• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

氧化沉降条件下草甘膦对福寿螺的急性毒性效应

梁冬霞, 李银诗, 李烁宇, 龚茂健, 钱久李, 黎华寿

梁冬霞, 李银诗, 李烁宇, 等. 氧化沉降条件下草甘膦对福寿螺的急性毒性效应[J]. 华南农业大学学报, 2022, 43(4): 67-76. DOI: 10.7671/j.issn.1001-411X.202111011
引用本文: 梁冬霞, 李银诗, 李烁宇, 等. 氧化沉降条件下草甘膦对福寿螺的急性毒性效应[J]. 华南农业大学学报, 2022, 43(4): 67-76. DOI: 10.7671/j.issn.1001-411X.202111011
LIANG Dongxia, LI Yinshi, LI Shuoyu, et al. Acute toxic effect of glyphosate on Pomacea canaliculata under the condition of oxidative deposition[J]. Journal of South China Agricultural University, 2022, 43(4): 67-76. DOI: 10.7671/j.issn.1001-411X.202111011
Citation: LIANG Dongxia, LI Yinshi, LI Shuoyu, et al. Acute toxic effect of glyphosate on Pomacea canaliculata under the condition of oxidative deposition[J]. Journal of South China Agricultural University, 2022, 43(4): 67-76. DOI: 10.7671/j.issn.1001-411X.202111011

氧化沉降条件下草甘膦对福寿螺的急性毒性效应

基金项目: 国家自然科学基金 (31770479);广东省基础与应用基础研究基金 (2019A1515011823);广东省科技计划(2019B030301007)
详细信息
    作者简介:

    梁冬霞,硕士研究生,主要从事污染生态学研究,E-mail: 1849039899@qq.com

    通讯作者:

    黎华寿,教授,博士,主要从事污染生态、农业环保和草业生态工程研究,E-mail: lihuashou@scau.edu.cn

  • 中图分类号: X592

Acute toxic effect of glyphosate on Pomacea canaliculata under the condition of oxidative deposition

  • 摘要:
    目的 

    探究草甘膦与H2O2复合污染条件下草甘膦对福寿螺Pomacea canaliculata的急性毒性效应。

    方法 

    采用静水式生物测试法,采集田间生长均匀一致的成年福寿螺,使其暴露于不同浓度草甘膦和近似广州地区降水H2O2浓度(50 μmol·L−1)的水体中。研究氧化沉降条件下草甘膦对福寿螺生境的水质部分指标和急性毒性效应的影响。

    结果 

    水体水质指标中,氧化还原电位(Oxidation-reduction potential,ORP)随暴露时间增加而上升,由330 mV上升至540 mV左右;pH随暴露时间增加,不同处理有上升也有下降的趋势,最终都维持在7.0~8.5;溶解氧(Dissolved oxygen,DO)在8.5~16.0 mg·L−1之间,无固定变化规律;这3个指标都维持在福寿螺生长能适应的范围内。急性毒性试验表明,草甘膦对福寿螺为低毒,在有或无H2O2添加时其48 h的半致死浓度(LC50)均为133.479 mg·L−1。在高浓度草甘膦作用下,福寿螺抗氧化胁迫酶[超氧化物歧化酶(SOD)和过氧化氢酶(CAT)]以及能量代谢相关酶[淀粉酶(AMS)和脂肪酶(LPS)]活性呈先诱导上调、后被抑制、而后又适应上调的趋势,说明在染毒过程中福寿螺能慢慢适应所处胁迫环境并不断提高抗逆性,在逆境中正常生存。

    结论 

    氧化沉降条件下,草甘膦对福寿螺急性毒性效应为低毒,4种典型酶的酶活性总体呈上调升高的趋势,试图通过草甘膦除草的同时又抑制福寿螺是无效和不现实的。

    Abstract:
    Objective 

    To explore the acute toxic effect of glyphosate on Pomacea canaliculata under the combined pollution of glyphosate and H2O2.

    Method 

    Using the hydrostatic biological test method, adult Pomacea canaliculata with uniform growth in the field were collected, and exposed to water with different concentrations of glyphosate and similar to the average concentration of H2O2 (50 μmol·L−1) in precipitation of Guangzhou. The influences of glyphosate on some water quality indexes of P. canaliculata habitat and acute toxic effects of P. canaliculata under oxidative deposition conditions were studied.

    Result 

    For the water quality index, oxidation-reduction potential (ORP) increased with the increase of exposure time, from 330 mV to about 540 mV; The change of pH with the increase of exposure time increased or decreased under different treatments, and finally maintained between 7.0 and 8.5; The concentration of dissolved oxygen (DO) was between 8.5 and 16.0 mg·L−1, and there was no obvious variation trend. The three water quality indexes above were within the range that the growth of P. canaliculata could adapt to. Acute toxicity tests indicated that glyphosate had low toxicity to P. canaliculata, and the 50% lethal concentration (LC50) in 48 h was 133.479 mg·L−1 with or without H2O2 deposition. The anti-oxidative stress enzymes of superoxide dismutase (SOD) and catalase (CAT), as well as energy metabolism-related enzymes of amylase (AMS) and lipase (LPS) in P. canaliculata were firstly up-regulated, then suppressed, and finally adapted to up-regulation. It showed that in the process of poisoning, P. canaliculata could slowly adapt to the stress environment and continuously improve its stress resistance, so that it could survive normally in this stress.

    Conclusion 

    Under the condition of oxidative deposition, the acute toxic effect of glyphosate on P. canaliculata is low, and the activities of the four related typical enzymes are generally up-regulated. It is ineffective and unrealistic to try to inhibit P. canaliculata through herbicide weeding at the same time.

  • 表  1   不同处理下福寿螺水体氧化还原电位(ORP)的变化1)

    Table  1   Change of oxidation-reduction potential (ORP) for Pomacea canaliculata water habitat under different treatments

    ρ(草甘膦)/(mg·L−1)
    Glyphosate concentration
    c(H2O2)/(μmol·L−1) ORP/mV
    24 h 48 h 72 h 96 h
    0(CK) 0 342.66±2.50bc 379.53±4.49b 397.10±1.11ef 464.90±5.02cd
    20 0 358.63±0.86bc 389.80±1.19b 409.06±4.74def 471.90±6.91bcd
    40 0 352.00±11.65bc 380.16±7.96b 390.40±9.08f 462.70±11.63cd
    80 0 357.93±1.40bc 389.76±3.75b 406.00±4.30def 464.16±3.73cd
    100 0 330.23±4.91c 372.53±3.67b 410.03±4.60df 452.00±3.06c
    20 50 383.43±11.64ab 415.06±17.82ab 455.36±20.72bc 486.90±12.03bc
    40 50 366.70±2.10bc 393.66±3.39b 393.66±3.39b 479.76±4.52bcd
    80 50 351.50±5.40bc 375.90±4.34b 434.40±16.26cd 487.50±6.81bc
    100 50 365.10±1.35bc 395.26±3.96b 470.26±10.82b 497.10±1.94b
    0 50 424.70±43.78a 453.63±37.78a 512.93±13.59a 540.16±19.38a
     1)表中数据为平均值±标准误,n=3;同列数据后的不同小写字母表示处理间差异显著(P<0.05,Duncan’s法)
     1) Data are means ± standard deviations, n=3; Different lowercase letters in the same column indicate significant differences among different treatments (P < 0.05, Duncan’s method)
    下载: 导出CSV

    表  2   不同处理下福寿螺水体溶解氧(DO)含量的变化1)

    Table  2   Change of dissolved oxygen (DO) content for Pomacea canaliculata water habitat under different treatments

    ρ(草甘膦)/(mg·L−1)
    Glyphosate concentration
    c(H2O2)/(μmol·L−1) ρ(DO)/(mg·L−1)
    24 h 48 h 72 h 96 h
    0(CK) 0 15.75±0.77a 15.11±0.59a 14.46±1.21a 11.45±1.15ab
    20 0 9.08±0.35bc 9.35±0.30de 9.85±0.31cde 10.74±0.44ab
    40 0 6.15±0.49c 7.08±0.08e 7.37±0.07e 8.03±0.33b
    80 0 8.91±1.57bc 9.54±1.21cde 10.45±0.34bcd 11.94±1.05ab
    100 0 15.80±1.88a 14.58±1.05a 12.97±0.87ab 11.88±1.86ab
    20 50 12.25±1.66ab 12.55±1.43abcd 12.69±1.42abc 13.11±1.59a
    40 50 12.70±1.95ab 12.77±1.88abc 13.10±1.42ab 13.53±0.81a
    80 50 13.71±1.70ab 13.41±1.22ab 11.52±1.05abcd 10.32±2.45ab
    100 50 9.50±0.37bc 9.31±0.29de 8.91±0.14de 8.50±0.10b
    0 50 12.81±2.38ab 10.84±0.84bcd 10.71±0.65bcd 10.34±0.96ab
     1)表中数据为平均值±标准误,n=3;同列数据后的不同小写字母表示处理间差异显著(P<0.05,Duncan’s法)
     1) Data are means ± standard deviations, n=3; Different lowercase letters in the same column indicate significant differences among different treatments (P < 0.05, Duncan’s method)
    下载: 导出CSV

    表  3   不同处理下福寿螺水体pH的变化1)

    Table  3   Change of pH for Pomacea canaliculata water habitat under different treatments

    ρ(草甘膦)/(mg·L−1)
    Glyphosate concentration
    c(H2O2)/(μmol·L−1) pH
    24 h 48 h 72 h 96 h
    0(CK) 0 7.49±0.03b 7.86±0.09b 8.29±0.10a 7.23±0.09a
    20 0 5.81±0.12d 6.13±0.06e 7.32±0.19cd 8.04±0.43a
    40 0 5.70±0.19d 6.25±0.09e 6.78±0.08d 7.66±0.88a
    80 0 5.61±0.15d 6.95±0.03cd 7.22±0.06cd 7.90±0.66a
    100 0 6.05±0.63cd 6.65±0.35de 7.15±0.17cd 8.38±0.19a
    20 50 6.05±0.63cd 7.28±0.38bcd 7.64±0.24abc 7.94±0.57a
    40 50 7.24±0.00b 7.49±0.06bc 7.62±0.17abc 7.88±0.39a
    80 50 6.78±0.17bc 7.08±0.06cd 7.54±0.26bc 8.01±0.50a
    100 50 5.36±0.04d 6.30±0.25e 7.54±0.17bc 8.14±0.32a
    0 50 9.30±0.08a 8.88±0.22a 8.13±0.39ab 7.53±0.59a
     1)表中数据为平均值±标准误,n=3;同列数据后的不同小写字母表示处理间差异显著(P<0.05,Duncan’s法)
     1) Data are means ± standard deviations, n=3; Different lowercase letters in the same column indicate significant differences among different treatments (P < 0.05, Duncan’s method)
    下载: 导出CSV

    表  4   草甘膦对福寿螺的半致死浓度(LC50)

    Table  4   The 50% lethal concentration (LC50) of glyphosate to Pomacea canaliculata mg·L−1

    t/h 草甘膦+H2O2
    Glyphosate+H2O2
    草甘膦
    Glyphosate
    24 460.568 145.723
    48 133.479 133.479
    72 88.614 56.803
    96 50.540 36.043
    下载: 导出CSV

    表  5   不同处理对福寿螺各种酶活性的影响1)

    Table  5   Effects of different treatments on activities of various enzymes for Pomacea canaliculata

    ρ(草甘膦)/(mg·L−1)
    Glyphosate concentration
    c(H2O2)/
    (μmol·L−1)
    SOD活性/(U·mg−1)
    SOD activity
    AMS活性/(U·mg−1)
    AMS activity
    CAT活性/(U·mg−1)
    CAT activity
    LPS活性/(U·g−1)
    LPS activity
    0(CK) 0 8.73±0.83a 0.02±0.01a 4.63±0.44b 27.90±2.29a
    20 0 9.04±1.32a 0.07±0.04a 3.00±0.60b 57.65±14.64a
    40 0 11.89±2.39a 0.05±0.01a 3.64±1.30b 55.12±12.31a
    80 0 11.29±0.89a 0.02±0.01a 2.05±0.74b 55.34±19.01a
    100 0 10.70±1.75a 0.03±0.00a 2.89±1.00b 35.53±11.34a
    20 50 11.67±0.73a 0.04±0.02a 5.99±0.55ab 36.42±15.28a
    40 50 13.10±3.03a 0.09±0.03a 5.20±1.87ab 34.12±10.39a
    80 50 9.36±1.68a 0.12±0.05a 2.15±0.29b 30.57±13.33a
    100 50 14.24±2.39a 0.16±0.05a 8.85±2.97a 32.26±14.90a
    0 50 13.88±2.36a 0.17±0.13a 2.55±0.76b 60.04±17.07a
     1)表中数据为平均值±标准误,n=3;同列数据后的不同小写字母表示处理间差异显著(P<0.05,Duncan’s法)
     1) Data are means ± standard deviations, n=3; Different lowercase letters in the same column indicate significant differences among different treatments (P < 0.05, Duncan’s method)
    下载: 导出CSV
  • [1] 赵永超, 严志会, 吴帆, 等. 福寿螺卵巢发育与卵子发生的组织学研究[J]. 华南农业大学学报, 2016, 37(3): 95-99.
    [2] 赵兰, 骆世明, 黎华寿, 等. 不同浓度下四种除草剂对福寿螺和坑螺的生态毒理效应[J]. 生态学报, 2011, 31(19): 5720-5727.
    [3] 沈路遥, 彭自然, 戴智. 草甘膦水生生物毒性、环境行为、检测方法研究进展[J]. 农药, 2020, 59(1): 6-10.
    [4] 周垂帆, 李莹, 张晓勇, 等. 草甘膦毒性研究进展[J]. 生态环境学报, 2013, 22(10): 1737-1743. doi: 10.3969/j.issn.1674-5906.2013.10.016
    [5]

    MYERS J P, ANTONIOU M N, BLUMBERG B, et al. Concerns over use of glyphosate-based herbicides and risks associated with exposures: A consensus statement[J]. Environmental Health, 2016, 15: 19. doi: 10.1186/s12940-016-0117-0.

    [6]

    FANTÓN N, BACCHETTA C, ROSSI A, et al. Effects of a glyphosate-based herbicide on the development and biochemical biomarkers of the freshwater copepod Notodiaptomus carteri (Lowndes, 1934)[J]. Ecotoxicology and Environmental Safety, 2020, 196: 110501. doi: 10.1016/j.ecoenv.2020.110501.

    [7]

    VELASQUES R R, SANDRINI J Z, DA ROSA C E. Roundup® in zebrafish: Effects on oxidative status and gene expression[J]. Zebrafish, 2016, 13(5): 432-441. doi: 10.1089/zeb.2016.1259

    [8]

    DE MELO TAROUCO F, DE GODOI F G A, Velasques R R, et al. Effects of the herbicide roundup on the polychaeta Laeonereis acuta: Cholinesterases and oxidative stress.[J]. Ecotoxicology and Environmental Safety, 2017, 135: 259-266. doi: 10.1016/j.ecoenv.2016.10.014

    [9] PÉREZ L G, VERA M S, MIRANDA L A. Effects of herbicide glyphosate and glyphosate- based formulations on aquatic ecosystems[M]//Kortekamp A. Herbicides and Environment. [s.l.]: InTech, 2011: 343-368.
    [10]

    SÁNCHEZ J A A, JUNIOR A S V, CORCINI C D, et al. Effects of Roundup formulations on biochemical biomarkers and male sperm quality of the livebearing Jenynsia multidentata[J]. Chemosphere, 2017, 177: 200-210. doi: 10.1016/j.chemosphere.2017.02.147

    [11] 廖艺钰, 惠吕佳, 严吉祥, 等. 草甘膦农药对斑马鱼的急性毒性和慢性毒性研究[J]. 广州化工, 2020, 48(21): 66-68. doi: 10.3969/j.issn.1001-9677.2020.21.024
    [12]

    SANTADINO M, COVIELLA C, MOMO F. Glyphosate sublethal effects on the population dynamics of the earthworm Eisenia fetida (Savigny, 1826)[J]. Water, Air & Soil Pollution, 2014, 225(12): 1-8.

    [13]

    LE DU-CARRÉE J, BOUKHARI R, CACHOT J, et al. Generational effects of a chronic exposure to a low environmentally relevant concentration of glyphosate on rainbow trout, Oncorhynchus mykiss[J]. Science of the Total Environment, 2021, 801: 149462. doi: 10.1016/j.scitotenv.2021.149462.

    [14]

    WEE J, LEE Y, KIM Y, et al. Multigeneration toxicity of Geunsami® (a glyphosate-based herbicide) to Allonychiurus kimi (Lee) (Collembola) from sub-individual to population levels[J]. Environmental Pollution, 2021, 291: 118172. doi: 10.1016/j.envpol.2021.118172.

    [15]

    XU Y G, LI A J, LI K B, et al. Effects of glyphosate-based herbicides on survival, development and growth of invasive snail ( Pomacea canaliculata )[J]. Aquatic Toxicology, 2017, 193: 136-143. doi: 10.1016/j.aquatox.2017.10.011

    [16] 刘聪辉. 基于多组学数据对福寿螺生物入侵机制的探究[D]. 北京: 中国农业科学院, 2018.
    [17] 于瑞新, 刘旻霞, 李亮, 等. 长三角地区近15年大气臭氧柱浓度时空变化及影响因素[J]. 环境科学学报, 2021, 41(3): 770-784.
    [18]

    LIU Z R, WANG Y S, HU B, et al. Elucidating the quantitative characterization of atmospheric oxidation capacity in Beijing, China[J]. Science of the Total Environment, 2021, 771: 145306. doi: 10.1016/j.scitotenv.2021.145306.

    [19]

    ZHAO D D, LIU G J, XIN J Y, et al. Haze pollution under a high atmospheric oxidization capacity in summer in Beijing: Insights into formation mechanism of atmospheric physicochemical processes[J]. Atmospheric Chemistry and Physics, 2020, 20(8): 4575-4592. doi: 10.5194/acp-20-4575-2020

    [20]

    YUAN J C, SHILLER A M. The variation of hydrogen peroxide in rainwater over the South and Central Atlantic Ocean[J]. Atmospheric Environment, 2000, 34(23): 3973-3980. doi: 10.1016/S1352-2310(00)00167-9

    [21]

    GON ÇALVES C, DOS SANTOS M A, FORNARO A, et al. Hydrogen peroxide in the rainwater of sao paulo megacity: Measurements and controlling factors[J]. Journal of the Brazilian Chemical Society, 2010, 21(2): 331-339. doi: 10.1590/S0103-50532010000200020

    [22]

    COOPER W J, SALTZMAN E S, ZIKA R G. The contribution of rainwater to variability in surface ocean hydrogen peroxide[J]. Journal of Geophysical Research, 1987, 92(C3): 2970-2980. doi: 10.1029/JC092iC03p02970

    [23] 魏西会, 刘素美, 张经, 等. 天然水体中微量过氧化氢的测定方法[J]. 海洋科学, 2008, 32(10): 96-100.
    [24]

    WILLEY J D, KIEBER R J, LANCASTER R D. Coastal rainwater hydrogen peroxide: Concentration and deposition[J]. Journal of Atmospheric Chemistry, 1996, 25(2): 149-165. doi: 10.1007/BF00053789

    [25]

    COOPER W J, ZIKA R G, PETASNE R G, et al. Photochemical formation of hydrogen peroxide in natural waters exposed to sunlight[J]. Environmental Science & Technology, 1988, 22(10): 1156-1160.

    [26]

    LIN X Y, HE L X, ZHANG R H, et al. Rainwater in Guangzhou, China: Oxidizing properties and physicochemical characteristics[J]. Atmospheric Pollution Research, 2019, 10(1): 303-312. doi: 10.1016/j.apr.2018.08.005

    [27] 中华人民共和国国家质量监督检验检疫总局. 化学农药环境安全评价试验准则: 第21部分: 大型甲壳类生物毒性试验: GB/T 31270.21—2014[S]. 北京: 国家标准化委员会, 2014.
    [28] 田春美, 钟秋平. 超氧化物歧化酶的现状研究进展[J]. 中国热带医学, 2005, 5(8): 1730-1732. doi: 10.3969/j.issn.1009-9727.2005.08.072
    [29] 韩微. 福寿螺对逆境胁迫的行为反应及生理生化反应研究[D]. 南宁: 广西大学, 2012.
    [30] 朱丽霞, 黄瑶瑶, 张泽宏, 等. pH、食物和光周期对福寿螺生长发育和繁殖的影响[J]. 生态学报, 2015, 35(8): 2643-2651.
    [31] 廖辉杰, 范德江, 逄悦, 等. 河水与海水混合过程中Eh-pH的变化特征及影响因素[J]. 中国海洋大学学报(自然科学版), 2021, 51(4): 100-108.
    [32] 谢红梅, 刘泷霞. 新型复合钝化剂对上覆水体及底泥pH-Eh-COD的影响[J]. 广东化工, 2021, 48(10): 127-129. doi: 10.3969/j.issn.1007-1865.2021.10.046
    [33] 董煜, 邹联沛, 张晓岚. 苏州河上海市区段底泥有机物的初步研究[J]. 环境科学与技术, 2005, 28(S2): 14-15.
    [34] 孟秀柔, 宋青梅, 王飞, 等. 草铵膦和草甘膦在水环境中的行为和毒性效应研究进展[J]. 生态毒理学报, 2021, 16(3): 144-154.
    [35]

    LUSHCHAK V I, VIISHYN T M, HUSAK V V, et al. Pesticide toxicity: A mechanistic approach[J]. Excli Journal, 2018, 17: 1101-1136.

    [36]

    STALEY Z R, HARWOOD V J, ROHR J R. A synthesis of the effects of pesticides on microbial persistence in aquatic ecosystems[J]. Critical Reviews in Toxicology, 2015, 45(10): 813-836. doi: 10.3109/10408444.2015.1065471

    [37]

    DAMALAS C A, ELEFTHEROHORINOS I G. Pesticide exposure, safety issues, and risk assessment indicators[J]. International Journal of Environmental Research and Public Health, 2011, 8(5): 1402-1419. doi: 10.3390/ijerph8051402

    [38] 刘昌平, 刘昌利, 王进. 四种常见农药对日本三角涡虫的急性毒性研究[J]. 中国林副特产, 2008(6): 19-22. doi: 10.3969/j.issn.1001-6902.2008.06.006
    [39]

    CAVALCANTE D G S M, MARTINEZ C B R, SOFIA S H. Genotoxic effects of roundup on the fish Prochilodus lineatus[J]. Mutation Research, 2008, 655(1/2): 41-46.

    [40]

    GUILHERME S, GAIVÃO I, SANTOS M A, et al. DNA damage in fish (Anguilla anguilla) exposed to a glyphosate-based herbicide: Elucidation of organ-specificity and the role of oxidative stress[J]. Mutation Research: Genetic Toxicology and Environmental Mutagenesis, 2012, 743(1/2): 1-9.

    [41]

    CUHRA M, TRAAVIK T, BØHN T. Clone- and age-dependent toxicity of a glyphosate commercial formulation and its active ingredient in Daphnia magna[J]. Ecotoxicology, 2013, 22(2): 251-262. doi: 10.1007/s10646-012-1021-1

    [42] 陈瑞曦. 超氧化物歧化酶研究及在海洋渔业中的应用[J]. 中国渔业经济, 2014, 32(5): 85-91. doi: 10.3969/j.issn.1009-590X.2014.05.013
    [43] 游金进. 过氧化氢酶在养猪生产中的应用[J]. 畜禽业, 2019, 30(5): 21-22.
    [44] 宋超, 陈家长, 胡庚东, 等. 除草剂氟乐灵及其降解过程对斑马鱼氧化应激状况的影响[J]. 生态环境学报, 2017, 26(3): 468-472.
    [45] 黄秀枝, 蔡瑷安, 尚战峰, 等. 甲氨基阿维菌素胁迫下福寿螺肝脏抗氧化酶活性及显微结构的变化[J]. 江苏农业学报, 2015, 31(3): 552-557. doi: 10.3969/j.issn.1000-4440.2015.03.014
    [46] 彭立凤, 赵汝淇, 谭天伟. 微生物脂肪酶的应用[J]. 食品与发酵工业, 2000, 26(3): 68-73. doi: 10.3321/j.issn:0253-990X.2000.03.014
    [47] 姜鹤, 孔繁东, 刘兆芳. 温度、pH及金属离子对大连虾蛄消化酶活性影响[J]. 中国食品添加剂, 2016(2): 100-105. doi: 10.3969/j.issn.1006-2513.2016.02.011
    [48] 罗志刚, 杨景峰, 罗发兴. α−淀粉酶的性质及应用[J]. 食品研究与开发, 2007, 28(8): 163-167. doi: 10.3969/j.issn.1005-6521.2007.08.053
    [49] 罗明珠, 章家恩, 胡九龙, 等. 福寿螺和田螺消化酶活性比较[J]. 生态学报, 2015, 35(11): 3580-3587.
    [50]

    MODESTO K A, MARTINEZ C B R. Effects of roundup transorb on fish: Hematology, antioxidant defenses and acetylcholinesterase activity[J]. Chemosphere, 2010, 81(6): 781-787. doi: 10.1016/j.chemosphere.2010.07.005

    [51]

    LAJMANOVICH R C, ATTADEMO A M, PELTZER P M, et al. Toxicity of four herbicide formulations with glyphosate on Rhinella arenarum (Anura: Bufonidae) tadpoles: B-esterases and glutathione S-transferase inhibitors[J]. Archives of Environmental Contamination and Toxicology, 2011, 60(4): 681-689. doi: 10.1007/s00244-010-9578-2

    [52] 何铭谦, 罗明珠, 章家恩, 等. 广东福寿螺暴发危害状况调查及防治对策[J]. 贵州农业科学, 2011, 39(1): 100-104. doi: 10.3969/j.issn.1001-3601.2011.01.029
    [53]

    HORGON F G, FELIX M I, PORTALANZA D, et al. Responses by farmers to the apple snail invasion of Ecuador’s rice fields and attitudes toward predatory snail kites[J]. Crop Protection, 2014, 62: 135-143. doi: 10.1016/j.cropro.2014.04.019

    [54] 桑松, 王培丹, 曹宇科, 等. 山坑螺和田螺作为指示生物监测茶园环境农药残留的研究[J]. 华南农业大学学报, 2014, 35(3): 58-62. doi: 10.7671/j.issn.1001-411X.2014.03.011
  • 期刊类型引用(4)

    1. 张馨悦,王超,王庆杰,康可新,李贵蓉,刘立晶. 玉米苗期行间除草二级对行装置设计与试验. 农业机械学报. 2025(04): 42-51+60 . 百度学术
    2. 何创新,巩蕾,苗中华,韩科立,郝付平,韩增德. 基于平行轨迹导航的采棉机自动对行控制方法. 农业机械学报. 2024(06): 34-41 . 百度学术
    3. 苏鹏鉴,马海琴,叶俊明. 基于无人系统的智能视觉控制算法研究. 电子测量技术. 2024(09): 93-97 . 百度学术
    4. 张晓龙,易克传,姜春霞,凃何平,郭子明. 基于四连杆机构自动对行装置的设计与仿真. 东莞理工学院学报. 2024(05): 110-116 . 百度学术

    其他类型引用(0)

表(5)
计量
  • 文章访问数:  176
  • HTML全文浏览量:  33
  • PDF下载量:  356
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-11-10
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2022-07-09

目录

    /

    返回文章
    返回