Identification of the pathogen causing Trichosanthes kirilowii fruit rot and screening of fungicides
-
摘要:目的
明确引起栝楼果实腐烂病的病原菌种类并筛选其有效防治药剂。
方法2019—2020年采集安徽省大别山区的栝楼果实腐烂病样品,采用组织分离法获得35株分离物,利用柯赫氏法则验证其致病性,依据菌株形态学特征和多基因序列分析确定病原菌种类;采用菌丝生长速率法测定7种杀菌剂的室内毒力。
结果共分离纯化得到4种不同菌落形态特征的菌株,经柯赫氏法则验证均为栝楼果实腐烂病病原菌,经形态学观察和分子系统发育分析,确定引起栝楼果实腐烂病的病原菌分别为藤仓镰孢菌Fusarium fujikuroi、层出镰孢菌F. proliferatum、果生刺盘孢Colletotrichum fructicola和辽宁刺盘孢C. liaoningense,分离频率依次为31.4%、8.6%、20.0%和40.0%。室内毒力测定结果表明,咪鲜胺、咯菌腈、苯醚甲环唑、氰烯菌酯和百菌清对F. fujikuroi和F. proliferatum的抑制效果较好,EC50为0.1046 ~ 5.1781 μg/mL;咪鲜胺、苯醚甲环唑和咯菌腈对C. fructicola和C. liaoningense的抑制效果较好,EC50为0.0097 ~ 2.1325 μg/mL。
结论栝楼果实腐烂病主要由镰孢菌属和刺盘孢属真菌侵染引起,咪鲜胺、苯醚甲环唑和咯菌腈对引起该病害的病原菌具有较好的抑制效果。
Abstract:ObjectiveTo clarify the pathogen causing Trichosanthes kirilowii fruit rot and screen effective fungicides for controlling the disease.
MethodSamples of rot fruit from T. kirilowii plants were collected from Dabie Mountain Areas, Anhui Province in 2019—2020. A total of 35 representative isolates were obtained by tissue isolation. The pathogenicity was verified according to the Koch’s postulate, and the causal agents were identified based on the morphological characteristics and multilocus sequence analysis. The indoor toxicity of seven fungicides against the pathogen was detected by the mycelium growth rate method.
ResultColonies with four different morphological characteristics were isolated and purified. The isolates were confirmed to be pathogenic to the fruit of T. kirilowii according to the Koch’s postulate. They were identified as Fusarium fujikuroi, F. proliferatum, Colletotrichum fructicola and C. liaoningense by combining morphological characteristics with phylogenetic analysis, with isolation frequencies of 31.4%, 8.6%, 20.0% and 40.0%, respectively. In addition, the indoor toxicity test results indicated that prochloraz, fludioxonil, difenoconazole, phenamacril and chlorothalonil had better inhibitory effect against F. fujikuroi andF. proliferatum, with EC50 ranging from 0.1046 to 5.1781 μg/mL. Prochloraz, fludioxonil and difenoconazole had better inhibitory effect againstC. fructiicola and C. liaoningense with EC50 ranging from 0.0097 to 2.1325 μg/mL.
ConclusionThe causal agents associated with fruit rot disease on T. kirilowii are Fusarium spp. and Colletotrichum spp.. Prochloraz, fludioxonil and difenoconazole all show good inhibitory activity against the pathogens.
-
Keywords:
- Trichosanthes kirilowii /
- Fruit rot disease /
- Fusarium /
- Colletotrichum /
- Pathogenicity /
- Fungicide screening
-
图 4 基于TEF-1α基因序列对镰孢菌属菌株构建的系统发育树
分支位置中的数字表示自举值;标尺表示每个核苷酸位点上的0.02替换值
Figure 4. Phylogenetic tree of the strains of Fusarium spp. based on TEF-1α gene sequences
The numbers in each branch points denote the percentages supported by bootstrap; The scale bar represents 0.02 substitutions per nucleotide position
表 1 菌株信息及目的基因序列
Table 1 Strain information and target gene sequences
物种 Species 菌株 Strain GenBank登录号 GenBank accession number ITS ACT CAL CHS-1 GAPDH TUB2 TEF-1α Fusarium fujikuroi HP016 MW357640 HP017 MW357641 Fusarium proliferatum QSC2 MW357642 Colletotrichum fructicola DMC2 MW349792 MW357613 MW357616 MW357619 MW357622 MW357625 HP009 MW349793 MW357614 MW357617 MW357620 MW357623 MW357626 HP002 MW349794 MW357615 MW357618 MW357621 MW357624 MW357627 Colletotrichum liaoningense DMC1 MW349983 MW357628 MW357632 MW357636 QSA6 MW349984 MW357629 MW357633 MW357637 SSA9 MW349985 MW357630 MW357634 MW357638 HKC10 MW349986 MW357631 MW357635 MW357639 表 2 7种杀菌剂对镰孢病菌和炭疽病菌的室内毒力测定
Table 2 Determination of the virulence of seven fungicides to Fusarium spp. and Collrtotrichum spp.
菌株 Strain 药剂 Fungicide w(有效成分)/% Active ingredient content 毒力回归方程 Virulence regression equation 相关系数 Correlation coefficient EC50/ (μg·mL−1) F. fujikuroi HP017 春雷霉素 Kasugamycin 70 y=3.5923+0.8234x 0.9518 51.2516 咪鲜胺 Prochloraz 98 y=6.0341+1.2900x 0.9985 0.1579 咯菌腈 Fludioxonil 95 y=5.3824+0.5183x 0.8821 0.1829 嘧菌酯 Azoxystrobin 95 y=4.1359+0.4202x 0.9695 113.8843 苯醚甲环唑 difenoconazole 95 y=5.2198+0.6339x 0.9788 0.4500 氰烯菌酯 Phenamacril 95 y=5.4272+0.8213x 0.9223 0.3019 百菌清 Chlorothalonil 99 y=4.4958+0.9701x 0.9701 5.1781 F. proliferatum QSC2 春雷霉素 Kasugamycin 70 y=3.2031+0.9861x 0.8280 66.3944 咪鲜胺 Prochloraz 98 y=5.7667+0.8081x 0.9814 0.1125 咯菌腈 Fludioxonil 95 y=5.1877+0.4394x 0.9718 0.3740 嘧菌酯 Azoxystrobin 95 y=4.0472+0.4645x 0.9547 112.4802 苯醚甲环唑 Difenoconazole 95 y=5.4574+0.4666x 0.9914 0.1046 氰烯菌酯 Phenamacril 95 y=5.2917+0.8950x 0.8174 0.4721 百菌清 Chlorothalonil 99 y=4.7491+0.4570x 0.9933 3.5409 C. fructicola HP002 春雷霉素 Kasugamycin 70 y=3.6179+0.9751x 0.9507 26.1436 咪鲜胺 Prochloraz 98 y=6.1584+1.2283x 0.9815 0.1140 咯菌腈 Fludioxonil 95 y=4.8670+0.4045x 0.9151 2.1325 嘧菌酯 Azoxystrobin 95 苯醚甲环唑 Difenoconazole 95 y=5.4561+0.9250x 0.9937 0.3213 氰烯菌酯 Phenamacril 95 y=1.3563+2.9354x 0.9472 17.4313 百菌清 Chlorothalonil 99 y=3.5858+0.7712x 0.9917 68.2058 C. liaoningense SSA9 春雷霉素 Kasugamycin 70 y=3.1409+1.4118x 0.9916 20.7440 咪鲜胺 Prochloraz 98 y=6.2287+1.1271x 0.9966 0.0813 咯菌腈 Fludioxonil 95 y=5.4883+0.2428x 0.8546 0.0097 嘧菌酯 Azoxystrobin 95 y=5.1603+0.2492x 0.9395 0.2274 苯醚甲环唑 Difenoconazole 95 y=5.1997+0.9780x 0.9563 0.6249 氰烯菌酯 Phenamacril 95 y=0.6025+2.8622x 0.9879 34.3876 百菌清 Chlorothalonil 99 y=3.4277+0.7099x 0.9859 164.0227 -
[1] 徐劲峰, 檀根甲, 韩翔. 栝楼炭疽病发生危害及综合控制技术研究[J]. 安徽农业科学, 2006(15): 3741-3784. doi: 10.3969/j.issn.0517-6611.2006.15.086 [2] 孙凯, 陈夕军, 沈迎春, 等. 江苏省栝楼烂果病病原鉴定及室内防治药剂筛选[J]. 江苏农业科学, 2020, 48(24): 112-116. doi: 10.15889/j.issn.1002-1302.2020.24.021 [3] 吴朝晖. 安庆市栝楼产业现状及发展对策[J]. 安徽林业科技, 2020, 46(3): 56-58. doi: 10.3969/j.issn.2095-0152.2020.03.017 [4] 韩翔. 瓜蒌炭疽菌的生理生态及病害防治的研究[D]. 合肥: 安徽农业大学, 2004. [5] LI H Y, ZHANG Z F. First report of Colletotrichum gloeosporioides causing anthracnose fruit rot of Trichosanthes kirilowii in China[J]. Plant Disease, 2007, 91(5): 636-636.
[6] ZHANG L X, SONG J H, TAN G J, et al. Characterization of Colletotrichum gloeosporioides responsible for anthracnose disease of Trichosanthes kirilowii Maxim in central China[J]. Phytoparasitica, 2014, 42(4): 549-558. doi: 10.1007/s12600-014-0393-6
[7] ZHAO W, LI W, CHI Y, et al. Occurrence of stem blight and fruit rot caused by Phytophthora capsici on Chinese cucumber (Trichosanthes kirilowii) in China[J]. Plant Disease, 2020, 105(1): 232.
[8] 方中达. 植病研究方法[M]. 北京: 中国农业出版社, 1998: 122-142. [9] 张素轩. 镰刀菌属分类进展[J]. 真菌学报, 1991, 10(2): 85-94. [10] 刘晓云, 景耀, 杨俊秀. 植物炭疽菌研究文献综述[J]. 西北林学院学报, 1995(4): 105-111. [11] 刘小勇, 田素忠, 秦国夫, 等. 提取植物和微生物DNA的SDS-CTAB改进法[J]. 北京林业大学学报, 1997, 19(3): 100-103. doi: 10.3321/j.issn:1000-1522.1997.03.018 [12] SCHAAFAMA A W, LIMAY-RIOS V, TAMBURIC-ILLINCIC L. Mycotoxins and Fusarium species associated with maize ear rot in Ontario, Canada[J]. Cereal Research Communications, 2008, 36: 525-527.
[13] O'DONNELL K, CIGELNIK E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous[J]. Molecular Phylogenetics and Evolution, 1997, 7(1): 103-116. doi: 10.1006/mpev.1996.0376
[14] WEIR B S, JOHNSTON P R, DAMM U. The Colletotrichum gloeosporioides species complex[J]. Studies in Mycology, 2012, 73(1): 115-180.
[15] BERBEE M L, PIRSEYEDI M, HUBBARD S. Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences[J]. Mycologia, 1999, 91(6): 964-977. doi: 10.1080/00275514.1999.12061106
[16] CARBONE I, KOHN L M. A method for designing primer sets for speciation studies in filamentous ascomycetes[J]. Mycologia, 1999, 91(3): 553-556. doi: 10.1080/00275514.1999.12061051
[17] LIU F, CAI L, CROUS P W, et al. The Colletotrichum gigasporum species complex[J]. Persoonia, 2014, 33(1): 83-97. doi: 10.3767/003158514X684447
[18] WHITE T J, BRUNS T D, LEE S B, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[M]//INNIS M A, GELFAND D H, SAIMKY J J, et al. PCR Protocols: A guide to methods and applications. New York: Academic Press, 1990: 315-322.
[19] 陈宏州, 杨红福, 姚克兵, 等. 水稻恶苗病病原菌鉴定及室内药剂毒力测定[J]. 植物保护学报, 2018, 45(6): 1356-1366. doi: 10.13802/j.cnki.zwbhxb.2018.2018019 [20] 王晓莉, 李哲, 叶文武, 等. 江苏省13个地区水稻种子携带4种不同恶苗病菌的LAMP检测[J]. 南京农业大学学报, 2020, 43(5): 846-852. doi: 10.7685/jnau.201912029 [21] 王昌亮, 武海燕, 张猛. 河南省一例西瓜果实腐烂病病原鉴定[J]. 植物病理学报, 2011, 41(5): 542-545. doi: 10.13926/j.cnki.apps.2011.05.012 [22] HE L F, LI X X, GAO Y Y, et al. Characterization and fungicide sensitivity of Colletotrichum spp. from different hosts in Shandong, China[J]. Plant Disease, 2019, 103(1): 34-43. doi: 10.1094/PDIS-04-18-0597-RE
[23] 雷娅红, 况卫刚, 郑春生, 等. 基于DNA条形码技术对镰刀菌属的检测鉴定[J]. 植物保护学报, 2016, 43(4): 544-551. doi: 10.13802/j.cnki.zwbhxb.2016.04.003 [24] 刘威, 叶乃兴, 刘伟, 等. 茶树炭疽菌的鉴定及致病力分析[J]. 福建农林大学学报(自然科学版), 2015, 44(6): 581-586. doi: 10.13323/j.cnki.j.fafu(nat.sci.).2015.06.004 [25] 杨媚, 冯淑杰, 何银银, 等. 柑橘炭疽病高效杀菌剂的筛选及抗药性菌株的发现[J]. 华南农业大学学报, 2013, 34(1): 28-31. doi: 10.7671/j.issn.1001-411X.2013.01.006 [26] 赵金梅, 高贵田, 谷留杰, 等. 中华猕猴桃褐斑病病原鉴定及抑菌药剂筛选[J]. 中国农业科学, 2013, 46(23): 4916-4925. doi: 10.3864/j.issn.0578-1752.2013.23.007 [27] 徐建强, 平忠良, 马世闯, 等. 河南省小麦赤霉病菌对咯菌腈的敏感性[J]. 植物保护学报, 2018, 45(6): 1367-1373. [28] 霍建飞, 姚玉荣, 郝永娟, 等. 天津市宁河区辣椒炭疽病病原鉴定及防治药剂筛选[J]. 北方园艺, 2020(3): 1-7. [29] PATEL J S, GUDMESTAD N C, MEINHARDT S, et al. Pyraclostrobin sensitivity of baseline and fungicide exposed isolates of Pyrenophora tritici-repentis[J]. Crop Protection, 2012, 34: 37-41. doi: 10.1016/j.cropro.2011.10.015
-
期刊类型引用(1)
1. 高文丽,苏海兰,林凤芳,牛雨晴,朱育菁,刘波,程曦,肖荣凤. 福建省多花黄精根腐病的病原菌鉴定. 福建农业学报. 2024(05): 600-608 . 百度学术
其他类型引用(0)