Identification of Camellia oleifera anthrax pathogens in Yunnan Province and screening of antagonistic bacteria
-
摘要:目的
明确云南省德宏州、文山州和保山市油茶炭疽病菌的种类,筛选具有良好拮抗效果的生防菌。
方法本研究于2019和2020年7—9月进行了病害调查,收集病叶标本,采用组织分离法分离病原菌,通过柯赫氏法则验证其致病性,联合形态学与多位点序列分析鉴定病原菌种类。同时从健康油茶叶片内分离筛选内生拮抗菌,并通过平板对峙法验证抑菌作用。
结果云南省德宏州地区油茶炭疽病发生较严重,平均发病率为56.18%,病情指数为53.11,云南省油茶炭疽病菌种类主要有5种,分别是胶孢炭疽菌Colletotrichum gloeosporioides、卡哈瓦炭疽菌C. kahawae、喀斯特炭疽菌C. karstii、松针刺盘孢C. fioriniae和暹罗刺盘孢C. siamense。其中,胶孢炭疽菌是优势病原菌,菌株 CA17(暹罗刺盘孢)在活体油茶叶片上的致病性最强。平板对峙培养结果表明,采自德宏州健康油茶叶片的内生菌Streptomyces fulvissimus和Bacillus mojavensis对菌株CA17具有较好的拮抗作用,抑菌率分别达到37%和42%。
结论本研究可为油茶炭疽病的诊断与绿色防控提供理论依据。
Abstract:ObjectiveIn order to identify the species of pathogens of Camellia oleifera anthrax in Dehong Prefecture, Wenshan Prefecture and Baoshan City of Yunnan Province, and screen their biocontrol bacterium.
MethodSurveys of infected diseases were conducted from July to September in 2019 and 2020. Diseased leaf samples were collected. The pathogens were isolated by tissue isolation method, pathogenicity was verified by Koch’s Postulation, and the pathogens were identified by morphology and multilocus sequence analysis. Meanwhile, endophytic bacteria were isolated and screened from the leaves of healthy C. oleifera, and the antibacterial effect was verified by plate confrontation method.
ResultC. oleifera anthrax occurred seriously in Dehong Prefecture of Yunnan Province, with an average incidence rate of 56.18% and a disease index of 53.11. Five major strains were identified from Yunan Province including Colletotrichum gloeosporioides,C. kahawae, C. karstii, C. fiorniae and C. siamense. Among them, C. gloeosporioides was the dominant pathogen, and strain CA17 (C. siamense) had the strongest pathogenicity on living leaves of C. oleifera. The results of plate confrontation method indicated that Streptomyces fulvissimus and Bacillus mojavensis isolated from healthy C. oleifera in Dehong had good antagonistic effect on CA17, and the inhibition rates were 37% and 42% respectively.
ResultThis study provides a theoretical basis for the diagnosis and green control of Camellia anthrax.
-
叶绿素是绿色植物吸收光能的重要物质,直接影响到植物光合作用的效能与水平,其含量对植物光合能力、发育以及生长状况具有指示作用,是生态系统活力的重要体现[1-2]。叶绿素也是叶片中的重要含氮物质,其含量反映了植物氮素的吸收和利用状况,叶片叶绿素含量的测量值能间接、精确地评估植被的营养状态[3],同时也能够对植被病害进行诊断[4]。健康绿色植被在可见光范围内的光谱反射率主要受叶绿素含量的影响,而其在近红外波段主要与叶片结构、叶片纤维等因素有关[5]。近年来,随着高光谱技术的不断发展,国内外研究学者通过光谱反射技术快速、定量、无损地对植被叶绿素含量开展检测研究,如梁爽等[6]通过对苹果树叶片光谱和叶绿素含量开展相关性及回归分析,得出一阶微分521和523 nm组合的估测模型拟合精度最高;金震宇等[7]对水稻叶片叶绿素浓度和相应的光谱反射率数据进行相关分析,结果显示水稻叶片的“红边”拐点波长位置与其叶绿素浓度之间具有很强的相关性。这些研究说明,不同植被或者农作物用以构建叶绿素含量估算模型的光谱参数有较大区别。在构建叶绿素含量检测模型方面,前人所采用的方法也有较大差异,如郭啸川等[8]利用连续统去除法提取特征变量,结果表明以BNA617为变量建立的光谱参量模型最好;王强等[9]采用线性及多元逐步回归技术构建了棉花冠层叶绿素密度高光谱诊断模型;姚付启等[10]基于主成分分析构建了适宜法国梧桐的叶绿素含量高光谱反演模型。
以上研究表明,对于不同的植被或作物,其叶绿素含量的估算具有独特性,难以构建一套通用的方法,且目前研究主要集中在玉米、水稻、棉花等均一化较明显,具有共性特性的农作物,而对于甜柚Citrus maxima cv.Tian这样的具有典型南方地域特色果树的叶绿素含量检测模型鲜有研究[11]。南康甜柚清香、酸甜、凉润,营养丰富,药用价值很高,是人们喜食的名贵水果之一,同时也是南方地区农民们大量种植的果树品种。随着甜柚的大量种植,也出现较多的疾病,常见的有脚瘸病、流胶病等,以致黄叶枯枝,树势衰弱,甚至整株枯死,严重影响了甜柚的产量。本文以赣州南康甜柚为例,通过高光谱遥感技术,比较单变量回归、逐步回归及偏最小二乘法(PLS)的适用性,构建适合甜柚叶片叶绿素含量高光谱无损检测模型,旨在为甜柚叶绿素含量的估算提供方法和参考,对大面积的甜柚营养诊断及病害检测提供依据。
1. 材料与方法
1.1 试验设计与数据采集
试验地点位于赣州市南康区的一片甜柚果园内,使用由美国ASD公司生产的Field Spec4便携式地物光谱仪测定甜柚叶片的光谱分辨率,其光谱测量范围为350~2 500 nm,其中,光谱分辨率为3 nm,采样间隔为1.4 nm (350~1 000 nm);光谱分辨率为10 nm,采样间隔为2 nm (1 000~2 500 nm)。仪器探头垂直向下,距离采集样本的垂直距离为10~15 cm,采集数据前需经过白板校正和优化操作,光谱仪视场角选用10°。
试验时间为2017年4月,采集样本选择在晴朗无云无风的11:00—14:00,采样样本均匀分布在不同果园,有较大的空间区域范围,使其具有代表性,共采集50组样本,其中,经过光谱预处理后合格光谱为40组,随机选取20组作为试验样本,剩余20组作为精度验证样本。为减少由疾病影响所导致的试验误差,供试品种均为自然状态下长势良好的甜柚树叶,为了降低测量误差,均匀选取每株甜柚树各部位的叶片,对每片叶的叶尖、叶中、叶基位置各测2次共6组光谱数据,该叶片的反射光谱值为这6组数据的平均值。
采集光谱数据后,使用SPAD-502叶绿素仪进行甜柚叶片叶绿素含量的测定,相关研究表明叶绿素含量与该仪器测定的SPAD值之间呈极显著相关关系,可以代表叶绿素含量,且对植被没有危害性[12-13],因此本文采用该仪器测定值来代替叶绿素含量。测量时,每片叶子应避开叶脉,采集多次数据取平均值作为该叶片的叶绿素含量。
1.2 数据处理与模型构建
使用ViewSpecPro软件进行光谱曲线的相关预处理,选择达到极显著相关水平的敏感波段的光谱参数与甜柚叶绿素含量建立单变量及多元逐步回归估算模型;通过Unscrambler 9.7软件利用预处理后的光谱数据与甜柚叶绿素含量建立偏最小二乘模型。
1.2.1 光谱反射率一阶导数法
光谱微分技术包括对反射光谱进行数学模拟和计算不同阶数的微分值以迅速确定光谱弯曲点及最大最小反射的波长位置[14]。对于植被叶片而言,光谱数据的一阶导数有利于消除部分大气、土壤背景等低频光谱成分对目标的影响来突出目标,反映和揭示光谱的内在特性[15],本文采用光谱一阶导数方法对甜柚叶片光谱数据进行处理,其公式如下:
$$ R{_i^{'}}{\rm{ = }}\frac{{{R_{i + 1}} - {R_{i - 1}}}}{{{\lambda _{i + 1}} - {\lambda _{i - 1}}}} = \frac{{{R_{i + 1}} - {R_{i - 1}}}}{{2\Delta \lambda }}, $$ (1) 式中,
$ R{_i^{'}}$ 表示波段i处的一阶导数,$ R_i$ 表示波段i处的光谱反射率,$ \lambda _i$ 表示波段i处的波长。1.2.2 皮尔逊系数法
皮尔逊(Pearson)系数法是一种反映2种变量线性相关程度的方法,利用该方法分析叶绿素含量和各光谱参数之间的相关性,其公式为:
$$ {r_{xy}} = \frac{{\displaystyle\sum\limits_{i = 1}^n {({x_i} - \bar x)({y_i} - \bar y} )}}{{\sqrt {\displaystyle\sum\limits_{i = 1}^n {{{({x_i} - \bar x)}^2}\displaystyle\sum\limits_{i = 1}^n {{{({y_i} - \bar y)}^2}} } } }}, $$ (2) 式中,rxy表示叶绿素含量与各光谱参数的相关系数,n表示样本数量,xi表示第i个样本的光谱参数值,yi为第i个样本的叶绿素含量,
$ \bar x$ 为n个样本的光谱参数平均值,$ \bar y$ 为n个样本的叶绿素含量平均值。本文主要考虑对rxy进行P<0.01和P<0.05的置信度水平检验。1.2.3 单变量回归分析法
以通过相关性分析达到极显著相关水平的光谱参数为回归方程的自变量(x),甜柚叶绿素含量为因变量(y),进行简单回归拟合分析,构建单变量回归分析模型[16],具体模型公式如下:
$$ {\text{指数模型:}}\;\; y = a \times \exp (bx),\;\; $$ (3) $$ \;\;{\text{线性模型:}}\;\; y = bx + a, \quad\quad\quad\;$$ (4) $$ \;\,{\text{抛物线模型:}}\;\; y = c{^2} + bx + a, $$ (5) 式中,a、b、c均为系数。
1.2.4 逐步回归分析法
逐步回归方法从一个自变量开始,视自变量y作用的显著程度,从大到小依次逐个引入回归方程,但当引入的自变量由于后面变量的引入而变得不显著时,要将其剔除,并引入一个自变量或从回归方程中剔除一个自变量,称为逐步回归的一步,对于每一步都要进行y值检验,以确保每次引入新的显著性变量前回归方程中只包含对y作用显著的变量,这个过程反复进行,直至把不显著的变量从回归方程中剔除,又无显著变量可引入回归方程时为止[17]。
本文通过相关性分析首先筛选出对甜柚叶绿素含量影响显著的光谱参数,进而对每个参数进行假设检验,从而剔除影响不显著的光谱参数并重新建立不包含该参数的回归分析模型,最后筛选出最有影响的光谱参数,建立最佳回归模型,具体公式如下:
$$ y = a_0 + {a_{1}}{x_{1}} + {a_{2}}{x_{2}} + \cdots+ {a_{i}}{x_{i}}, $$ (6) 式中,y为甜柚叶绿素含量,xi为保留下来的各光谱参数,ai为回归系数。
1.2.5 偏最小二乘法
偏最小二乘法提供一种多对多线性回归建模的方法,特别是当2组变量的个数很多,且都存在多重相关性,而观测的样本数据又较少时,偏最小二乘法建立的模型较传统经典回归分析更为精确,且它在建模过程中集中了主成分分析、典型相关性分析和线性回归分析的特点,因此在分析结果中,还可以完成一些类似于主成分分析和典型相关分析的内容,提供更为丰富的信息[18]。
其基本原理为:测定n个样本,每个样本含有p个因变量X和q个自变量Y,偏最小二乘法就是综合分析n个样本中的全部因变量和自变量,提取出主成分t和u,其中主成分t、u分别最大程度地表示因变量和自变量的变异信息,在第1个成分t1和u1被提取后,分别实施X对t1的回归及Y对u1的回归,如果回归方程已经达到满意的程度,则算法终止,否则,进行第2次的成分提取,若对自变量提取了m个成分(t1,t2,…,tm),偏最小二乘法将建立yk对t1,t2,…,tm的回归,然后再表达成yk对原变量x1,x2,…,xm的回归方程(k=1,2,…,q)[19]。
1.3 精度验证
本研究的模型精度检验采用相关系数(r),均方根误差(RMSE)及相对误差(RE)这3个指标。R越接近于1,且RMSE与RE值最小,则表明所建立的模型拟合效果越好,精度越高。其计算公式如下:
$$ {\rm{RMSE}} = \sqrt {\frac{{\displaystyle\sum\limits_{i = 1}^n {{{({{\hat y}_i} - {y_i})}^2}} }}{n}} , $$ (7) $$ {\rm{RE}} = \frac{1}{n}\sum\limits_{i = 1}^n {\frac{{\left| {{{\hat y}_i} - {y_i}} \right|}}{{{y_i}}}} \times 100\text{%} , $$ (8) 式中,
$ {\hat y_i}$ 代表第i个样本的叶绿素含量估测值,$ {y_i}$ 代表第i个样本的叶绿素含量实测值,n代表样本数量。2. 结果与分析
2.1 甜柚叶片反射率光谱分析
植被光谱曲线形态主要受2个因素影响,一是其具有基本的、独特的光谱曲线形态,利用该曲线形态可以判别是否属于植被的光谱特征;二是由于外界因素影响其生长发育,从而反映在结构特征上,并在光谱曲线的形态中表现出来。图1是一般健康植被与实测南康甜柚叶片原始光谱曲线的比较,图中实测的甜柚原始光谱曲线是经过去噪及水汽处理的,所以波段1 350~1 450、1 750~1 950、2 350~2 500 nm的曲线被剔除。剔除后的实测植被还是具有一般植被的光谱曲线形态:
在可见光波段(400~760 nm)范围内,植被光谱曲线主要受叶绿素等色素的强吸收影响,光谱反射率普遍较低,反射率一般不超过0.2,由于植被进行光合作用的影响,在450 nm的蓝光波段和670 nm的红光波段强吸收,形成向下凹陷的蓝光吸收谷和红光吸收谷,而在中心波长为550 nm的绿光波段由于强反射作用形成一个向上凸起的反射峰。另外,在670~760 nm波段范围内,由于植被叶片内部结构的相互影响,光谱反射率随着波长的增加呈现急剧上升的形势,这是植被光谱曲线最为明显的特征“红边”现象,反射率可达到0.4以上。
在近红外波段(780~2 500 nm)范围内,光谱反射率明显较可见光波段反射率高。由于进入叶片细胞内部的光线产生多次物理折射和反射作用,在960和1 180 nm附近产生2个吸收谷,是因氧气或水的窄吸收,使得该波段范围的光谱曲线呈现“波浪”的形态;在1 300~2 500 nm波段范围内,光谱反射率曲线迅速下降,这是植物叶片含水量使光谱的吸收率增加,反射率降低的缘故,尤其在1 450和1 900 nm附近产生水吸收带,形成向下凹陷的低谷,由于实测的植被光谱数据在这一部分存在明显的噪声影响,因此去除了这一部分的光谱曲线。
2.2 甜柚叶片叶绿素含量与光谱反射率的相关性
甜柚叶片原始和一阶导数光谱与其叶绿素含量的相关性如图2所示。
由图2a可知,甜柚叶片叶绿素含量与原始光谱反射率基本上呈负相关,仅在波段859~934和959~1 000 nm呈正相关,且相关性很低。在波段515~632和693~715 nm达到了显著负相关水平(P<0.05),其中,在波段535~566和701~704 nm达到了极显著负相关水平(P<0.01),敏感波段发生在553 nm,相关系数为 −0.568 4。
甜柚叶片叶绿素与一阶光谱反射率的相关性如图2b所示,通过分析可知,在波段373~392、443~458、470~539和678~702 nm达到了显著负相关水平(P<0.05),其中,在波段384~391、449~453、476~537和679~701 nm达到了极显著负相关水平(P<0.01),敏感波段发生在692 nm,相关系数为–0.828 7。在波段401~429、557~672和713~757 nm达到了显著正相关水平(P<0.05),其中,在波段403~418、425~429、563~671和719~756 nm达到了极显著正相关水平(P<0.01),敏感波段发生在752 nm,相关系数为0.890 3。在波段775~1 000 nm区间其相关性变化无明显正负规律,因此不做研究。
2.3 甜柚叶片叶绿素含量单估算模型的建立
为了求得精确的结果,根据上文对甜柚叶片叶绿素含量与原始光谱和一阶光谱的相关性分析,选择达到极显著相关水平的3个敏感波段的光谱参数作为自变量(R553 nm、R692 nm和R752 nm),其相应的叶绿素含量作为因变量(y)建立单变量估算模型,其精度分析结果如表1所示。以一阶导数752 nm为自变量的模型精度较原始光谱553 nm和一阶导数692 nm好,其中,以一阶导数752 nm的指数模型精度最好,r2为0.800。
表 1 甜柚叶片叶绿素含量的单变量估算模型决定系数(r2)1)Table 1. Determination coefficient (r2) of single variable estimation model of chlorophyll content in Citrus maxima leaves光谱参数
Spectral parametersr2 y=bx+a y=a×exp(bx) y=cx2+bx+a R553 nm 0.325 0.323 0.377 R'692 nm 0.687 0.710 0.718 R'752 nm 0.792 0.800 0.798 1) x表示所选出的甜柚光谱敏感波段(553、692 和 752 nm)的光谱参数,y 为相应的甜柚叶片叶绿素含量,a、b、c 均为单变量方程中的常数
1) x indicates the selected spectral sensitive band of Citrus maxima(553, 692 and 752 nm), y indicates the corresponding chlorophyll content of Citrus maxima leaves, a, b and c are constants in the single variable equation2.4 甜柚叶片叶绿素含量逐步回归估算模型的建立
根据甜柚叶片叶绿素含量与光谱反射率相关性分析的结果,从中选出相关系数较大,分布均匀的波长553、692、752、712、683、423、527 nm的光谱参数作为逐步回归的自变量,相应的SPAD值作为因变量建立多元逐步回归模型,结果见表2。从表2中可以看出,以入选变量一阶导数光谱(752、683 nm)参数所建立的逐步回归模型精度较以原始光谱(553、712 nm)参数所建立的模型好,决定系数r2达到0.815。
表 2 甜柚叶片叶绿素含量的多元回归分析模型决定系数(r2)Table 2. Determination coefficient (r2) of multivariate regression analysis model of chlorophyll content in Citrus maxima leaves光谱参数1)
Spectral parameter模型表达式2)
Model
expressionr2 R y=16.745−63.71R553 nm+198.16R712 nm 0.561 R' y=50.486+4 874.89R'752 nm−189.22R'683 nm 0.815 1) R 和 R' 分别为原始光谱和一阶导数光谱入选的光谱参数自变量;2) y 为相应的甜柚叶片叶绿素含量
1) R and R' refer to the spectral independent variables selected from the original spectrum and the first order spectrum respectively; 2) y refers to the corresponding chlorophyll content in Citrus maxima leaves2.5 甜柚叶片叶绿素含量偏最小二乘模型的建立
2.5.1 主成分分析
尝试利用甜柚叶片高光谱数据结合偏最小二乘法进行甜柚叶片叶绿素含量估测,使用Unscrambler软件处理原始光谱波段数据和叶绿素含量数据,由于植物色素(叶绿素和类胡萝卜素)对植被和叶片反射光谱的影响主要体现在可见光波段,因此数据分析使用的是350~1 000 nm波段,然后进行PLS建模,模型的稳定性和拟合效果通过交互验证的方法检验,最佳主成分个数也由交互验证法确定。
各成分对应的特征值及相关系数如表3所示,前4个主成分累计解释了自变量(X) 99.05%和因变量(Y) 86.23%的信息,这4个主成分具备较强的解释能力,因此最佳主成分个数为4,且这4个主成分与甜柚叶绿素含量均达到极显著相关水平,表明所提取的主成分能够准确地反映原始数据的信息。
表 3 前4个主成分对甜柚叶绿素含量的影响1)Table 3. Influences of the first four principal components on chlorophyll contents in Citrus maxima leaves主成分
Principal
component特征值
Characteristic
value相关系数
Correlation
coefficient累计对X的解释能力/%
Cumulative explanatory
power of X累计对Y的解释能力/%
Cumulative explanatory
power of YZ1 547.761 –0.831** 93.76 53.27 Z2 43.935 –0.661** 96.91 73.40 Z3 9.064 –0.605** 98.97 81.92 Z4 0.074 –0.565** 99.05 86.23 1) “**” 表示达 0.01 水平的显著相关
1) “**” indicates significant correlation at 0.01 level2.5.2 偏最小二乘模型的建立
在确定4个主成分的基础上建立PLS模型,此模型具有较高的精度,决定系数r2为0.869,RMSE和RE分别为3.013和6.82%,通过交互验证法发现,实测值与预测值具有较好的对应关系,结果如图3所示。
2.6 甜柚叶片叶绿素含量估算模型的精度检验
采用剩余20个样本对上述建立的叶绿素估算模型进行精度验证,结果如表4所示。在建立的6种估算模型中,以PLS模型最优,其决定系数r2最高,为0.932,RMSE和RE均最小,分别为2.310和3.41%。其他模型也能够对甜柚叶片叶绿素含量进行估算,但精度均不如PLS模型。
表 4 不同叶绿素含量估算模型精度分析Table 4. Accuracy analysis of different chlorophyll content estimation models模型
Model光谱参数
Spectral parameter模型表达式1)
Model expression预测 r2
Predicted r2RMSE RE/% 单变量模型
Single variable modelR553 nm y = –838.49x2+230.24x+40.671 0.456 6.455 10.55 R'692 nm y = 466 030x2−11 155x+105.32 0.746 4.342 7.22 R'752 nm y = 26.439e590.3x 0.812 3.689 5.95 逐步回归模型
Stepwise regression modelR553 nm、R712 nm y = 16.745−63.71R553 nm+198.16R712 nm 0.543 5.798 9.86 R'752 nm、R'683 nm y = 50.486+4 874.89R'752 nm−189.22R'683 nm 0.834 2.736 4.25 PLS 模型 PLS model Rund Y = 0.686+34.15Z1+5.733Z2−48.79Z3+166.67Z4 0.932 2.310 3.41 1) y 表示叶绿素含量,x 代表单变量模型中的光谱参数,Rund 表示全波段(350~1 000 nm)光谱反射率,Z1、Z2、Z3 及 Z4分别表示前 1、2、3、4 个主成分
1) y refers to chlorophyll content, x refers to spectral parameters in the single variable model, Rund refers to spectral reflectance in full band (350−1 000 nm), Z1, Z2, Z3 and Z4 refer to the first 1, 2, 3 and 4 principal components respectively3. 讨论与结论
对南康甜柚叶片叶绿素含量与高光谱特征参数的相关分析表明,PLS模型通过提取与自变量和因变量相关程度最大的主成分而能够最大限度地反映原始数据的信息,建立的模型能达到较高精度,它比逐步回归和单个光谱特征参数构建的估算模型效果好,其原因主要是PLS模型包含整个波段信息,波段信息的叠加使得建模精度较高,而逐步回归尽管引入多个建模变量,却较容易舍弃与叶绿素含量相关程度较高的特征变量,单个波段也不一定能完全反映与叶绿素含量的相关关系,但PLS模型能够充分利用光谱中的信息弥补这一缺点。本文通过建立单变量回归、逐步回归及PLS模型进行甜柚叶绿素含量的测定,研究结果表明,利用偏最小二乘法所构建的叶绿素含量估算模型具有最佳预测精度,这与一些学者的研究结果相类似[20]。但是影响模型精度的敏感波段不同,这可能与不同植被叶片结构也不太相似有关系。本试验主要对南康甜柚叶绿素含量进行高光谱遥感估算,表明利用PLS模型预测甜柚叶绿素含量是可行的,对于不同的植被以及相同植被不同物候期或者不同部位如何建立更高精度的模型,仍然需要进一步探索和研究。
本文通过测得的甜柚叶片光谱曲线和叶绿素含量值,通过对其光谱曲线的分析,综合考虑了单变量回归、逐步回归及偏最小二乘法估测叶绿素含量的方法,构建甜柚叶绿素含量估算模型并进行了精度评价分析,经研究得出如下结论:
甜柚叶绿素含量与原始光谱及一阶导数光谱曲线的相关性分析得出,原始光谱在553 nm处的反射率、一阶光谱在692和752 nm处的反射率与叶绿素含量达到了极显著相关水平,且相关系数最高,这3个波段为甜柚叶片光谱反射率敏感波段。
基于对甜柚叶片的光谱及叶绿素数据分析,经精度验证发现,利用偏最小二乘回归技术建立的模型其精度最高,误差较小,适宜作为估测甜柚叶片叶绿素含量的检测模型,对于实现其大面积无损的遥感长势监测有借鉴意义。
-
图 8 基于多位点序列构建炭疽病菌的系统发育树
分支显示最大简约校验大于50%及最大似然大于70%的数值,比例尺表示每个位点的预期更改数
Figure 8. Phylogenetic tree based on multilocus sequence of Colletotrichum spp.
Branches are labeled with maximum parsimony bootstrap proportions higher than 50% and maximum likelihood bootstrap higher than 70%, and the scale bar indicates the number of expected changes per site
表 1 油茶炭疽病的分级标准
Table 1 Rated scale for disease severity of Camellia oleifera anthrax
病害级别
Disease
rating病叶率/%
Percentage of
diseased leaves代表数值
Representative
valueⅠ 0 0 Ⅱ (0, 10] 1 Ⅲ (10, 20] 2 Ⅳ (20, 30] 3 Ⅴ (30, 100] 4 表 2 本研究采用的引物
Table 2 Primers used in this study
基因
Gene引物
Primer序列1)(5′-3′)
Sequence (5′-3′)ITS ITS1 TCCGTAGGTGAACCTGCGG ITS4 TCCTCCGCTTATTGATATGC ACT ACT-512F ATGTGCAAGGCCGGTTTCGC ACT-783R TACGAGTCCTTCTGGCCCAT TUB2 Btub2Fd GTBCACCTYCARACCGGYCARTG Btub4Rd CCRGAYTGRCCRAARACRAAGTTGTC CHS-1 CHS-79F TGGGGCAAGGATGCTTGGAAGAAG CHS-354R TGGAAGAACCATCTGTGAGAGAGTTG GAPDH GDF1 GCCGTCAACGACCCCTTCATTGA GDR1 GGGTGGAGTCGTACTTGAGCATGT HIS3 CYLH3F AGGTCCACTGGTGGCAAG CYLH3R AGCTGGATGTCCTTGGACTG 16S rRNA 27F AGAGTTTGATCCTGGCTCAG 1492R GGTTACCTTGTTACGACTT 1) 简并位置的核苷酸由单一字母代替,其中,B= C/G/T;Y=C/T;R=A/G
1) Nucleotide at degenerate positions is represented by a single letter code, B= C/G/T; Y=C/T; R=A/G表 3 云南省3个地区油茶炭疽病病害调查结果1)
Table 3 Investigation results of Camellia oleifera anthrax in three areas of Yunnan Province
采样地
Sampling spot发病率/%
Incidence rate病情指数
Disease index德宏州 Dehong Prefecture 56.18±0.32a 53.11±0.18a 文山州 Wenshan Prefecture 43.99±0.31c 42.01±0.15c 保山市 Baoshan City 53.65±0.20b 47.19±0.23b 1)同列数据后的不同小写字母表示差异显著(P < 0.05, Duncan’s 法)
1)Different lowercase letters of the same column indicate significant difference (P < 0.05, Duncan’s test) -
[1] HE X S, XU L C, PAN C, et al. Drought resistance of Camellia oleifera under drought stress: Changes in physiology and growth characteristics[J]. PLoS One, 2020, 15(7): e0235795. doi: 10.1371/journal.pone.0235795.
[2] 贺义昌, 吴妹杰, 董乐, 等. 主产区浙江红花油茶籽仁含油率及脂肪酸组成变异分析[J]. 经济林研究, 2020, 38(3): 37-45. [3] 王羚, 方学智, 杜孟浩, 等. 超临界CO2萃取对油茶饼中油脂品质及茶皂素理化特性影响的研究[J]. 中国油脂, 2020, 45(8): 109-114. doi: 10.12166/j.zgyz.1003-7969/2020.08.022 [4] ZHAO Y, SU R Q, ZHANG W T, et al. Antibacterial activity of tea saponin from Camellia oleifera shell by novel extraction method[J]. Industrial Crops and Products, 2020, 153: 112604. doi: 10.1016/j.indcrop.2020.112604.
[5] 王玉春. 中国茶树炭疽菌系统发育学研究及茶树咖啡碱抗炭疽病的作用[D]. 杨凌: 西北农林科技大学, 2016. [6] 秦绍钊, 张柱亭, 王洪, 等. 贵州油茶炭疽病Colletotrichum kahawae病原鉴定研究[J]. 现代园艺, 2020(4): 6-7. doi: 10.3969/j.issn.1006-4958.2020.04.003 [7] 张莉, 赵兴丽, 张金峰, 等. 茶树炭疽病病原菌的分离与鉴定[J]. 贵州农业科学, 2018, 46(11): 36-39. doi: 10.3969/j.issn.1001-3601.2018.11.010 [8] 李河, 李司政, 王悦辰, 等. 油茶苗圃炭疽病原菌鉴定及抗药性[J]. 林业科学, 2019, 55(5): 85-94. doi: 10.11707/j.1001-7488.20190510 [9] LIU F, MA Z Y, HOU L W, et al. Updating species diversity of Colletotrichum, with a phylogenomic overview[J]. Studies in Mycology, 2022, 101: 1-56. doi: 10.31110/sin.2022.101.01.
[10] ULRICH K, ULRICH A, EWALD D. Diversity of endophytic bacterial communities in poplar grown under field conditions[J]. FEMS Microbiology Ecology, 2008, 63(2): 169-180. doi: 10.1111/j.1574-6941.2007.00419.x
[11] GOLINSKA P, WYPIJ M, AGARKAR G, et al. Endophytic actinobacteria of medicinal plants: Diversity and bioactivity[J]. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 2015, 108(2): 267-289. doi: 10.1007/s10482-015-0502-7
[12] 殷辉, 周建波, 吕红, 等. 枯草芽孢杆菌LF17与甲基硫菌灵协同防治苹果树腐烂病的效果研究[J]. 中国果树, 2021(1): 28-32. [13] 杨光道. 油茶品种对炭疽病的抗性机制研究[D]. 合肥: 安徽农业大学, 2009. [14] 李河, 李杨, 蒋仕强, 等. 湖南省油茶炭疽病病原鉴定[J]. 林业科学, 2017, 53(8): 43-53. doi: 10.11707/j.1001-7488.20170806 [15] 向梅梅, 张云霞, 刘霄. 炭疽菌属真菌分类的研究进展[J]. 仲恺农业工程学院学报, 2017, 30(1): 59-66. doi: 10.3969/j.issn.1674-5663.2017.01.012 [16] CARBONE I, KOHN L M. A method for designing primer sets for speciation studies in filamentous ascomycetes[J]. Mycologia, 1999, 91(3): 553-556. doi: 10.1080/00275514.1999.12061051.
[17] 陈潇航. 菩提树炭疽病的病原种类鉴定以及防治研究[D]. 南宁: 广西大学, 2018. [18] 刘威. 茶树炭疽病的病原鉴定及其遗传多样性分析[D]. 福州: 福建农林大学, 2013. [19] 王薇. 苹果炭疽叶枯病病原学及苹果炭疽病侵染来源研究[D]. 杨凌: 西北农林科技大学, 2017. [20] 李河, 周国英, 徐建平. 一种新油茶炭疽病原多基因序列鉴定[J]. 植物保护, 2015, 41(2): 92-96. doi: 10.3969/j.issn.0529-1542.2015.02.016 [21] 帅小春, 阮成江, 熊朝伟, 等. 油茶炭疽病新致病菌Colletotrichum kahawae的多基因序列鉴定[J]. 分子植物育种, 2019, 17(18): 5939-5945. [22] 秦绍钊, 洪之国, 王建伟. 贵州油茶炭疽病Colletotrichum fioriniae病原鉴定研究[J]. 福建茶叶, 2019, 41(8): 3. doi: 10.3969/j.issn.1005-2291.2019.08.002 [23] SHARMA G, SHENOY B D. Multigene sequence-based identification of Colletotrichum cymbidiicola, C. karstii and C. phyllanthi from India[J]. Czech Mycology, 2013, 65(1): 79-88. doi: 10.33585/cmy.65106
[24] REINHOLD-HUREK B, HUREK T. Living inside plants: Bacterial endophytes[J]. Current Opinion in Plant Biology, 2011, 14(4): 435-443. doi: 10.1016/j.pbi.2011.04.004
[25] 陈东波, 柳成宾, 姜怡, 等. 来自西双版纳3种有毒植物的免培养与纯培养放线菌多样性及生物活性[J]. 微生物学通报, 2018, 45(5): 1100-1111. [26] FARACE G, FERNANDEZ O, JACQUENS L, et al. Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defense responses in grapevine[J]. Molecular Plant Pathology, 2015, 16(2): 177-187. doi: 10.1111/mpp.12170
[27] YE W Q, SUN Y F, TANG Y J, et al. Biocontrol potential of a broad-spectrum antifungal strain Bacillus amyloliquefaciens B4 for postharvest loquat fruit storage[J]. Postharvest Biology and Technology, 2021, 174: 111439. doi: 10.1016/j.postharvbio.2020.111439.
[28] MALIK H, SUR B, SINGHAL N, et al. Antimicrobial protein from Streptomyces fulvissimus inhibitory to methicillin resistant Staphylococcus aureus[J]. Indian Journal of Experimental Biology, 2008, 46(4): 254-257.
[29] 王颖, 杨成德, 薛莉, 等. 拮抗内生细菌Bacillus mojavensis ZA1在马铃薯根内及根际的定殖动态及其对土壤微生物的影响[J]. 中国生物防治学报, 2016, 32(3): 372-378. [30] KATO S, YAMAGISHI A, DAIMON S, et al. Isolation of previously uncultured slow-growing bacteria by using a simple modification in the preparation of agar media[J]. Applied and Environmental Microbiology, 2018, 84 (19). doi: 10.1128/aem.00807-18.
-
期刊类型引用(4)
1. 许鹤,潘军,孙也涵,宋锦阳. 基于室内实验的小白菜叶绿素含量遥感估算模型研究. 农业与技术. 2024(21): 22-27 . 百度学术
2. 潘玉霞,李艳大,曹中盛,孙滨峰,黄俊宝,吴自明,冯旭萍,郭永久. 基于便携式蜜柚光谱仪的金沙柚叶片叶绿素含量监测模型. 江西农业学报. 2023(05): 60-66 . 百度学术
3. 栗方亮,孔庆波,张青. 基于光谱特征参数的琯溪蜜柚叶片叶绿素含量估算. 福建农业学报. 2021(12): 1447-1456 . 百度学术
4. 高亚利,王振锡,连玲,师玉霞,杨勇强. 截形叶螨危害下枣叶片叶绿素含量高光谱估算模型. 西北农业学报. 2020(04): 613-621 . 百度学术
其他类型引用(10)