Development and application of vitamin C sensor with synergistic sensitization of gold nanoparticles and multi walled carbon nanotubes
-
摘要:目的
开发一种低成本、高响应的维生素C电化学传感器,用于实现果蔬中维生素C含量的快速检测。
方法通过在铅笔芯电极上修饰金纳米颗粒和多壁碳纳米管,构建具有维生素C强催化响应的MWCNTs/Au/PGE电极。通过扫描电镜、X射线光电子能谱、拉曼光谱和循环伏安法表征电极,采用差分脉冲伏安法确定电极的pH适用范围和最优pH条件。采用时间电流法建立标准曲线和方程,以实现快速检测。最后通过加标回收率法检测番茄中维生素C含量。
结果基于MWCNTs/Au/PGE电极的维生素C电化学传感器可在pH 4~8范围内准确地测定维生素C含量,在pH 5时性能最优。快速检测时检测维生素C的质量分数范围为1~500 μg/g,灵敏度达0.244 μA·(μg/g)−1·cm−2。该传感器对葡萄糖、苹果酸和柠檬酸的干扰率均小于1.77%,同一传感器多次测定的相对标准偏差为2.7%。成功检出番茄样品中的维生素C质量分数为69.42 μg/g,加标回收率为109%~113%,相对标准偏差小于2.26%。
结论MWCNTs/Au/PGE电极制备工艺简单,成本低,灵敏度高,测量范围宽,有较强的稳定性和抗干扰性,为实现快速检测果蔬中维生素C提供了新思路。
Abstract:ObjectiveA low-cost and high response electrochemical sensor for vitamin C was developed to realize the rapid detection of vitamin C content in fruits and vegetables.
MethodMWCNTs/Au/PGE electrode with strong catalytic response to vitamin C was constructed by modifying gold nanoparticles and multi walled carbon nanotubes on pencil lead electrode. The electrode was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and cyclic voltammetry. The application range and optimal condition of the electrode pH were determined by differential pulse voltammetry. The standard curve and equation were established by time-current method to realize rapid detection. Finally, the vitamin C content of tomato was detected by standard addition recovery method.
ResultThe vitamin C electrochemical sensor based on MWCNTs/Au/PGE electrode could accurately determine the vitamin C content in the range of pH 4–8, and its performance was the best when pH was 5. During rapid detection, the detection mass fraction range was 1–500 μg/g, sensitivity up to 0.244 μA·(μg/g)−1·cm−2. The interference rates of the sensor to glucose, malic acid and citric acid were less than 1.77%, and the relative standard deviation (RSD) measured by the same sensor for many times was 2.7%. The vitamin C content of tomato sample was 69.42 μg/g, the recovery was 109%–113%, and the RSD was less than 2.26%.
ConclusionMWCNTs/Au/PGE electrode has the advantages of simple preparation process, low cost, high sensitivity, wide measurement range, strong stability and anti-interference. It provides a new idea for the rapid detection of vitamin C in fruits and vegetables.
-
-
图 1 电极表面纳米结构形貌和成分表征
a:Au/PGE电极电镜图;b:MWCNTs/Au/PGE电极电镜图;c、d:MWCNTs/Au/PGE电极电镜图和能谱分析;e:PGE、Au/PGE、MWCNTs/Au/PGE电极拉曼光谱分析;f:MWCNTs/Au/PGE电极XPS分析;g、h:Au 4f和C 1s的精细图谱分析
Figure 1. Nanostructure morphology and composition characterization of electrode surface
a: Electron microscope of Au/PGE electrode; b: Electron microscope of MWCNTs/Au/PGE electrode; c, d: Electron microscope and energy spectrum analysis of MWCNTs/Au/PGE electrode; e: Raman spectrum analysis of PGE, Au/PGE and MWCNTs/Au/PGE electrodes; f: XPS analysis of MWCNTs/Au/PGE electrode; g, h: Fine atlas of Au 4f and C 1s
图 2 MWCNTs/Au/PGE的电化学性能
a:不同修饰的电极在含0.1 mol/L KCl的5.0 mmol/L Fe(CN)63-/4-溶液的循环伏安图;b:不同修饰的电极在50 μg/g的维生素C标准液中的差分脉冲伏安图;c:MWCNTs/Au/PGE在50 μg/g的维生素C标准液中不同扫描速率的循环伏安图;d:MWCNTs/Au/PGE的峰值电流(Ip)与扫描速率(v)平方根的线性拟合图;图中电位以饱和Ag/AgCl电极为参考
Figure 2. Electrochemical performance of MWCNTs/Au/PGE
a: Cyclic voltammetry images of different modified electrodes in 5.0 mmol/L Fe(CN)63-/4-solution containing 0.1 mol/L KCl; b: Differential pulse voltammetry images of different modified electrodes in 50 μg/g vitamin C standard solution; c: Cyclic voltammetry images of MWCNTs/Au/PGE at different scanning rates in 50 μg/g vitamin C standard solution; d: Linear relationship between different peak currents (Ip) of MWCNTs/Au/PGE and square root of scanning rate (v); The potential in the figure is based on the saturated Ag/AgCl electrode
图 3 MWCNTs/Au/PGE在不同pH的维生素C (VC)含量梯度中的差分脉冲伏安法曲线
a~e的插图为对应pH条件下峰电流(I)与维生素C质量分数的线性关系;f:在180 μg/g维生素C溶液中不同pH条件下的峰电流变化,插图分别为pH和峰电流、pH和峰电位(V)的关系;图中电位以饱和Ag/AgCl电极为参考
Figure 3. Differential pulse voltammetry curves of MWCNTs/Au/PGE in the content gradients of vitamin C (VC) at different pH
Illustration of figure a−e: Linear relationship between peak current and vitamin C mass fraction at corresponding pH; f: Peak current variation diagram of different pH in 180 μg/g vitamin C solution, Illustration: pH and peak current diagram, relationship between pH and peak potential; The potential in the figure is based on saturated Ag/AgCl electrode
图 6 10倍稀释的鲜榨番茄汁中维生素C含量的测定过程
a:番茄鲜榨;b:番茄鲜榨后过滤;c:电极封装模具;d:电化学测试过滤稀释10倍后的番茄汁
Figure 6. Determination of vitamin C content in 10-fold diluted fresh tomato juice
a: Fresh pressed tomato juice; b: Filtered fresh pressed tomato juice; c: Electrode packaging mold; d: Electrochemical test of the filtered tomato juice diluted 10 times
表 1 加标回收率法电化学检测番茄汁维生素C含量
Table 1 Electrochemical determination of vitamin C content in tomato juice by standard addition recovery method
n=3 加标量/
(μg·g−1)
Spiked
mass fraction检测量/
(μg·g−1)
Detection
mass fraction回收率/
%
Recovery相对标准
偏差/%
Relative
standard
deviation0 6.14 2.26 5 11.64 109.95 1.68 10 17.04 109.03 0.81 20 28.77 113.16 2.00 表 2 不同方法检测番茄汁中维生素C含量
Table 2 Vitamin C content in tomato juice detected by different methods
n=3 检测方法
Test method线性方程1)
Linear equation决定系数
Determination coefficient
(R2)w(维生素C)/(μg·g−1)
vitamin C
content相对标准偏差/%
Relative standard
deviation钼蓝比色法
Molybdenum blue colorimetryy = 0.682 7x–0.013 1 0.996 6 76.91 7.63 电化学法
Electrochemical methody = 0.049 7x + 0.054 7 0.998 0 69.42 6.50 1) 钼蓝比色法线性方程中,y为光密度,x为维生素C质量浓度;电化学法线性方程中,y为电流,x为维生素C质量分数
1) In the linear equation of molybdenum blue colorimetry, y is the absorbance and x is the vitamin C content; In the linear equation of electrochemical method, y is the current value, x is the vitamin C content -
[1] 赵春江. 智慧农业的发展现状与未来展望[J]. 华南农业大学学报, 2021, 42(6): 1-7. doi: 10.7671/j.issn.1001-411X.202108039 [2] 罗锡文, 廖娟, 胡炼, 等. 我国智能农机的研究进展与无人农场的实践[J]. 华南农业大学学报, 2021, 42(6): 8-17. [3] 岳学军, 蔡雨霖, 王林惠, 等. 农情信息智能感知及解析的研究进展[J]. 华南农业大学学报, 2020, 41(6): 14-28. [4] 郭新波, 唐岳立, 孙小芬, 等. 高等植物维生素C和维生素E代谢调控[J]. 植物生理学报, 2011, 47(8): 731-744. [5] MEDINA-LOZANO I, BERTOLÍN J R, DÍAZ A. Nutritional value of commercial and traditional lettuce (Lactuca sativa L.) and wild relatives: Vitamin C and anthocyanin content[J]. Food Chemistry, 2021, 359: 129864. DOI: 10.1016/j.foodchem.2021.129864.
[6] MILADINOV Z, BALESEVIC TUBIC S, CRNOBARAC J, et al. Effects of foliar application of solutions of ascorbic acid, glycine betaine, salicylic acid on the yield and seed germination of soybean in South Eastern Europe conditions[J]. Zemdirbyste-Agriculture, 2020, 107(4): 337-344. doi: 10.13080/z-a.2020.107.043
[7] 王霞, 张维谊, 韩奕奕, 等. 高效液相色谱法测定水果和蔬菜中维生素C含量的不确定度评定[J]. 食品与机械, 2021, 37(5): 73-77. [8] PORTO I S A, SANTOS NETO J H, DOS SANTOS L O, et al. Determination of ascorbic acid in natural fruit juices using digital image colorimetry[J/OL]. Microchemical Journal, 2019, 149: 104031. [2021-11-25].https://doi.org/10.1016/j.microc.2019.104031.
[9] 张爱菊, 张小林. 荧光猝灭法测定维生素C片和果汁饮料中抗坏血酸的含量[J]. 理化检验(化学分册), 2020, 56(4): 395-399. [10] 叶青, 江志波. 酸碱滴定法与碘滴定法测定维生素C[J]. 理化检验(化学分册), 2007, 43(5): 410. [11] 温欣荣, 涂常青. 分光光度法测定水果中维生素C[J]. 化学世界, 2019, 60(1): 12-17. [12] 邱清莲, 吴斯燕, 刘光兰, 等. 含葡萄籽提取物的维生素C的测定[J]. 食品安全质量检测学报, 2018, 9(1): 39-44. [13] 李琛, 许庆铎, 边勇. 基于微流控阻抗传感器检测番茄环斑病毒[J]. 农业工程学报, 2020, 36(16): 142-148. doi: 10.11975/j.issn.1002-6819.2020.16.018 [14] 杨康兵, 赵树鑫, 李方慧, 等. 基于多壁碳/金纳米管制备电极测定烟草中14-3-3蛋白与蛋白印迹的方法比较[J]. 昆明理工大学学报(自然科学版), 2021, 46(3): 132-140. [15] 张艳, 杜海军, 杜科志, 等. 电化学传感器检测植物生长调节剂的研究进展[J]. 化学试剂, 2021, 43(4): 458-465. [16] 李庆伟, 刘峥, 李海莹, 等. 金属有机骨架材料修饰玻碳电极循环伏安法测定维生素C片中抗坏血酸[J]. 理化检验(化学分册), 2017, 53(11): 1259-1264. [17] 张巧云, 程玮玮, 张岩, 等. 纳米多孔金电化学传感器构建及其对饮品中抗坏血酸的检测[J]. 食品科学, 2021, 42(20): 274-279. [18] ALONSO-LOMILLO M A, DOMÍNGUEZ-RENEDO O, SALDAÑA-BOTÍN A, et al. Determination of ascorbic acid in serum samples by screen-printed carbon electrodes modified with gold nanoparticles[J]. Talanta, 2017, 174: 733-737. doi: 10.1016/j.talanta.2017.07.015
[19] 王晓健, 晋日亚, 乔怡娜, 等. 铅笔芯电化学传感器研究进展[J]. 应用化工, 2020, 49(1): 217-220. [20] MOHAMMAD-REZAEI R, SOROODIAN S, ESMAEILI G. Manganese oxide nanoparticles electrodeposited on graphenized pencil lead electrode as a sensitive miniaturized pH sensor[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(3): 1998-2005. doi: 10.1007/s10854-018-0471-5
[21] 郑霄, 陈苏靖, 李芳芳, 等. 基于活化铅笔芯电极的扑热息痛电化学传感器[J]. 分析科学学报, 2020, 36(1): 13-18. [22] TORRINHA Á, AMORIM C G, MONTENEGRO M C B S M, et al. Biosensing based on pencil graphite electrodes[J]. Talanta, 2018, 190: 235-247. doi: 10.1016/j.talanta.2018.07.086
[23] CHEN G, ZHENG J. Non-enzymatic electrochemical sensor for nitrite based on a graphene oxide-polyaniline-Au nanoparticles nanocomposite[J/OL]. Microchemical Journal, 2021, 164: 106034. [2021-11-25]. https://doi.org/10.1016/j.microc.2021.106034.
[24] XIAO T, HUANG J, WANG D, et al. Au and Au-based nanomaterials: Synthesis and recent progress in electrochemical sensor applications[J/OL]. Talanta, 2020, 206: 120210. [2021-11-25]. https://doi.org/10.1016/j.talanta.2019.120210.
[25] KILELE J C, CHOKKAREDDY R, REDHI G G. Ultra-sensitive electrochemical sensor for fenitrothion pesticide residues in fruit samples using IL@CoFe2O4NPs@MWCNTs nanocomposite[J/OL]. Microchemical Journal, 2021, 164: 106012. [2021-11-25]. https://doi.org/10.1016/j.microc.2021.106012.
[26] NAWAZ M A H, MAJDINASAB M, LATIF U, et al. Development of a disposable electrochemical sensor for detection of cholesterol using differential pulse voltammetry[J]. Journal of Pharmaceutical and Biomedical Analysis, 2018, 159: 398-405. doi: 10.1016/j.jpba.2018.07.005
[27] NAVRATIL R, KOTZIANOVA A, HALOUZKA V, et al. Polymer lead pencil graphite as electrode material: Voltammetric, XPS and Raman study[J]. Journal of Electroanalytical Chemistry, 2016, 783: 152-160. doi: 10.1016/j.jelechem.2016.11.030
[28] LIU D, LI M, LI H, et al. Core-shell Au@Cu2O-graphene-polydopamine interdigitated microelectrode array sensor for in situ determination of salicylic acid in cucumber leaves[J/OL]. Sensors and Actuators B: Chemical, 2021, 341: 130027. [2021-11-25]. https://doi.org/10.1016/j.snb.2021.130027.
[29] LI P, LIU Z, YAN Z, et al. An Electrochemical sensor for determination of vitamin B2 and B6 based on AuNPs@PDA-RGO modified glassy carbon electrode[J]. Journal of the Electrochemical Society, 2019, 166(10): B821-B829. doi: 10.1149/2.1281910jes
[30] WU L, LU Z, YE J. Enzyme-free glucose sensor based on layer-by-layer electrode position of multilayer films of multi-walled carbon nanotubes and Cu-based metal framework modified glassy carbon electrode[J]. Biosensors Bioelectronics, 2019, 135: 45-49. doi: 10.1016/j.bios.2019.03.064
[31] SHA R, BADHULIKA S. Facile green synthesis of reduced graphene oxide/tin oxide composite for highly selective and ultra-sensitive detection of ascorbic acid[J]. Journal of Electroanalytical Chemistry, 2018, 816: 30-37. doi: 10.1016/j.jelechem.2018.03.033
[32] LI Q, HUO C, YI K, et al. Preparation of flake hexagonal BN and its application in electrochemical detection of ascorbic acid, dopamine and uric acid[J]. Sensors and Actuators B: Chemical, 2018, 260: 346-356. doi: 10.1016/j.snb.2017.12.208
[33] 龚德状, 关桦楠, 吴巧艳, 等. 基于金磁微粒模拟酶电化学增强体系检测抗坏血酸[J]. 食品科学, 2020, 41(16): 151-157. [34] DOKUR E, GORDUK O, SAHIN Y. Selective electrochemical sensing of riboflavin based on functionalized multi-walled carbon nanotube/gold nanoparticle/pencil graphite electrode [J/OL]. ECS Journal of Solid State Science and Technology, 2020, 9(12): 121003. [2021-11-25]. https://doi.org/10.1149/2162-8777/abcdff.
[35] LI H, WANG C, WANG X, et al. Disposable stainless steel-based electrochemical microsensor for in vivo determination of indole-3-acetic acid in soybean seedlings[J]. Biosensors Bioelectronics, 2019, 126: 193-199. doi: 10.1016/j.bios.2018.10.041