• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

大豆GmMADS4基因克隆、亚细胞定位及功能分析

薛迎斌, 宋佳, 李枭艺, 李小豪, 陈经烨, 伍萍珍, 朱胜男, 刘颖

薛迎斌, 宋佳, 李枭艺, 等. 大豆GmMADS4基因克隆、亚细胞定位及功能分析[J]. 华南农业大学学报, 2023, 44(3): 420-429. DOI: 10.7671/j.issn.1001-411X.202203010
引用本文: 薛迎斌, 宋佳, 李枭艺, 等. 大豆GmMADS4基因克隆、亚细胞定位及功能分析[J]. 华南农业大学学报, 2023, 44(3): 420-429. DOI: 10.7671/j.issn.1001-411X.202203010
XUE Yingbin, SONG Jia, LI Xiaoyi, et al. Cloning, subcellular localization and functional analysis of GmMADS4 in soybean[J]. Journal of South China Agricultural University, 2023, 44(3): 420-429. DOI: 10.7671/j.issn.1001-411X.202203010
Citation: XUE Yingbin, SONG Jia, LI Xiaoyi, et al. Cloning, subcellular localization and functional analysis of GmMADS4 in soybean[J]. Journal of South China Agricultural University, 2023, 44(3): 420-429. DOI: 10.7671/j.issn.1001-411X.202203010

大豆GmMADS4基因克隆、亚细胞定位及功能分析

基金项目: 国家自然科学基金(32002131);广东省自然科学基金(2020A1515011570);广东海洋大学“南海青年学者”项目(002029001012)
详细信息
    作者简介:

    薛迎斌,讲师,博士,主要从事植物抗逆研究,E-mail: yingbinxue@yeah.net

    宋佳,硕士研究生,主要从事植物抗逆研究,E-mail: S929497809@163.com;†表示同等贡献

    通讯作者:

    朱胜男,讲师,博士,主要从事植物抗逆研究,E-mail: shnzhu@163.com

    刘 颖,副教授,博士,主要从事植物抗逆研究,E-mail: liuying85168@126.com

  • 中图分类号: S184

Cloning, subcellular localization and functional analysis of GmMADS4 in soybean

  • 摘要:
    目的 

    挖掘大豆Glycine max MADS转录因子家族成员GmMADS4基因信息,分析其结构及功能。

    方法 

    通过生物信息学分析,对GmMADS4基因进行基因结构、编码蛋白信息、保守结构域、系统进化树以及互作蛋白预测等分析。利用烟草叶片瞬时转化法分析亚细胞定位,通过RT-qPCR进行组织部位及响应缺素的表达模式分析,利用下胚轴复合植株转化法分析超量表达GmMADS4对转基因毛根生长的影响。

    结果 

    GmMADS4基因开放阅读框长732 bp,编码蛋白相对分子质量为28 000;保守结构域含有MADS-box和K-box,属于II型MADS家族成员,与拟南芥的AtAP3相似性较高;GmMADS4在大豆多个部位均有表达,且在花和种子中的表达量较高;缺氮和缺磷处理均显著增加GmMADS4在叶和根部的表达量;GmMADS4主要定位在细胞核,超量表达GmMADS4显著增加转基因毛根的可溶性磷含量。

    结论 

    GmMADS4属于大豆II型MADS家族成员,具有核定位功能,可能在大豆种子和花的发育过程中发挥作用,并参与大豆根部缺磷响应及磷稳态调节。

    Abstract:
    Objective 

    To explore the genetic information of GmMADS4, a member of soybean (Glycine max) MADS transcription factor family, and analyze its structure and function.

    Method 

    The structure, coding protein information, conserved domain, phylogenetic tree analysis and interaction protein prediction of GmMADS4 were analyzed by bioinformatics analysis. Transient transformation of tobacco leaves was used to analyze subcellular localization, RT-qPCR was used to analyze its expression patterns in different tissues and response to nutrient deficiency, and hypocotyl complex plant transformation method was used to analyze the effects of overexpression of GmMADS4 on transgenic hair root growth.

    Result 

    The length of open reading frame of GmMADS4 was 732 bp and the relative molecular mass of coding protein was 28 000. The conserved domain of GmMADS4 contained MADS-box and K-box, which was a member of type II MADS family, and had a high similarity with Arabidopsis AtAP3. GmMADS4 was expressed in many parts of soybean, especially in flowers and seeds. The expression of GmMADS4 in leaves and roots significantly increased by nitrogen and phosphorus deficiency induction. GmMADS4 was mainly located in the nucleus, and overexpression of GmMADS4 significantly increased soluble phosphate content in transgenic hair roots.

    Conclusion 

    GmMADS4 is a member of soybean type II MADS family, and has nuclear localization function, which may play a role in the development of soybean seeds and flowers, as well as participate in soybean root adaptive responses to phosphorus deficiency and the regulation of phosphate homeostasis.

  • 图  1   GmMADS4基因结构及保守结构域预测

    Figure  1.   Gene structure and conserved domain prediction of GmMADS4

    图  2   GmMADS4蛋白二级结构预测

    大写字母表示GmMADS4蛋白氨基酸序列;小写字母代表不同的二级结构,h代表α螺旋,c代表无规则卷曲,e代表延伸链,t代表β转角

    Figure  2.   Secondary structure prediction of GmMADS4

    Capital letters indicate amino acid sequence of GmMADS4 protein; Lowercase letters represent different secondary structures, where h stands for α helix, c for random coil, e for extended strand, and t for β turn

    图  3   MADS家族蛋白系统进化树分析

    Figure  3.   Phylogenetic tree analysis of MADS family proteins

    图  4   GmMADS4互作蛋白预测

    不同颜色的圆球表示不同的蛋白,其中红色为GmMADS4;直线相连的2个蛋白预测存在相互作用

    Figure  4.   Interaction protein prediction of GmMADS4

    Different colored spheres indicate different proteins, red is GmMADS4; Two proteins connected in a straight line are predicted to have an interaction

    图  5   GmMADS4基因克隆及酶切检测

    A:GmMADS4基因PCR扩增,B:GmMADS4-pTF101s重组质粒酶切检测;M代表DNA marker,P代表PCR产物,泳道1为重组质粒酶切前,泳道2为重组质粒酶切后

    Figure  5.   Cloning and enzyme digestion of GmMADS4

    A: PCR amplification of GmMADS4 gene, B: Digestion verification of GmMADS4-pTF101s recombinant plasmid; M represents DNA marker, P represents PCR product, lane 1 is the recombinant plasmid before digestion, lane 2 is the recombinant plasmid after digestion

    图  6   GmMADS4在大豆不同部位的表达分析

    Figure  6.   Expression pattern analysis of GmMADS4 in different soybean organs

    图  7   GmMADS4在大豆根和叶中响应缺素的表达模式分析

    “*”表示缺素处理与对照相比差异显著(P < 0.05,t检验)

    Figure  7.   Expression pattern analysis of GmMADS4 in response to element deficiency in soybean roots and leaves

    “*” indicates significant difference between element deficiency treatment and control (P < 0.05, t test)

    图  8   GmMADS4亚细胞定位分析

    Figure  8.   Subcellular localization analysis of GmMADS4

    图  9   超量表达GmMADS4转基因复合植株的生长表型

    Figure  9.   Growth phenotypes of overexpressing GmMADS4 transgenic composite plants

    图  10   超量表达GmMADS4对大豆复合植株生物量和可溶性磷含量的影响

    “*”表示对照和超量表达处理差异显著(P < 0.05,t检验)

    Figure  10.   Effects of overexpressing GmMADS4 on biomass and soluble phosphorus content of soybean composite plants

    “*” indicates significant difference between control and overexpression treatment (P < 0.05, t test)

    表  1   本研究所用到的引物

    Table  1   Primers used in this study

    引物名称 Primer name 引物序列(5′→3′)1)Primer sequence 注释 Annotation
    OE-GmMADS4-F C GAGCTCATGGGTCGTGGCAAGAT 超量表达 Overexpression
    OE-GmMADS4-R GC TCTAGATCAAGCAAGGCGAAGGTC
    GFP-GmMADS4-F GG GGTACCGATGGGTCGTGGCAAGAT 融合绿色荧光蛋白 Fused with GFP
    GFP-GmMADS4-R CG GGATCCCGAGCAAGGCGAAGGTCATG
    RT-GmMADS4-F GAGACAGATCAGGCATAGGA RT-qPCR
    RT-GmMADS4-R CCTACAGGTATCAGTCCGAG
    RT-GmEF-1α-F TGCAAAGGAGGCTGCTAACT RT-qPCR
    RT-GmEF-1α-R CAGCATCACCGTTCTTCAAA
     1) 下划线为酶切位点  1) The restriction sites are underlined
    下载: 导出CSV
  • [1]

    ALVAREZ-BUYLLA E R, PELAZ S, LILJEGREN S J, et al. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(10): 5328-5333. doi: 10.1073/pnas.97.10.5328

    [2]

    BECKER A, THEISSEN G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants[J]. Molecular Phylogenetics and Evolution, 2003, 29(3): 464-489. doi: 10.1016/S1055-7903(03)00207-0

    [3] 王莹, 穆艳霞, 王锦. MADS-box基因家族调控植物花器官发育研究进展[J]. 浙江农业学报, 2021, 33(6): 1149-1158.
    [4]

    PAUL P, DHATT B K, MILLER M, et al. MADS78 and MADS79 are essential regulators of early seed development in rice[J]. Plant Physiology, 2020, 182(2): 933-948. doi: 10.1104/pp.19.00917

    [5]

    KANG I H, STEFFEN J G, PORTEREIKO M F, et al. The AGL62 MADS domain protein regulates cellularization during endosperm development in Arabidopsis[J]. The Plant Cell, 2008, 20(3): 635-647. doi: 10.1105/tpc.107.055137

    [6]

    ZHANG G, XU N, CHEN H, et al. OsMADS25 regulates root system development via auxin signalling in rice[J]. The Plant Journal, 2018, 95(6): 1004-1022. doi: 10.1111/tpj.14007

    [7]

    MA W Y, LIU W, HOU W S, et al. GmNMH7, a MADS-box transcription factor, inhibits root development and nodulation of soybean (Glycine max [L.] Merr.)[J]. Journal of Integrative Agriculture, 2019, 18(3): 553-562. doi: 10.1016/S2095-3119(18)61992-6

    [8] 姚琦园, 李纷芬, 张林成, 等. 植物MADS-box转录因子参与调控非生物胁迫的研究进展[J]. 江西农业学报, 2018, 30(5): 73-79. doi: 10.19386/j.cnki.jxnyxb.2018.05.15
    [9]

    ZHAO P X, ZHANG J, CHEN S Y, et al. Arabidopsis MADS-box factor AGL16 is a negative regulator of plant response to salt stress by downregulating salt-responsive genes[J]. New Phytologist, 2021, 232(6): 2418-2439. doi: 10.1111/nph.17760

    [10] 闫凌月, 张豪健, 郑雨晴, 等. 转录因子OsMADS25提高水稻对低温的耐受性[J]. 遗传, 2021, 43(11): 1078-1087. doi: 10.16288/j.yczz.21-217
    [11]

    ZHANG X, LI L, YANG C, et al. GsMAS1 encoding a MADS-box transcription factor enhances the tolerance to aluminum stress in Arabidopsis thaliana[J]. International Journal of Molecular Sciences, 2020, 21(6): 2004. doi: 10.3390/ijms21062004.

    [12]

    YU C, SU S, XU Y, et al. The effects of fluctuations in the nutrient supply on the expression of five members of the AGL17 clade of MADS-box genes in rice[J]. PLoS One, 2014, 9(8): e105597. doi: 10.1371/journal.pone.0105597

    [13] 曹永强, 王昌陵, 王文斌, 等. 国内外大豆产业、科技现状浅析与我国大豆产业发展思考[J]. 辽宁农业科学, 2019(6): 44-48. doi: 10.3969/j.issn.1002-1728.2019.06.011
    [14] 田江, 梁翠月, 陆星, 等. 根系分泌物调控植物适应低磷胁迫的机制[J]. 华南农业大学学报, 2019, 40(5): 175-185. doi: 10.7671/j.issn.1001-411X.201905068
    [15] 李欣欣, 杨永庆, 钟永嘉, 等. 豆科作物适应酸性土壤的养分高效根系遗传改良[J]. 华南农业大学学报, 2019, 40(5): 186-194. doi: 10.7671/j.issn.1001-411X.201905067
    [16] 刘国选, 陈康, 陆星, 等. 大豆GmPIN2b调控根系响应低磷胁迫的功能研究[J]. 华南农业大学学报, 2021, 42(4): 33-41. doi: 10.7671/j.issn.1001-411X.202010014
    [17]

    FAN C M, WANG X, WANG Y W, et al. Genome-wide expression analysis of soybean MADS genes showing potential function in the seed development[J]. PLoS One, 2013, 8(4): e62288. doi: 10.1371/journal.pone.0062288

    [18]

    YAO Z, TIAN J, LIAO H. Comparative characterization of GmSPX members reveals that GmSPX3 is involved in phosphate homeostasis in soybean[J]. Annals of Botany, 2014, 114(3): 477-488. doi: 10.1093/aob/mcu147

    [19]

    ZHU S, CHEN M, LIANG C, et al. Characterization of purple acid phosphatase family and functional analysis of GmPAP7a/7b involved in extracellular ATP utilization in soybean[J]. Frontiers in Plant Science, 2020, 11: 661. doi: 10.3389/fpls.2020.00661.

    [20]

    LIU Y, XUE Y, XIE B, et al. Complex gene regulation between young and old soybean leaves in responses to manganese toxicity[J]. Plant Physiology and Biochemistry, 2020, 155: 231-242. doi: 10.1016/j.plaphy.2020.07.002

    [21]

    ZHUANG Q, XUE Y, YAO Z, et al. Phosphate starvation responsive GmSPX5 mediates nodule growth through interaction with GmNF-YC4 in soybean (Glycine max)[J]. The Plant Journal, 2021, 108(5): 1422-1438. doi: 10.1111/tpj.15520

    [22]

    MURPHY J, RILEY J P. A modifed single solution method for the determination of phosphate in natural water[J]. Analytica Chimica Acta, 1962, 27: 31-36. doi: 10.1016/S0003-2670(00)88444-5

    [23]

    JACK T, BROCKMAN L L, MEYEROWITZ E M. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens[J]. Cell, 1992, 68(4): 683-697. doi: 10.1016/0092-8674(92)90144-2

    [24]

    PAR̆ENICOVÁ L, DE FOLTER S, KIEFFER M, et al. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis[J]. The Plant Cell, 2003, 15(7): 1538-1551. doi: 10.1105/tpc.011544

    [25]

    SMACZNIAK C, IMMINK R G, MUINO J M, et al. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(5): 1560-1565. doi: 10.1073/pnas.1112871109

    [26]

    NAN H, CAO D, ZHANG D, et al. GmFT2a and GmFT5a redundantly and differentially regulate flowering through interaction with and upregulation of the bZIP transcription factor GmFDL19 in soybean[J]. PLoS One, 2014, 9(5): e97669. doi: 10.1371/journal.pone.0097669

    [27]

    CASTELAN-MUNOZ N, HERRERA J, CAJERO-SANCHEZ W, et al. MADS-box genes are key components of genetic regulatory networks involved in abiotic stress and plastic developmental responses in plants[J]. Frontiers in Plant Science, 2019, 10: 853. doi: 10.3389/fpls.2019.00853.

    [28]

    GAN Y, FILLEUR S, RAHMAN A, et al. Nutritional regulation of ANR1 and other root-expressed MADS-box genes in Arabidopsis thaliana[J]. Planta, 2005, 222(4): 730-742. doi: 10.1007/s00425-005-0020-3

    [29]

    GAN Y B, ZHOU Z J, AN L J, et al. A comparison between northern blotting and quantitative real-time PCR as a means of detecting the nutritional regulation of genes expressed in roots of Arabidopsis thaliana[J]. Agricultural Sciences in China, 2011, 10(3): 335-342. doi: 10.1016/S1671-2927(11)60012-6

    [30]

    GAN Y, BERNREITER A, FILLEUR S, et al. Overexpressing the ANR1 MADS-box gene in transgenic plants provides new insights into its role in the nitrate regulation of root development[J]. Plant and Cell Physiology, 2012, 53(6): 1003-1016. doi: 10.1093/pcp/pcs050

    [31]

    YAN Y, WANG H, HAMERA S, et al. MiR444a has multiple functions in the rice nitrate-signaling pathway[J]. The Plant Journal, 2014, 78(1): 44-55. doi: 10.1111/tpj.12446

    [32]

    HUANG S, LIANG Z, CHEN S, et al. A transcription factor, OsMADS57, regulates long-distance nitrate transport and root elongation[J]. Plant Physiology, 2019, 180(2): 882-895. doi: 10.1104/pp.19.00142

    [33]

    MA J, YANG Y, LUO W, et al. Genome-wide identification and analysis of the MADS-box gene family in bread wheat (Triticum aestivum L.)[J]. PLoS One, 2017, 12(7): e0181443. doi: 10.1371/journal.pone.0181443

图(10)  /  表(1)
计量
  • 文章访问数:  213
  • HTML全文浏览量:  25
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-03
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2023-05-09

目录

    Corresponding author: LIU Ying, liuying85168@126.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回