• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

磁场对异丙甲草胺除草剂溶液表面张力与雾滴粒径的影响规律

王云超, 翟华博, 宫金良, 张彦斐

王云超, 翟华博, 宫金良, 等. 磁场对异丙甲草胺除草剂溶液表面张力与雾滴粒径的影响规律[J]. 华南农业大学学报, 2023, 44(2): 324-332. DOI: 10.7671/j.issn.1001-411X.202202020
引用本文: 王云超, 翟华博, 宫金良, 等. 磁场对异丙甲草胺除草剂溶液表面张力与雾滴粒径的影响规律[J]. 华南农业大学学报, 2023, 44(2): 324-332. DOI: 10.7671/j.issn.1001-411X.202202020
WANG Yunchao, ZHAI Huabo, GONG Jinliang, et al. Effect of magnetic field on surface tension and droplet size of metolachlor herbicide solution[J]. Journal of South China Agricultural University, 2023, 44(2): 324-332. DOI: 10.7671/j.issn.1001-411X.202202020
Citation: WANG Yunchao, ZHAI Huabo, GONG Jinliang, et al. Effect of magnetic field on surface tension and droplet size of metolachlor herbicide solution[J]. Journal of South China Agricultural University, 2023, 44(2): 324-332. DOI: 10.7671/j.issn.1001-411X.202202020

磁场对异丙甲草胺除草剂溶液表面张力与雾滴粒径的影响规律

基金项目: 山东省重点研发计划“重大科技创新工程”(2020CXGC010804);山东省自然科学基金(ZR2021MC026);淄博市重点研发计划“校城融合类”(2019ZBXC200)
详细信息
    作者简介:

    王云超,硕士研究生,主要从事地面植保机器人施药系统设计研究,E-mail: 872208066@qq.com

    通讯作者:

    张彦斐,教授,博士,主要从事生态无人农场技术研究,E-mail: 1392076@sina.com

  • 中图分类号: S499

Effect of magnetic field on surface tension and droplet size of metolachlor herbicide solution

  • 摘要:
    目的 

    研究磁化作用对除草剂溶液表面张力及除草剂喷雾雾滴粒径的影响规律,探索新型除草剂喷雾雾滴粒径控制方法。

    方法 

    设计磁化除草剂溶液表面张力试验和磁化喷雾雾滴粒径试验,记录不同磁场强度和磁化时长2个影响因素下除草剂溶液表面张力和喷雾雾滴粒径,观测数据变化规律;并对数据进行拟合,给出符合数据变化的函数关系式。

    结果 

    在磁场强度为50~500 mT、磁化时长为5.0~25.0 min范围内,溶液表面张力和喷雾雾滴粒径均随磁场强度和磁化时长的增加呈现先下降后回升的趋势;当磁场强度为350 mT、磁化时长为15.0 min时,表面张力和雾滴粒径下降幅度最大,表面张力为54.0 mN/m,下降14.96%,喷雾雾滴粒径为108.75 μm,下降11.20%。对表面张力数据进行拟合,洛伦兹拟合函数的决定系数(R2)为0.816 4,调整后R2为0.794 0,均方根误差(Root mean square error,RMSE)为1.105 9;雾滴粒径数据拟合中,多项式拟合函数的R2为0.833 6,调整后R2为0.787 4,RMSE为2.085 7。拟合函数有意义且拟合精度较高。

    结论 

    磁化作用并不是磁场强度越大或磁化时长越长磁化效果越好,而是存在最佳磁化处理强度和磁化时长;本研究给出的洛伦兹模型函数可作为除草剂溶液表面张力与磁化作用的函数关系式,三次多项式函数可作为350 mT磁场强度下雾滴粒径调控模型。

    Abstract:
    Objective 

    To study the effect of magnetization on surface tension of herbicide solution and particle size of herbicide spray droplet, and explore a new control method of particle size of herbicide spray droplet.

    Method 

    The surface tension experiment of the magnetized herbicide solution and the particle size experiment of the magnetized spray droplet were designed to record the surface tension value of the herbicide solution and the particle size value of the spray droplet under the influence of two factors of different magnetic field intensity and magnetization duration, observe the change rule of the data, and fit the data, and give the functional relationship that conforms to the description of the data change.

    Result 

    When the magnetic field intensity was 50−500 mT and magnetization duration was 5.0−25.0 min, both the surface tension of solution and the particle size of spray droplet decreased firstly and then rose with the increase of magnetic field intensity and magnetization duration. When the magnetic field intensity was 350 mT and magnetization duration was 15.0 min, the surface tension and particle size of spray droplet decreased the most. The surface tension value decreased to 54.0 mN/m with a drop rate of 14.96%, and the spray droplet size decreased to 108.75 μm with a drop rate of 11.20%. For surface tension data, the determination coefficient (R2) of Lorentz fitting function was 0.816 4, adjusted R2 was 0.794 0, root mean square error (RMSE) was 1.105 9; And the R2 of polynomial fitting function for spray droplet size data was 0.833 6, adjusted R2 was 0.787 4, RMSE was 2.085 7. The fitting function was meaningful and the fitting precision was high.

    Conclusion 

    It is not that the magnetization effect will be better with the increase of magnetic field intensity or magnetization duration, but that the optimal magnetization intensity and duration exist. The Lorentz model function given in this paper can be used as the function relation between the surface tension of herbicide solution and magnetization, and the cubic polynomial function can be used as the model for controlling the particle size of fog droplets under the magnetic field intensity of 350 mT.

  • 生物磁学(Biomagnetism)是生物学和磁学相互交叉的一门新型学科,主要探究生物磁效应及磁现象、外磁场对生物体的影响[1-2]。生物磁学方向的研究已吸引众多领域相关专家的高度关注。生物磁学目前已经普遍应用于环境保护工程、农业、林业等许多领域,且已取得巨大的收益,其中,在农、林业领域采用最多的为磁化水[3]。磁化水是指以一定的流速通过磁场,受磁力线切割使自身的理化性质发生变化的水或水溶液[4-6]

    在磁化水性质方面,Cai等[7]和Lee等[8]研究了磁场对水溶液表面张力的影响,结果表明磁化作用使水溶液表面张力降低,在1 T磁场强度下磁化时间从1 min增加到13 min时,水溶液表面张力从68.5 mN/m下降到62.5 mN/m。对矿井水、纯水和自来水在不同磁场强度及不同磁化时长下表面张力的变化规律进行研究,发现并不是磁场强度越大或磁化时间越长磁化效果就越好,而是存在最佳磁场强度和最佳磁化时间;在不同的磁场强度下,表面张力随磁化时间的延长呈先减小后增加的趋势,在磁场强度为300 mT、磁化时间为15 min时表面张力下降幅度最大,为25%[9-12]。Toledo等[13]和Wang等[14]研究了磁场强度为270、530 mT,磁化时长为20、40、60 min条件下自来水表面张力变化情况,通过与未磁化自来水的表面张力进行对比,发现经磁化后自来水的表面张力均有所减小。

    上述研究均是针对磁化作用对自来水、纯水或矿井水表面张力的影响进行的,当前相关领域鲜见在磁化作用对除草剂或其他植保药剂表面张力的影响方向展开研究。药液表面张力与喷雾雾滴粒径呈密切的正相关关系[15-16],目前磁化作用对除草剂溶液喷雾雾滴粒径影响的研究较少。

    本文通过磁化除草剂溶液表面张力试验和磁化喷雾雾滴粒径试验,研究磁化作用对除草剂溶液表面张力与除草剂喷雾雾滴粒径的影响,分别给出表面张力、雾滴粒径与磁场强度和磁化时间的二元函数,为研究磁化除草剂机理提供理论参考;并使用固定磁场强度调整磁化时长,给出控制除草剂喷雾雾滴粒径的函数关系式,为控制除草剂喷雾雾滴粒径提供新的参考方法。

    表面张力仪(本创仪器,BCZ-600,测试范围:0~200 mN/m,准确度:±0.02 mN/m,山东省淄博市);程控功率电流源(北京翠海佳诚,F2031,有效输出电压范围:0~60 V,输出电流范围:−5~5 A,高步进分辨率:0.1 mA,北京市);数字高斯计(北京翠海佳诚,H-1600,读数精度:±2%,分辨率:0.000 01 mT,北京市);双轭双调气隙电磁铁(北京翠海佳诚,CH-50,极面直径:50 mm,磁极间隙:0~80 mm,最大磁场强度:1 T,北京市);激光粒度分析仪(欧美可,DP-02,测试范围:1~1 500 µm,重复性误差:<3%,单次测试时长:1~2 min,独立探测单元数:48,光源:He-Ne激光器,光源波长:0.632 8 μm,北京市);隔膜泵(额定工作电压:12 V,额定功率:60 W,最大工作压力:0.8 MPa,流量:5 L/min);可调直流稳压电源(迈胜,MS305D,显示精度:3位数字显示,可调电压范围:0~30 V,可调电流范围:0~5 A,广东省);压力表(伊莱科,YTN-60,量程:0~1 MPa,刻度:0.02 MPa,精度:±2.5%,浙江省);F110-01型植保雾化喷头;烧杯;玻璃器皿等。

    Esmaeilnezhad等[17]研究表明,水溶液表面张力随液体温度的升高逐渐减小,因此在试验过程中保持试验环境温度为26 ℃。按照除草剂与自来水1∶300的体积比配置异丙甲草胺除草剂溶液。设定最短磁化时间为5.0 min,最长磁化时间为25.0 min,以5 min为公差进行递增磁化,实际磁化时长可根据试验结果进行细化调整,试验中实际磁化时长见表1,试验共分11组处理,处理1为对照组,处理2~11为试验组,共48组试验,每组试验重复4次。处理1用塑料烧杯量取40 mL溶液,使用表面张力仪(图1)按照仪器使用方法[12]测未磁化状态下溶液的表面张力,测试结果显示在仪器屏幕上,为保证数据准确性,重复测3次取平均值,为63.5 mN/m,当作对照值。处理2~11均使用静态磁化处理,以处理2为例,调整程控功率电流源使两磁极间磁场强度为50 mT,量取40 mL溶液置于塑料烧杯中,将烧杯夹紧于双轭双调气隙电磁铁两磁极中间进行磁化处理,如图2所示。磁化水表面张力状态约能保持25 min[12, 18],为确保所有试验组各变量一致,磁化完毕后立即用表面张力仪测试溶液表面张力并记录数据。之后每个处理的磁场强度递增50 mT,且各处理的操作步骤参照处理2进行。

    表  1  磁化除草剂溶液表面张力试验设计表
    Table  1.  Test program list of surface tension of magnetized pesticide solution
    处理编号 No. of treatment 磁场强度/mT Magnetic field intensity 磁化时间/min Magnetization time
    1 0
    2 50 5.0、10.0、15.0、17.5、20.0
    3 100 5.0、10.0、15.0、20.0、25.0
    4 150 5.0、10.0、15.0、20.0、25.0
    5 200 5.0、10.0、15.0、17.5、20.0
    6 250 5.0、10.0、15.0、17.5、20.0
    7 300 5.0、10.0、15.0、17.5、20.0
    8 350 5.0、10.0、15.0、17.5、20.0
    9 400 5.0、10.0、12.5、15.0
    10 450 5.0、10.0、12.5、15.0
    11 500 5.0、10.0、12.5、15.0
    下载: 导出CSV 
    | 显示表格
    图  1  表面张力仪
    Figure  1.  Surface tension instrument
    图  2  静态磁化
    Figure  2.  Static magnetization

    喷施压力是影响喷雾雾滴粒径的关键因素[19-20],试验中通过手动调整隔膜泵调压螺丝,设定喷施压力为0.3 MPa,使用稳压电源供给隔膜泵稳定的12 V额定工作电压,确保所有试验组喷施压力一致;扇形喷面不同位置的雾滴粒径也有较大差别[21],所有试验组雾滴粒径测试点设定为扇形喷面对称中心线上距离喷头40 cm处。试验环境温度保持为26 ℃,喷施系统管长(磁极至雾化喷头水管长度)设为1 m,按照除草剂与自来水1∶300的体积比配置试验溶液。

    由于静态磁化单次最多磁化50 mL溶液,而单次喷雾雾滴粒径测试过程使用溶液量为1 L左右,因此,所有试验组使用的溶液均参照常规方式以一定流速通过磁场进行磁化[22]。为增加磁化效果,使用多排管和循环磁化方式对溶液进行增效磁化,为避免雾滴粒径测试过程中出现溶液量不足的现象,设定单次循环磁化溶液量为3 L,增效磁化装置如图3所示。磁化除草剂雾滴粒径试验设计同表1,循环磁化时长与静态磁化时长对应一致,对照组与试验组共48组试验。处理1不进行磁化处理,用雾滴粒径仪重复测3次取平均值,为122.47 μm,当作对照值,试验中以体积中值直径(Volume median diameter,VMD)表示雾滴直径。处理2设置磁场强度为50 mT,循环磁化完毕后立即用激光粒度仪测磁化后溶液喷雾雾滴粒径并记录数据。之后每个处理磁场强度递增50 mT,操作步骤参照处理2进行。磁化溶液雾滴粒径测试系统如图4所示。

    图  3  增效磁化装置
    Figure  3.  Magnetization enhancement instrument
    图  4  磁化溶液雾滴粒径测试系统
    1:雾化喷头;2:激光粒度仪;3:双轭双调气隙电磁发生系统;4:隔膜泵;5:压力表;6:高斯计;7:程控功率电流源;8:稳压电源;9:水箱
    Figure  4.  Particle size measurement system for droplets of magnetized solution
    1: Atomizing nozzle; 2: Laser particle size analyzer; 3: Dual yoke dual tuned air gap electromagnetic generation system; 4: Diaphragm pump; 5: Pressure gauge; 6: Gauss meter; 7: Programmable power current source; 8: Regulated power supply; 9: Tank

    为了直观地分析磁场强度和磁化时长2个因素共同作用对除草剂溶液表面张力的影响规律,建立以磁场强度和磁化时长为自变量、以溶液表面张力为因变量的二元函数,使用OriginPro 2018绘制磁场强度和磁化时长对表面张力影响规律的空间曲面分布图(图5)。由图5可以看出,磁场强度和磁化时长对溶液表面张力影响规律的空间曲面分布图呈峰值为负值的高斯空间分布规律,即空心圆锥面分布,这说明并不是磁场强度越大或者磁化时间越长,除草剂溶液的表面张力就越小,而是存在处理效果最佳的磁场强度和磁化时长。磁化除草剂溶液表面张力试验结果见表2。当磁场强度为350 mT、磁化时长为15.0 min时,除草剂溶液表面张力值最小,为54.0 mN/m,下降14.96%,磁化效果最佳。

    表  2  磁化除草剂溶液表面张力试验结果
    Table  2.  Results of surface tension test of magnetized herbicide solution
    磁场强度/mT Magnetic field intensity 磁化时长/min Magnetization time 表面张力/(mN·m−1) Surface tension 磁场强度/mT Magnetic field intensity 磁化时长/min Magnetization time 表面张力/(mN·m−1) Surface tension
    50 5.0 63.2 250 20.0 60.3
    50 10.0 62.8 300 5.0 59.5
    50 15.0 62.3 300 10.0 57.6
    50 17.5 62.7 300 15.0 55.2
    50 20.0 63.0 300 17.5 56.3
    100 5.0 62.7 300 20.0 57.5
    100 10.0 61.9 350 5.0 59.4
    100 15.0 61.4 350 10.0 55.6
    100 20.0 61.1 350 15.0 54.0
    100 25.0 61.3 350 17.5 56.2
    150 5.0 62.3 350 20.0 60.5
    150 10.0 61.9 400 5.0 62.2
    150 15.0 60.8 400 10.0 59.6
    150 20.0 60.2 400 12.5 57.2
    150 25.0 60.6 400 15.0 57.9
    200 5.0 62.1 450 5.0 63.0
    200 10.0 60.5 450 10.0 59.0
    200 15.0 59.7 450 12.5 60.4
    200 17.5 58.6 450 15.0 62.1
    200 20.0 58.9 500 5.0 62.5
    250 5.0 61.3 500 10.0 60.9
    250 10.0 59.7 500 12.5 62.4
    250 15.0 59.2 500 15.0 61.7
    250 17.5 57.7      
    下载: 导出CSV 
    | 显示表格
    图  5  磁化除草剂溶液表面张力图
    Figure  5.  Surface tension distribution diagram of magnetized herbicide solution

    为了进一步分析并预测试验中未涉及到的磁场强度和磁化时长对除草剂溶液表面张力的影响,以及给出符合描述表面张力随磁场强度和磁化时长变化的函数关系,使用OriginPro 2018非线性曲面拟合功能分别对磁化除草剂溶液表面张力数据进行最小二乘法多项式拟合、高斯拟合和洛伦兹拟合,函数关系式分别为公式(1)(2)(3)。

    $$ \begin{split} z =& {z_0} + {A_1}x + {A_2}{x^2} + {A_3}{x^3} + {A_4}{x^4} + {A_5}{x^5} +\\ &{B_1}y + {B_2}{y^2} + {B_3}{y^3} + {B_4}{y^4} + {B_5}{y^5} \text{,} \end{split} $$ (1)

    式中,z表示溶液表面张力,z0表示零点偏移量,x表示磁场强度,y表示磁化时长,A1~A5分别为x~x5的系数,B1~B5分别为y~y5的系数。

    $$ z = {z_0} + A\exp \left\{ { - \dfrac{1}{2}\left( {\dfrac{{x - {x_{\rm{c}}}}}{{{w_1}}}} \right) - \dfrac{1}{2}{{\left( {\dfrac{{y - {y_{\rm{c}}}}}{{{w_2}}}} \right)}^2}} \right\} \text{,} $$ (2)

    式中,A表示模型峰值高度,xcyc表示模型峰中心位置,w1w2表示模型峰宽度。

    $$ z{\text{ = }}{z_0}{\text{ + }}\dfrac{A}{{\left[ {1 + {{\left( {\dfrac{{x - {x_{\rm{c}}}}}{{{w_1}}}} \right)}^2}} \right]\left[ {1 + {{\left( {\dfrac{{y - {y_{\rm{c}}}}}{{{w_2}}}} \right)}^2}} \right]}} 。 $$ (3)

    多项式拟合模型的参数(平均值±标准误)如下所示:z0=116.16±43.94,A1=−0.23±0.10,A2=0.002±0.001,A3=(−1.19±0.45)×105A4=(2.25±0.88)×108A5=(−1.91±0.64)×1011B1=−19.950 0±19.724 9,B2=3.22±3.21,B3=−0.24±0.24,B4=0.009±0.008,B5=(−1.22±1.30)×104表3为高斯拟合模型和洛伦兹拟合模型参数,表4为溶液表面张力3种拟合曲线的统计量。由表4可以看出,3种拟合方式的决定系数(R2)均大于0.79,调整后R2 (Adjusted R2)均大于0.73,这说明拟合函数有意义,且均方根误差(Root mean square error,RMSE)都小于1.5。3种拟合模型均能够描述磁场强度和磁化时长对除草剂溶液表面张力的影响,但相比较于其他2种拟合方式,洛伦兹拟合R2为0.816 4,调整后R2为0.794 0,两者均大于其他2种拟合方式,R2与调整后R2越大,说明拟合效果越好;RMSE为1.105 9,均小于其他2种拟合方式,RMSE越小,说明预测模型描述试验数据越精确。

    表  3  高斯拟合模型和洛伦兹拟合模型参数1)
    Table  3.  Parameters of Gaussian fitting model and Lorentz fitting model
    模型 Model z0 A xc w1 yc w2
    高斯拟合 Gaussian fitting 62.10±0.29 −7.39±0.64 321.61±6.22 77.98±8.13 14.03±0.47 5.30 ±0.64
    洛伦兹拟合 Lorentz fitting 62.69±0.40 −8.65±0.78 323.40±5.71 85.23±13.64 14.16±0.49 6.78 ±1.13
     1)表中数据为平均值±标准误;z0:零点偏移量,A:模型峰值高度,xc:模型峰x轴中心位置坐标值,w1x轴方向模型峰宽度,yc:模型峰y轴中心位置坐标值,w2y轴方向模型峰宽度  1) Data in the table are mean ± standard error; z0: Zero offset, A: Model peak height, xc: Coordinate value of model peak x-axis central position, w1: Width of model peak in x-axis direction, yc: Coordinate value of model peak y-axis central position, w2: Width of model peak in y-axis direction
    下载: 导出CSV 
    | 显示表格
    表  4  表面张力拟合曲线统计量
    Table  4.  Fitting curve statistics of surface tension
    模型 Model 均方根误差 RMSE 决定系数 R2 调整后R2Adjusted R2 迭代次数 Iterations 拟合状态 Fitting state
    多项式拟合 Polynomial fitting 1.412 6 0.794 1 0.736 9 10 拟合 Fitting
    高斯拟合 Gaussian fitting 1.148 5 0.809 4 0.786 1 14 拟合 Fitting
    洛伦兹拟合 Lorentz fitting 1.105 9 0.816 4 0.794 0 12 拟合 Fitting
    下载: 导出CSV 
    | 显示表格

    结合观测3种拟合模型的曲面图,得出洛伦兹拟合模型最优(图6)。除草剂溶液表面张力与磁场强度和磁化时长的关系式见公式(4),为研究磁化作用对除草剂溶液表面张力的影响提供理论参考。

    图  6  磁化除草剂溶液表面张力拟合曲面
    Figure  6.  Surface tension fitting surface of magnetized herbicide solution
    $$ \begin{split}&\;\\ & \sigma = 62.69 - \dfrac{{8.65}}{{\left[ {1 + {{\left( {\dfrac{{H - 323.40}}{{85.23}}} \right)}^2}} \right]\left[ {1 + {{\left( {\dfrac{{t - 14.16}}{{6.78}}} \right)}^2}} \right]}} \text{,}\end{split} $$ (4)

    式中,σ为表面张力,H为磁场强度,t为磁化时长。

    在不同磁场强度和不同磁化时长共同影响下除草剂溶液喷雾雾滴粒径分布见图7。磁化除草剂溶液雾滴粒径试验结果见表5。当磁场强度为350 mT、循环磁化时长为15.0 min时,喷雾雾滴粒径达到最小值,为108.75 μm,下降11.20%。多数试验证明单个雾滴所产生的影响远大于其本身的粒径范围,在符合除草剂最佳生物粒径(100~300 μm)要求的同时,减小雾滴粒径可以减少农药使用量[23-24]。与磁化除草剂溶液表面张力变化趋势对比,在50~500 mT磁场范围内,表面张力与雾滴粒径均随磁化时长的增加呈现先下降后回升的趋势,两者总体变化趋势一致,但变化率不同,这可能是磁化方式和磁化溶液量不同导致的。该结果同样表明并不是磁化处理时间越长或磁场强度越大,喷雾的雾滴粒径就越小,而是存在处理效果最佳的磁场强度和磁化时长。

    表  5  磁化除草剂溶液雾滴粒径测试结果
    Table  5.  Test results of aerosol droplet size of magnetized herbicide solution
    磁场强度/mT Magnetic field intensity 磁化时长/min Magnetization time 雾滴粒径/μm Droplet size 磁场强度/mT Magnetic field intensity 磁化时长/min Magnetization time 雾滴粒径/μm Droplet size
    50 5.0 121.19 250 20.0 113.37
    50 10.0 120.71 300 5.0 116.74
    50 15.0 119.03 300 10.0 111.43
    50 17.5 119.24 300 15.0 110.35
    50 20.0 118.88 300 17.5 111.02
    100 5.0 118.37 300 20.0 111.20
    100 10.0 117.96 350 5.0 112.16
    100 15.0 116.99 350 10.0 109.65
    100 20.0 114.07 350 15.0 108.75
    100 25.0 113.86 350 17.5 110.67
    150 5.0 117.91 350 20.0 110.68
    150 10.0 115.44 400 5.0 115.03
    150 15.0 115.55 400 10.0 113.30
    150 20.0 112.47 400 12.5 110.94
    150 25.0 114.12 400 15.0 111.60
    200 5.0 112.93 450 5.0 117.16
    200 10.0 112.72 450 10.0 112.68
    200 15.0 112.33 450 12.5 115.71
    200 17.5 111.29 450 15.0 115.97
    200 20.0 111.07 500 5.0 112.65
    250 5.0 115.87 500 10.0 111.98
    250 10.0 111.98 500 12.5 110.63
    250 15.0 112.51 500 15.0 111.77
    250 17.5 111.32      
    下载: 导出CSV 
    | 显示表格
    图  7  磁化除草剂溶液喷雾雾滴粒径图
    Figure  7.  Droplet size distribution diagram of magnetized herbicide solution

    为直观地分析雾滴粒径变化情况,参照“2.2”表面张力数据拟合方法对喷雾雾滴粒径进行多项式拟合、高斯拟合和洛伦兹拟合,但高斯拟合与洛伦兹拟合在达到最大迭代次数之后拟合结果仍不收敛,所以采用多项式拟合模型。多项式拟合结果中,R2为0.833 6,调整后R2为0.787 4,RMSE为2.085 7,这说明拟合函数有意义且拟合程度较高,公式(5)为除草剂喷雾雾滴粒径与磁场强度和磁化时长的函数关系式,图8为磁化除草剂溶液雾滴粒径拟合曲面。

    图  8  磁化除草剂溶液雾滴粒径拟合曲面
    Figure  8.  Fitting surface of fog droplet size of magnetized herbicide solution
    $$ \begin{split} D =& 116.16 - 0.23H + {2.00^{ - 3}}{H^2} - {1.19^{ - 5}}{H^3} + {2.25^{ - 8}}{H^4} -\\ &{1.91^{ - 11}}{H^5} - 19.95t + 3.22{t^2} -\\ &0.24{t^3} + 9{t^4} - {1.22^{ - 4}}{t^5} \text{,} \\[-12pt] \end{split}$$ (5)

    式中,D为雾滴粒径。

    为方便高效地达到利用磁化方式控制喷雾雾滴粒径的目的,经“2.3”分析,当磁场强度为350 mT时,随着磁化时长的变化,雾滴粒径变化范围最大,因此以固定磁场强度调整磁化时长的方式控制喷雾雾滴粒径。对磁场强度为350 mT时雾滴粒径随磁化时长变化的数据进行三次多项式拟合,拟合结果中,R2为0.990 5,调整后R2为0.977 4,RMSE为1.162 3。三次多项式函数(6)可作为350 mT磁场强度下雾滴粒径调控模型,图9为磁化时长与雾滴粒径拟合曲线。

    图  9  磁化时长与雾滴粒径拟合曲线
    Figure  9.  Fitting curve of magnetization time and fog droplet size
    $$ D = 122.400\;0 - 2.836\;3t + 0.188\;3{t^2} - 0.003\;8{t^3} 。 $$ (6)

    为验证350 mT磁场强度时雾滴粒径调控模型的实际应用价值,参考磁化除草剂溶液雾滴粒径的试验设计,在磁场强度为350 mT前提下,对除草剂溶液分别循环磁化5.0、10.0、15.0、20.0 min,实测雾滴粒径与模型理论雾滴粒径见表6,经过分析,实测值与理论值相对误差均小于1%,此模型具有实际应用价值。

    表  6  模型验证分析
    Table  6.  Model validation analysis
    磁化时长/min Magnetization time 实测雾滴 粒径/μm Measured droplet size 理论雾滴 粒径/μm Theoretical droplet size 相对误差/% Relative error
    5.0 113.22 112.45 0.68
    10.0 110.16 109.07 0.99
    15.0 108.54 109.39 0.78
    20.0 110.78 110.59 0.17
    下载: 导出CSV 
    | 显示表格

    1)在0~500 mT磁场强度范围内,当磁场强度为350 mT、磁化时间为15.0 min时,表面张力最小,为54.0 mN/m,下降14.96%;喷雾雾滴粒径最小,为108.75 μm,下降11.20%。溶液表面张力和喷雾雾滴粒径随磁场强度和磁化时长的增加均呈现先下降后回升的趋势,表明只有在特定磁场强度和磁化时长范围内磁化效果才最佳。

    2)对磁化除草剂溶液表面张力和喷雾雾滴粒径进行拟合处理,洛伦兹拟合模型最符合除草剂溶液表面张力受磁场强度和磁化时长影响的变化规律,以洛伦兹模型函数作为表面张力与磁场强度和磁化时长的函数关系式;多项式拟合模型能有效描述除草剂溶液喷雾雾滴粒径受磁场强度和磁化时长影响的变化规律,以固定磁场强度调整磁化时长的方法给出了350 mT磁场下调控喷雾滴粒径的函数关系式。

    3)除草剂溶液经磁化作用后,其喷雾雾滴粒径可由122.47 μm下降到108.75 μm,下降11.20%,有效减小雾滴粒径且符合最佳生物雾滴粒径要求,为除草剂溶液喷施作业中雾化特性控制提供新的参考。

    喷施压力、喷头型号、磁化溶液量等多种因素都可能对磁化效果产生影响,在后续研究中应尽可能建立有多影响因素参数的函数关系式;除此之外,磁化作用通过影响除草剂溶液表面张力而间接影响雾滴粒径,可通过研究表面张力与雾滴粒径关系模型来优化磁化作用与雾滴粒径的函数关系式。

  • 图  1   表面张力仪

    Figure  1.   Surface tension instrument

    图  2   静态磁化

    Figure  2.   Static magnetization

    图  3   增效磁化装置

    Figure  3.   Magnetization enhancement instrument

    图  4   磁化溶液雾滴粒径测试系统

    1:雾化喷头;2:激光粒度仪;3:双轭双调气隙电磁发生系统;4:隔膜泵;5:压力表;6:高斯计;7:程控功率电流源;8:稳压电源;9:水箱

    Figure  4.   Particle size measurement system for droplets of magnetized solution

    1: Atomizing nozzle; 2: Laser particle size analyzer; 3: Dual yoke dual tuned air gap electromagnetic generation system; 4: Diaphragm pump; 5: Pressure gauge; 6: Gauss meter; 7: Programmable power current source; 8: Regulated power supply; 9: Tank

    图  5   磁化除草剂溶液表面张力图

    Figure  5.   Surface tension distribution diagram of magnetized herbicide solution

    图  6   磁化除草剂溶液表面张力拟合曲面

    Figure  6.   Surface tension fitting surface of magnetized herbicide solution

    图  7   磁化除草剂溶液喷雾雾滴粒径图

    Figure  7.   Droplet size distribution diagram of magnetized herbicide solution

    图  8   磁化除草剂溶液雾滴粒径拟合曲面

    Figure  8.   Fitting surface of fog droplet size of magnetized herbicide solution

    图  9   磁化时长与雾滴粒径拟合曲线

    Figure  9.   Fitting curve of magnetization time and fog droplet size

    表  1   磁化除草剂溶液表面张力试验设计表

    Table  1   Test program list of surface tension of magnetized pesticide solution

    处理编号 No. of treatment 磁场强度/mT Magnetic field intensity 磁化时间/min Magnetization time
    1 0
    2 50 5.0、10.0、15.0、17.5、20.0
    3 100 5.0、10.0、15.0、20.0、25.0
    4 150 5.0、10.0、15.0、20.0、25.0
    5 200 5.0、10.0、15.0、17.5、20.0
    6 250 5.0、10.0、15.0、17.5、20.0
    7 300 5.0、10.0、15.0、17.5、20.0
    8 350 5.0、10.0、15.0、17.5、20.0
    9 400 5.0、10.0、12.5、15.0
    10 450 5.0、10.0、12.5、15.0
    11 500 5.0、10.0、12.5、15.0
    下载: 导出CSV

    表  2   磁化除草剂溶液表面张力试验结果

    Table  2   Results of surface tension test of magnetized herbicide solution

    磁场强度/mT Magnetic field intensity 磁化时长/min Magnetization time 表面张力/(mN·m−1) Surface tension 磁场强度/mT Magnetic field intensity 磁化时长/min Magnetization time 表面张力/(mN·m−1) Surface tension
    50 5.0 63.2 250 20.0 60.3
    50 10.0 62.8 300 5.0 59.5
    50 15.0 62.3 300 10.0 57.6
    50 17.5 62.7 300 15.0 55.2
    50 20.0 63.0 300 17.5 56.3
    100 5.0 62.7 300 20.0 57.5
    100 10.0 61.9 350 5.0 59.4
    100 15.0 61.4 350 10.0 55.6
    100 20.0 61.1 350 15.0 54.0
    100 25.0 61.3 350 17.5 56.2
    150 5.0 62.3 350 20.0 60.5
    150 10.0 61.9 400 5.0 62.2
    150 15.0 60.8 400 10.0 59.6
    150 20.0 60.2 400 12.5 57.2
    150 25.0 60.6 400 15.0 57.9
    200 5.0 62.1 450 5.0 63.0
    200 10.0 60.5 450 10.0 59.0
    200 15.0 59.7 450 12.5 60.4
    200 17.5 58.6 450 15.0 62.1
    200 20.0 58.9 500 5.0 62.5
    250 5.0 61.3 500 10.0 60.9
    250 10.0 59.7 500 12.5 62.4
    250 15.0 59.2 500 15.0 61.7
    250 17.5 57.7      
    下载: 导出CSV

    表  3   高斯拟合模型和洛伦兹拟合模型参数1)

    Table  3   Parameters of Gaussian fitting model and Lorentz fitting model

    模型 Model z0 A xc w1 yc w2
    高斯拟合 Gaussian fitting 62.10±0.29 −7.39±0.64 321.61±6.22 77.98±8.13 14.03±0.47 5.30 ±0.64
    洛伦兹拟合 Lorentz fitting 62.69±0.40 −8.65±0.78 323.40±5.71 85.23±13.64 14.16±0.49 6.78 ±1.13
     1)表中数据为平均值±标准误;z0:零点偏移量,A:模型峰值高度,xc:模型峰x轴中心位置坐标值,w1x轴方向模型峰宽度,yc:模型峰y轴中心位置坐标值,w2y轴方向模型峰宽度  1) Data in the table are mean ± standard error; z0: Zero offset, A: Model peak height, xc: Coordinate value of model peak x-axis central position, w1: Width of model peak in x-axis direction, yc: Coordinate value of model peak y-axis central position, w2: Width of model peak in y-axis direction
    下载: 导出CSV

    表  4   表面张力拟合曲线统计量

    Table  4   Fitting curve statistics of surface tension

    模型 Model 均方根误差 RMSE 决定系数 R2 调整后R2Adjusted R2 迭代次数 Iterations 拟合状态 Fitting state
    多项式拟合 Polynomial fitting 1.412 6 0.794 1 0.736 9 10 拟合 Fitting
    高斯拟合 Gaussian fitting 1.148 5 0.809 4 0.786 1 14 拟合 Fitting
    洛伦兹拟合 Lorentz fitting 1.105 9 0.816 4 0.794 0 12 拟合 Fitting
    下载: 导出CSV

    表  5   磁化除草剂溶液雾滴粒径测试结果

    Table  5   Test results of aerosol droplet size of magnetized herbicide solution

    磁场强度/mT Magnetic field intensity 磁化时长/min Magnetization time 雾滴粒径/μm Droplet size 磁场强度/mT Magnetic field intensity 磁化时长/min Magnetization time 雾滴粒径/μm Droplet size
    50 5.0 121.19 250 20.0 113.37
    50 10.0 120.71 300 5.0 116.74
    50 15.0 119.03 300 10.0 111.43
    50 17.5 119.24 300 15.0 110.35
    50 20.0 118.88 300 17.5 111.02
    100 5.0 118.37 300 20.0 111.20
    100 10.0 117.96 350 5.0 112.16
    100 15.0 116.99 350 10.0 109.65
    100 20.0 114.07 350 15.0 108.75
    100 25.0 113.86 350 17.5 110.67
    150 5.0 117.91 350 20.0 110.68
    150 10.0 115.44 400 5.0 115.03
    150 15.0 115.55 400 10.0 113.30
    150 20.0 112.47 400 12.5 110.94
    150 25.0 114.12 400 15.0 111.60
    200 5.0 112.93 450 5.0 117.16
    200 10.0 112.72 450 10.0 112.68
    200 15.0 112.33 450 12.5 115.71
    200 17.5 111.29 450 15.0 115.97
    200 20.0 111.07 500 5.0 112.65
    250 5.0 115.87 500 10.0 111.98
    250 10.0 111.98 500 12.5 110.63
    250 15.0 112.51 500 15.0 111.77
    250 17.5 111.32      
    下载: 导出CSV

    表  6   模型验证分析

    Table  6   Model validation analysis

    磁化时长/min Magnetization time 实测雾滴 粒径/μm Measured droplet size 理论雾滴 粒径/μm Theoretical droplet size 相对误差/% Relative error
    5.0 113.22 112.45 0.68
    10.0 110.16 109.07 0.99
    15.0 108.54 109.39 0.78
    20.0 110.78 110.59 0.17
    下载: 导出CSV
  • [1] 张东彦, 兰玉彬, 陈立平, 等. 中国农业航空施药技术研究进展与展望[J]. 农业机械学报, 2014, 45(10): 53-59. doi: 10.6041/j.issn.1000-1298.2014.10.009
    [2] 李莲芝, 阎志平. 生物磁学在农业上的应用现状刍议[J]. 河南农业大学学报, 1991(3): 325-332.
    [3]

    IM C H, JUN S C, SEKIHARA K. Recent advances in biomagnetism and its applications[J]. Biomedical Engineering Letters, 2017, 7(3): 183-184. doi: 10.1007/s13534-017-0042-3

    [4] 赵振保. 磁化水的理化特性及其煤层注水增注机制[J]. 辽宁工程技术大学学报(自然科学版), 2008, 27(2): 192-194. doi: 10.3969/j.issn.1008-0562.2008.02.009
    [5]

    ZHOU Q, QIN B T, WANG F, et al. Experimental investigation on the performance of a novel magnetized apparatus used to improve the dust wetting features of surfactant-magnetized water[J]. Powder Technology, 2019, 354: 149-157. doi: 10.1016/j.powtec.2019.05.081

    [6] 丁振瑞, 赵亚军, 陈凤玲, 等. 磁化水的磁化机理研究[J]. 物理学报, 2011, 60(6): 432-439. doi: 10.7498/aps.60.064701
    [7]

    CAI R, YANG H W, HE J S, et al. The effects of magnetic fields on water molecular hydrogen bonds[J]. Journal of Molecular Structure, 2009, 938(1/2/3): 15-19.

    [8]

    LEE S H, JEON S I, KIM Y S, et al. Changes in the electrical conductivity, infrared absorption, and surface tension of partially-degassed and magnetically-treated water[J]. Journal of Molecular Liquids, 2013, 187: 230-237. doi: 10.1016/j.molliq.2013.07.017

    [9]

    MOOSA G M, KHULAEF J H, KHRAIBT A C, et al. Effect of magnetic water on physical properties of different kind of water, and studying its ability to dissolving kidney stone[J]. Journal of Natural Sciences Research, 2015, 5(18): 85-94.

    [10]

    HUO Z F, ZHAO Q, ZHANG Y H. Experimental study on effects of magnetization on surface tension of water[J]. Procedia Engineering, 2011, 26: 501-505. doi: 10.1016/j.proeng.2011.11.2198

    [11]

    LIU J S, CAO Y. Experimental study on the surface tension of magnetized water[J]. International Communications in Heat and Mass Transfer, 2021, 121: 105091. doi: 10.1016/j.icheatmasstransfer.2020.105091.

    [12] 聂百胜, 丁翠, 李祥春, 等. 磁场对矿井水表面张力影响规律的实验研究[J]. 中国矿业大学学报, 2013, 42(1): 19-23. doi: 10.13247/j.cnki.jcumt.2013.01.005
    [13]

    TOLEDO E J L, RAMALHO T C, MAGRIOTIS Z M. Influence of magnetic field on physical-chemical properties of the liquid water: Insights from experimental and theoretical models[J]. Journal of Molecular Structure, 2008, 888(1/2/3): 409-415.

    [14]

    WANG Y F, ZHANG B, GONG Z B, et al. The effect of a static magnetic field on the hydrogen bonding in water using frictional experiments[J]. Journal of Molecular Structure, 2013, 1052: 102-104. doi: 10.1016/j.molstruc.2013.08.021

    [15] 王玲, 兰玉彬, HOFFMANN W C, 等. 微型无人机低空变量喷药系统设计与雾滴沉积规律研究[J]. 农业机械学报, 2016, 47(1): 15-22. doi: 10.6041/j.issn.1000-1298.2016.01.003
    [16] 文晟, 兰玉彬, 张建桃, 等. 农用无人机超低容量旋流喷嘴的雾化特性分析与试验[J]. 农业工程学报, 2016, 32(20): 85-93. doi: 10.11975/j.issn.1002-6819.2016.20.011
    [17]

    ESMAEILNEZHAD E, CHOI H J, SCHAFFIE M, et al. Characteristics and applications of magnetized water as a green technology[J]. Journal of Cleaner Production, 2017, 161: 908-921. doi: 10.1016/j.jclepro.2017.05.166

    [18] 张伟伟, 张志峰, 薄华涛, 等. 磁化水性能的时效性研究[J]. 机电工程技术, 2020, 49(2): 71-73. doi: 10.3969/j.issn.1009-9492.2020.02.018
    [19] 郑志雄, 薛秀云, 宋淑然, 等. 基于PDA系统单喷嘴雾滴参数的试验研究[J]. 农机化研究, 2021, 43(2): 110-117. doi: 10.3969/j.issn.1003-188X.2021.02.021
    [20] 代秋芳, 洪添胜, 宋淑然, 等. 压力及孔径对管道喷雾空心圆锥雾喷头雾滴参数的影响[J]. 农业工程学报, 2016, 32(15): 97-103. doi: 10.11975/j.issn.1002-6819.2016.15.014
    [21] 王双双, 何雄奎, 宋坚利, 等. 农用喷头雾化粒径测试方法比较及分布函数拟合[J]. 农业工程学报, 2014, 30(20): 34-42. doi: 10.3969/j.issn.1002-6819.2014.20.005
    [22] 秦波涛, 周刚, 周群, 等. 煤矿综采工作面活性磁化水喷雾降尘技术体系与应用[J]. 煤炭学报, 2021, 46(12): 3891-3901.
    [23] 袁会珠, 王国宾. 雾滴大小和覆盖密度与农药防治效果的关系[J]. 植物保护, 2015, 41(6): 9-16. doi: 10.3969/j.issn.0529-1542.2015.06.002
    [24] 兰玉彬, 彭瑾, 金济. 农药喷雾粒径的研究现状与发展[J]. 华南农业大学学报, 2016, 37(6): 1-9. doi: 10.7671/j.issn.1001-411X.2016.06.001
  • 期刊类型引用(2)

    1. 魏鹏,宫金良,张彦斐. 物理场辅助农业雾化施药技术的研究现状与展望. 现代农业装备. 2023(03): 31-38 . 百度学术
    2. 魏鹏,闫晓静,徐军,杨代斌,袁会珠. 植物保护施药技术创新与装备智能化的研究现状与展望. 现代农药. 2023(05): 1-8+27 . 百度学术

    其他类型引用(2)

图(9)  /  表(6)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  3
  • PDF下载量:  302
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-02-22
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2023-03-09

目录

/

返回文章
返回