2022, 44(3): 323-328. doi: 10.13327/j.jjlau.2021.5416
      [20] 王梦奇, 刘丽玲, 李海洋, 等. 防风枯斑病的病原学及药剂敏感性[J]. 吉林农业大学学报, 2018, 40(1): 34-42. doi: 10.13327/j.jjlau.2017.3475
      [21] 魏景超. 真菌鉴定手册[M]. 上海: 上海科学技术出版社, 1979: 132-134.
      [22] 齐祖同, 主编, 中国科学院中国孢子植物志编辑委员会. 中国真菌志: 第五卷: 曲霉属及其相关有性型[M]. 上海: 科学出版社, 1995: 61-62.
      [23]

      LIU Q, CHEN S. Two novel species of Calonectria isolated from soil in a natural forest in China[J]. MycoKeys, 2017, 26: 25-60. doi: 10.3897/mycokeys.26.14688

      [24] 肖春萍. 人参根际土壤微生物多样性及其生防真菌资源开发研究[D]. 长春: 吉林农业大学, 2015.
      [25] 庄园. 黄瓜和番茄枯萎病生防菌的筛选及鉴定[D]. 哈尔滨: 东北农业大学, 2020.
      [26] 佟昀铮. 玉米茎腐病生防菌鉴定及其绿色防控关键技术研究[D]. 长春: 吉林大学, 2021.
      [27] 杨志强. 两种曲霉抗柑橘青霉菌活性化学成分研究[D]. 赣州: 赣南师范大学, 2020.
      [28] 吕恒, 牛永春, 邓晖, 等. 根际真菌对黄瓜土传病害的抑制作用[J]. 应用生态学报, 2015, 26(12): 3759-3765. doi: 10.13287/j.1001-9332.20150929.012
      [29] 祁超, 寸海春, 何鹏飞, 等. 生防菌YN201490在黄瓜植株体内的定殖能力及防病机制的初步研究[J]. 云南大学学报(自然科学版), 2019, 41(1): 172-180.
      [30] 张屹, 何英, 肖姬玲, 等. 棘孢木霉M45a的定殖能力及其对水稻促生作用研究[J]. 安徽农业大学学报, 2021, 48(2): 261-265.
    图(3)  /  表(2)
    计量
    • 文章访问数:  167
    • HTML全文浏览量:  5
    • PDF下载量:  314
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-03-18
    • 网络出版日期:  2023-05-17
    • 刊出日期:  2023-03-09

    目录

      YANG Limin

      1. On this Site
      2. On Google Scholar
      3. On PubMed

      /

      返回文章
      返回