• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

智慧农业的发展现状与未来展望

赵春江

赵春江. 智慧农业的发展现状与未来展望[J]. 华南农业大学学报, 2021, 42(6): 1-7. DOI: 10.7671/j.issn.1001-411X.202108039
引用本文: 赵春江. 智慧农业的发展现状与未来展望[J]. 华南农业大学学报, 2021, 42(6): 1-7. DOI: 10.7671/j.issn.1001-411X.202108039
ZHAO Chunjiang. Current situations and prospects of smart agriculture[J]. Journal of South China Agricultural University, 2021, 42(6): 1-7. DOI: 10.7671/j.issn.1001-411X.202108039
Citation: ZHAO Chunjiang. Current situations and prospects of smart agriculture[J]. Journal of South China Agricultural University, 2021, 42(6): 1-7. DOI: 10.7671/j.issn.1001-411X.202108039

智慧农业的发展现状与未来展望

基金项目: 中国工程院重大咨询项目(2019-ZD-05)
详细信息
    作者简介:

    赵春江(1964—),男,研究员,中国工程院院士,E-mail: zhaocj@nercita.org.cn

  • 中图分类号: S22; S-1; S323.3

Current situations and prospects of smart agriculture

  • 摘要:

    为探究我国智慧农业未来发展的目标、任务与政策,本文基于系统工程学视角,阐释了智慧农业的概念与内涵,介绍了国外智慧农业相关战略布局与行动计划,分析了我国智慧农业发展现状、特点以及与国际上的差距,提出了我国智慧农业未来发展目标、重点任务与政策建议。美、德、英、日等国在农业传感器、农业大数据智能、农业智能装备等智慧农业科技领域占据国际前沿;中国在政策引领与规模经营趋势下,常用环境类农业传感器、农业遥感技术、农业无人机、农机北斗导航、农业大数据与智能算法等智慧农业技术研发应用取得了长足进步,部分产品基本实现国产替代。发展智慧农业是“十四五”时期乃至2035年我国农业高质量发展的重要内容,针对我国农田地块细碎化、农业机械化水平不高、农村基础设施薄弱、智慧农业技术有效供给不足、政策体系与市场机制不健全等问题,未来智慧农业的发展亟需在技术攻关、应用示范、政策试验和社会试验等方面共同发力。

    Abstract:

    The purpose of this article is to explore the objectives, tasks and policies of smart agricultural development in the future of China. Based on the perspective of system engineering, the concept and connotation of smart agriculture were expounded. The strategic layouts and action plans of smart agriculture abroad were introduced. The development status and characteristics of domestic smart agriculture and the gap between China and the world were analyzed systematically, and the development objectives, key tasks and policy suggestions for smart agriculture in the future of China were put forward. Agricultural developed countries, like United States, Germany, Britain, Japan, etc., occupy the international forefront in the fields of intelligent agricultural science and technology, such as agricultural sensors, agricultural big data intelligence and agricultural intelligent equipment. In China, the R & D and application of smart agricultural technologies, including common environmental agricultural sensor, agricultural remote sensing technology, agricultural UAV, agricultural machinery Beidou navigation, agricultural big data and intelligent algorithm, have made great progress under the trend of policy guidance and large-scale operation, and some imported technical products have been replaced by domestic products. Developing smart agriculture is an important part of China’s high-quality agricultural development strategy during the 14 th Five Year Plan period and even to 2035. In view of the problems, such as the fragmentation of farmland plot, the low level of agricultural mechanization, the weak rural infrastructure, the insufficient effective supply of smart agricultural technology, and the imperfect policy system and market mechanism, the development of future smart agriculture urgently needs to focus on technology research, application demonstration, policy experiment and social experiment together.

  • 广西地处亚热带地区,光热充沛,11月份晚稻收获后农田进入空窗期,利用冬闲田发展马铃薯产业空间大。然而广西冬季雨水偏少,灌水成为制约广西冬种马铃薯产业发展的条件之一。马铃薯实际生产中盲目灌水和过量施肥现象普遍存在,而滴灌施肥可以根据作物需水需肥规律和土壤水分养分状况精确控制灌水量、施肥量和灌水施肥时间,将水分养分直接供应到根区,实现作物“按需灌水施肥”,从而提高作物产量和水分养分利用效率[1],同时滴灌施肥也影响土壤碳组分,因此,研究合适的滴灌施肥模式将为调控土壤碳库提供新的途径。目前常用土壤可溶性有机碳、易氧化有机碳和微生物量碳、碳库管理指数等表征土壤碳库,而水肥管理会影响土壤碳库和酶活性。有研究表明,长期合理施肥显著提高土壤有机碳、易氧化有机碳、可溶性有机碳、微生物量碳含量及碳库管理指数[2],与传统施肥相比,滴灌施肥增加各层次土壤易氧化有机碳和可溶性有机碳含量[3]。其他研究也发现,滴灌施肥对提高土壤易氧化有机碳有积极的作用[4-6]。土壤水分含量影响土壤有机碳矿化速率和外界有机碳分解速率[7],从而使土壤有机碳的含量发生变化。俞华林等[8]发现,适量灌水会增加土壤有机碳含量,但少量或过量灌水降低土壤有机碳矿化速率。当土壤水分过量时,土壤透气性和土壤微生物生长环境变差,土壤中有机碳不易被土壤中的微生物分解,而外界的碳源则易被微生物降解腐烂成有机物质,原有的有机碳不会分解且外源有机碳增加,从而使土壤有机碳含量增加[9]。水肥管理也会影响土壤酶如蔗糖酶、纤维素酶和过氧化氢酶等酶活性,滴灌施肥有利于提高土壤中酶活性[10],而土壤酶活性会影响土壤碳组分。研究发现,各种形态有机碳组分与土壤蔗糖酶和纤维素酶活性均呈显著的正相关关系[11]

    近年来国内外学者较多关注滴灌施肥对马铃薯生长、产量、品质和水分利用效率的影响,而滴灌灌水量和滴灌施肥比例协同作用对种植马铃薯土壤碳库管理指数的影响研究较少,且土壤酶活性如何影响土壤有机碳组分和碳库管理指数有待深入研究。因此,在南宁市防雨棚内开展不同滴灌灌水量和滴灌施肥比例的田间试验,通过测定马铃薯收获后土壤有机碳及活性组分和酶活性,计算土壤碳库管理指数(Carbon pool management index,CPMI),分析土壤有机碳组分和碳库管理指数与酶活性之间的关系,以获得种植马铃薯土壤有机碳库调控的水肥管理模式,并揭示土壤酶活性对土壤有机碳组分和碳库管理指数的影响。

    田间试验在南宁市广西大学校内移动防雨棚中进行,该移动棚通风、透光,可以保障作物生长期间自然光照和温度,通过电控传感器在降雨时遮盖,非降雨时移开。供试土壤为赤红壤,pH6.60(水土质量比2.5∶1.0,pH计法),有机质10.6 g·kg−1(重铬酸钾容量法–外加热法),全氮0.99 g·kg−1(半微量开氏法),碱解氮53.6 mg·kg−1(NaOH碱解扩散法),速效磷68.7 mg·kg−1[0.05 mol·L−1 HCl–0.025 mol·L−1 H2SO4浸提,比色法],速效钾217.9 mg·kg−1(1 mol·L−1中性NH4OAc浸提,火焰光度法),田间持水量30.5%(环刀法),容重1.4 g·cm−3(室内环刀法)[12]。供试马铃薯品种为费乌瑞它。

    依据马铃薯在不同时期的需水规律及前人研究结果[13-14],试验设高、低2种滴灌灌水量,其中,高灌水量:苗期、块茎形成期、块茎膨大期和淀粉积累期土壤含水量分别保持在田间持水量的60%~70%70%~80%75%~85%和50%~60%;低灌水量:苗期、块茎形成期、块茎膨大期和淀粉积累期土壤含水量分别保持在田间持水量的50%~60%、60%~70%70%~80%和40%~50%。设3种滴灌施肥比例,即NK100-0:N、K肥以100%作基肥土施,不追肥;NK70-30:N、K肥以70%作基肥土施,30%作滴灌追肥(苗期7.5%,块茎形成期15%,块茎膨大期7.5%);NK50-50:N、K肥以50%作基肥土施,50%作滴灌追肥(苗期12.5%,块茎形成期25%,块茎膨大期12.5%)。试验共设6个处理,具体如表1所示,每个处理重复3次,共18个小区,每小区面积8.64 m2(3.6 m×2.4 m)。

    表  1  田间试验处理及N、K肥的基、追肥比例
    Table  1.  Treatments for field experiment and radio of base fertilizer and topdressing for N,K fertilizer
    处理
    Treatment
    滴灌灌水量
    Drip irrigation amount
    滴灌施肥比例
    Fertigation ratio
    基肥/%
    Base fertilizer
    追肥 Topdressing/%
    苗期
    Seedling stage
    块茎形成期
    Tuber formation stage
    块茎膨大期
    Tuber expansion stage
    T1 高灌水量
    High irrigation amount
    NK100-0 100 0 0 0
    T2 NK70-30 70 7.5 15 7.5
    T3 NK50-50 50 12.5 25 12.5
    T4 低灌水量
    Low irrigation amount
    NK100-0 100 0 0 0
    T5 NK70-30 70 7.5 15 7.5
    T6 NK50-50 50 12.5 25 12.5
    下载: 导出CSV 
    | 显示表格

    各小区均施用化学肥料N 150 kg·hm−2、P2O5 90 kg·hm−2和K2O 300 kg·hm−2,以及堆沤后牛粪15 t·hm−2。氮肥用尿素[w(N)为 46.4%],磷肥用钙镁磷肥[w(P2O5)为18.0%],钾肥用硫酸钾[w(K2O)为52.0%]。牛粪中养分:w(有机质)为14.3%、w(N)为0.76%、w(P2O5)为0.85%、w(K2O)为0.59%。牛粪和钙镁磷肥全部做基肥土施。灌溉方式采用地表滴灌,滴头流量一致,滴头设在马铃薯植株两侧,用水表计量灌水。N肥和K肥按上述施肥方式施用,事先按设计要求配好肥料溶液,通过滴灌带进行灌溉施肥,灌溉方法采用交替滴灌。

    于2017年11月4日将沤熟牛粪施入试验小区,11月5日翻地,11月10日将部分尿素、钙镁磷肥以及硫酸钾作为基肥土施。11月11日切马铃薯块茎,每个种薯块茎留2~3个芽眼,用质量分数为0.5%的高锰酸钾溶液和丁硫克百威水溶液浸泡拌种后晾干,11月14日播种,12月4日移栽或补齐未发芽位置的马铃薯苗。用TRIME-PICO-IPH TDR水分测定仪(德国IMKO)测定土壤含水量,确保土壤含水量在试验设定范围内。12月6日施苗肥,12月11日进行第一次中耕培土。12月20日施块茎形成肥,12月25日进行第2次培土(培土到植株附近,芽块顶部到垄背顶部达到15~20 cm左右,做成梯形垄)。2018年1月4日,施块茎膨大肥,2月8日喷农药(棉铃虫核型多角体病毒,预防马铃薯晚疫病),试验于2018年3月5日收获马铃薯。

    于3月6日(马铃薯收获后次日)用5点法在马铃薯相邻植株中间采集0~20 cm耕作层土壤,将土样混匀,迅速运回实验室,部分新鲜土样过孔径2 mm筛网,除去根系、砂石等后,保存于4 ℃冰箱,直接用于土壤有机碳组分和酶活性的测定。剩余土样风干后过0.149 mm筛后进行土壤总有机碳含量的测定。

    土壤总有机碳(Total organic carbon,TOC)含量用高温外加热重铬酸钾氧化–容量法测定[12];活性有机碳(Labile organic carbon,LOC)含量用浓度为333 mmol·L−1的高锰酸钾溶液氧化土样,并于565 nm下通过测定光密度得到[12];微生物量碳(Microbial biomass carbon,MBC)和可溶性有机碳(Dissolved organic carbon,,DOC)含量分别用三氯甲烷熏蒸和不用三氯甲烷熏蒸后,用浓度为0.5 mol·L−1硫酸钾溶液提取,采用高温外加热重铬酸钾氧化–容量法测定[12]

    土壤蔗糖酶活性用3,5–二硝基水杨酸溶液比色法测定,其活性以1 g干土1 d生成葡萄糖的质量(mg)表示;纤维素酶活性也用3,5–二硝基水杨酸溶液比色法测定,以1 g干土3 d生成葡萄糖的质量(mg)表示1个活性单位(U);过氧化氢酶活性用高锰酸钾滴定法测定,其活性以1 g干土消耗浓度为0.02 mol·L−1的KMnO4溶液体积(mL)表示,3种酶活性测定的具体操作步骤见《土壤酶及其研究法》[15]

    土壤碳库指数(Carbon pool index,CPI)和碳库管理指数的计算参照杜爱林等[16]的方法进行。

    试验数据采用Excel 2016和SPSS 24.0软件进行分析。方差分析包括滴灌灌水量和滴灌施肥比例主效应,以及它们之间的交互效应。用Duncan’s法对不同处理进行多重比较。用Pearson相关系数表示土壤总有机碳及其组分和碳库管理指数与酶活性之间的相关性。

    表2方差分析可知,滴灌灌水量和滴灌施肥。比例对土壤总有机碳(TOC)影响显著(P<0.05)。土壤TOC质量分数在5.46~7.12 g·kg−1之间。多重比较结果显示,相同滴灌施肥比例下,高灌水量土壤TOC含量显著高于低灌水量土壤。在高灌水量下,NK50-50施肥处理土壤TOC含量分别比NK100-0和NK70-30处理提高15.2%和7.1%。在低灌水量下,NK50-50施肥处理土壤TOC含量比NK100-0和NK70-30处理提高12.6%和9.8%。

    表  2  不同处理对土壤有机碳及其组分的影响1)
    Table  2.  Effects of different treatments on soil organic carbon and its components
    处理
    Treatment
    滴灌灌水量
    Drip irrigation amount
    滴灌施肥比例
    Fertigation ratio
    w/(g·kg−1) w/(mg·kg−1)
    总有机碳
    Total organic carbon(TOC)
    活性有机碳
    Labile organic carbon(LOC)
    可溶性有机碳
    Dissolved organic carbon(DOC)
    微生物量碳
    Microbial biomass carbon(MBC)
    T1 高灌水量
    High irrigation amount
    NK100-0 6.18±0.15bc 0.44±0.03b 323.0±57.0ab 374.8±25.3ab
    T2 NK70-30 6.65±0.24ab 0.49±0.01b 369.5±27.5a 384.8±20.3a
    T3 NK50-50 7.12±0.24a 0.55±0.02a 328.7±14.8ab 370.6±3.1b
    T4 低灌水量
    Low irrigation amount
    NK100-0 5.46±0.15d 0.43±0.01b 189.5±49.8b 325.8±8.5b
    T5 NK70-30 5.60±0.16cd 0.44±0.01b 241.3±93.5ab 343.0±9.6ab
    T6 NK50-50 6.15±0.18bc 0.47±0.01b 215.6±7.6ab 324.1±18.7b
    显著性检验
    (P值)
    Significance test
    (P value)
    滴灌灌水量 Drip irrigation amount 0.004 0.008 0.011 0.005
    滴灌施肥比例 Fertigation ratio 0.001 0.003 0.626 0.567
    滴灌灌水量×滴灌施肥比例
    Drip irrigation amount × Fertigation ratio
    0.674 0.125 0.979 0.975
     1) 同列数据后的不同小写字母表示处理间差异显著 (P<0.05,Duncan’s法)
     1) Different lowercase letters in the same column indicate significant differences among treatments (P<0.05,Duncan’s test)
    下载: 导出CSV 
    | 显示表格

    滴灌灌水量和滴灌施肥比例对土壤活性有机碳(LOC)影响显著(P<0.05)(表2)。土壤LOC质量分数介于0.43~0.55 g·kg−1之间。NK50-50下,高灌水量土壤LOC含量显著高于低灌水量土壤。高灌水量下,NK50-50处理土壤LOC含量较NK100-0增加25.0%,且差异显著,而在低灌水量下,不同滴灌施肥比例土壤LOC含量之间的差异并不显著。

    滴灌灌水量对于土壤可溶性有机碳(DOC)影响显著(P<0.05)(表2)。土壤DOC质量分数介于189.5~369.5 mg·kg−1之间。相同滴灌施肥比例下,高灌水量土壤DOC含量与低灌水量土壤之间的差异不显著,相同滴灌灌水量下,不同滴灌施肥比例土壤DOC含量之间的差异也不显著。低灌水量下,NK70-30土壤DOC含量比NK100-0高27.3%。

    滴灌灌水量对土壤微生物量碳(MBC)影响显著(P<0.05)(表2)。土壤MBC质量分数在324.1~384.8 mg·kg−1之间。相同滴灌施肥比例下,高灌水量土壤MBC含量与低灌水量土壤MBC含量之间的差异不显著;相同滴灌灌水量下,不同滴灌施肥比例土壤MBC含量之间的差异也不显著。

    此外,滴灌灌水量和滴灌施肥比例之间的交互作用对土壤TOC、LOC、DOC和MBC含量的影响均不显著(P>0.05)。T3处理土壤TOC和LOC含量相对较高,而T2处理土壤DOC和MBC含量相对较高。在相同滴灌施肥比例下,高灌水量土壤有机碳及其组分较低灌水量土壤高。

    表3方差分析可知,滴灌灌水量对土壤蔗糖酶活性影响显著(P<0.05),但滴灌施肥比例和滴灌灌水量×滴灌施肥比例对土壤蔗糖酶活性的影响并不显著(P>0.05)。多重比较结果显示,NK100-0和NK50-50下,高灌水量土壤蔗糖酶活性较相应低灌水量土壤分别提高18.9%和18.2%,但差异不显著。土壤蔗糖酶活性以T3处理较高。

    表  3  不同处理对土壤酶活性的影响1)
    Table  3.  Effects of different treatments on soil enzyme activity
    处理
    Treatment
    滴灌灌水量
    Drip irrigation amount
    滴灌施肥比例
    Fertigation ratio
    蔗糖酶活性/(mg·g−1·d−1)
    Sucrase activity
    纤维素酶活性/U
    Cellulase activity
    过氧化氢酶活性/(mL·g−1)
    Catalase activity
    T1 高灌水量
    High irrigation amount
    NK100-0 7.17±0.36ab 0.73±0.06a 0.45±0.03a
    T2 NK70-30 7.29±0.14a 0.75±0.04a 0.47±0.03a
    T3 NK50-50 7.39±0.24a 0.75±0.03a 0.46±0.02a
    T4 低灌水量
    Low irrigation amount
    NK100-0 6.03±0.56b 0.64±0.06a 0.39±0.06a
    T5 NK70-30 6.30±0.18ab 0.67±0.06a 0.45±0.04a
    T6 NK50-50 6.25±0.44ab 0.66±0.03a 0.44±0.04a
    显著性检验
    (P值)
    Significance
    Test
    (Pvalue)
    滴灌灌水量 Drip irrigation amount 0.003 0.062 0.311
    滴灌施肥比例 Fertigation ratio 0.799 0.906 0.602
    滴灌灌水量×滴灌施肥比例
    Drip irrigation amount × Fertigation ratio
    0.969 0.999 0.873
     1)同列数据后的不同小写字母表示处理间差异显著 (P<0.05,Duncan’s法)
     1) Different lowercase letters in the same column indicate significant differences among treatments (P<0.05,Duncan’s test)
    下载: 导出CSV 
    | 显示表格

    滴灌灌水量、滴灌施肥比例以及滴灌灌水量×滴灌施肥比例对土壤纤维素酶和过氧化氢酶活性的影响均不显著(P>0.05)(表3)。各处理土壤纤维素酶和过氧化氢酶活性之间的差异不显著。

    表4方差分析可知,滴灌灌水量对土壤碳库指数影响显著(P<0.05),但对碳库管理指数(CPMI)影响不显著(P>0.05)。滴灌施肥比例对土壤CPI和CPMI影响均不显著(P>0.05)。滴灌灌水量×滴灌施肥比例对土壤CPI和CPMI均有显著影响(P<0.05)。

    在相同滴灌施肥比例下,高灌水量土壤CPI和CPMI均高于低灌水量土壤。高灌水量下,NK50-50施肥处理土壤的CPI和CPMI比NK100-0分别提高15.1%和25.8%;低灌水量下,NK50-50施肥处理土壤的CPI和CPMI比NK100-0分别提高12.6%和8.4%。土壤CPI和CPMI以T3处理最高。

    土壤有机碳及其组分和碳库管理指数与酶活性之间的相关性分析结果如表5所示。土壤TOC、DOC、MBC和CPI均与蔗糖酶活性之间呈显著正相关(相关系数分别为0.61,0.48,0.46和0.60),而土壤碳库指数与其他2种酶活性之间的相关性均不显著。

    表  4  不同处理对土壤碳库管理指数的影响1)
    Table  4.  Effects of different treatments on soil carbon pool management index
    处理
    Treatment
    滴灌灌水量
    Drip irrigation amount
    滴灌施肥比例
    Fertigation ratio
    碳库指数
    Carbon pool index
    (CPI)
    碳库管理指数
    Carbon pool management index
    (CPMI)
    T1 高灌水量
    High irrigation amount
    NK100-0 1.26±0.03bc 121.65±7.57b
    T2 NK70-30 1.35±0.05ab 134.36±4.23b
    T3 NK50-50 1.45±0.05a 153.04±5.71a
    T4 低灌水量
    Low irrigation amount
    NK100-0 1.11±0.03d 120.08±4.93b
    T5 NK70-30 1.14±0.03cd 122.43±4.23b
    T6 NK50-50 1.25±0.04bc 130.19±2.63b
    显著性检验
    (P值)
    Significance test
    (P value)
    滴灌灌水量 Drip irrigation amount 0.001 0.111
    滴灌施肥比例 Fertigation ratio 0.113 0.194
    滴灌灌水量×滴灌施肥比例
    Drip irrigation amount × Fertigation ratio
    0.000 0.001
     1)同列数据后的不同小写字母表示处理间差异显著(P<0.05,Duncan’s法)
     1)Different lowercase letters in the same column indicate significant differences among treatments (P<0.05,Duncan’s test)
    下载: 导出CSV 
    | 显示表格
    表  5  土壤有机碳及其组分含量和碳库管理指数与酶活性的相关性分析1)
    Table  5.  Correlation analyses of soil organic carbon and fraction contents and carbon pool management index with enzyme activity
    指标
    Index
    蔗糖酶
    Sucrase
    纤维素酶
    Cellulase
    过氧化氢酶
    Catalase
    总有机碳 Total organic carbon (TOC) 0.61** 0.24 0.33
    活性有机碳 Labile organic carbon (LOC) 0.29 0.23 0.14
    可溶性有机碳 Dissolved organic carbon (DOC) 0.48* 0.02 0.29
    微生物量碳 Microbial biomass carbon (MBC) 0.46* 0.29 0.03
    碳库指数 Carbon pool index (CPI) 0.60** 0.24 0.31
    碳库管理指数 Carbon pool management index (CPMI) 0.23 0.24 0.20
     1)“*”和“**”分别表示达0.05和0.01水平的显著相关(n=3,Pearson法)
     1)“*” and “**” indicate significant correlations at 0.05 and 0.01 levels, respectively(n=3, Pearson method)
    下载: 导出CSV 
    | 显示表格

    本研究表明,在相同滴灌灌水量下,与NK100-0相比,NK50-50和NK70-30滴灌施肥下的土壤TOC、LOC和DOC含量都有所提高。NK100-0处理土壤总有机碳及其组分含量等都较低,原因是该处理的肥料全部用作基肥施入土壤,后期养分供应不足,而且部分N肥易通过挥发或反硝化损失,影响N肥施用效果。而NK50-50和NK70-30交替灌溉追施N、K肥使两侧根区土壤处于交替干燥和湿润状态,在提供作物所需水分和养分的同时,使根区土壤处于良好的通气状态,为土壤微生物提供了有益的生存条件,故交替滴灌施肥比例的增加有利于土壤有机碳组分的增加[17];再加上在马铃薯成熟期化学N、K肥配施能够促进作物根系生长,通过增加地下生物量来提高土壤有机质含量,进而有助于有机碳及其组分的增加[18]

    本研究表明,滴灌灌水量对于土壤有机碳及其组分的影响都达到显著水平。在相同滴灌施肥比例下,高灌水量土壤TOC、LOC、DOC和MBC含量都高于低灌水量土壤。相关研究发现,土壤含水量从土壤含水量<50%变成50%~100%时,土壤微生物活性通常会受到抑制,使土壤有机碳矿化分解缓慢,进而使土壤有机碳及其组分增加[19]

    土壤碳库管理指数作为反映土壤碳素动态变化灵敏而有效的指标,与土壤有效碳的关系密切,可反映和评估土壤碳素动态变化[20]。土壤碳库管理指数可用于衡量土壤质量,CPMI值越大,表明土壤质量越好[21]。本研究表明,在相同的灌水量下,NK50-50施肥处理土壤的CPI和CPMI均高于NK100-0,说明提高滴灌施肥比例会增加土壤CPMI,这与滕秋梅等[22]和张鹏等[23]的研究结果一致。说明适量N、K肥的加入可促进植物生长,增强土壤养分循环功能。究其原因,可能是N、K肥施入后主要提高的是LOC含量,导致碳库管理指数较高。凋落物和根系分泌物转化为有机质时,一部分有机质活化后为植物生长提供养分,一部分有机质转化为惰性碳库固存下来,这2个比例维持在一定范围内[24]

    土壤酶在土壤养分周转及土壤功能稳定中有重要作用。在影响土壤酶活性因子中,土壤水分对酶活性的影响具有异质性。本研究表明,土壤蔗糖酶活性在高灌水量下较高,说明灌水量的增加会提高土壤蔗糖酶活性,这与田幼华等[25]、高丽敏等[26]研究结果一致,但与万忠梅等[27]的研究结果相反,这可能是由于不同作物的需水量不同。而本研究结果可能是因为土壤水分的增加,加快了微生物胞外酶和底物的运输速率,可为酶促反应提供良好的反应环境,进而蔗糖酶和纤维素酶活性得到提高[28]。但滴灌施肥比例对土壤蔗糖酶、纤维素酶、过氧化氢酶活性的影响不显著,这与大多数研究结果并不相同。这可能是由于本研究是在相同的施肥量下,滴灌施肥比例对各种酶活性的影响较小;而大多数研究是通过设置不同的施肥梯度实现的。

    蔗糖酶对蔗糖分解的催化作用具有专一性,能将土壤中蔗糖分子分解成果糖和葡萄糖,为土壤微生物提供营养物质,促进土壤有机碳积累与分解转化,从而直接或者间接地影响有机碳矿化过程[29]。本研究表明,土壤总有机碳与蔗糖酶活性呈极显著正相关,以往研究也有相似的结果[30],说明土壤蔗糖酶活性影响土壤有机碳的积累。本研究发现,土壤有机碳组分与纤维素酶和过氧化氢酶活性之间的关系不显著,然而,马瑞萍等[11]对黄土高原不同植物群落土壤团聚体中有机碳和酶活性研究表明,土壤纤维素酶活性与各种组分有机碳之间的关系均呈显著正相关。张英英[31]研究发现,不同耕作措施下甘肃旱地农田0~30 cm土层土壤活性有机碳与纤维素酶和过氧化物酶活性之间的关系呈显著正相关,与本试验结果不同,可能是试验条件和土壤类型不同的原因所致。

    综上所述,在高灌水量(苗期、块茎形成期、块茎膨大期和淀粉积累期土壤含水量分别保持在田间持水量的60%~70%70%~80%、75%~85%和50%~60%)和NK50-50施肥处理(N、K肥以50%作基肥土施,50%作滴灌追肥)下土壤总有机碳及其组分、蔗糖酶活性和碳库管理指数较高,因此,高灌水量和N、K肥基、追肥比50∶50处理为广西冬种马铃薯种植土壤有机碳库调控的水肥耦合模式。此外,土壤TOC、DOC、MBC含量和CPI均与蔗糖酶活性呈显著正相关,说明土壤蔗糖酶活性会影响土壤有机碳及其组分。

  • [1] 吕文晶, 陈劲, 刘进. 第四次工业革命与人工智能创新[J]. 高等工程教育研究, 2018(3): 63-70.
    [2] 赵春江. 智慧农业发展现状及战略目标研究[J]. 智慧农业, 2019, 1(1): 1-7.
    [3] 赵春江, 李瑾, 冯献. 面向2035年智慧农业发展战略研究[J]. 中国工程科学, 2021, 23(4): 1-9.
    [4] 赵敏娟. 智慧农业的经济学解释与突破路径[J]. 人民论坛·学术前沿, 2020(24): 70-78.
    [5] 周国民. 浅议智慧农业[J]. 农业网络信息, 2009(10): 5-7. doi: 10.3969/j.issn.1672-6251.2009.10.001
    [6]

    COLAO A F, RICHETTI J, BRAMLEY R, et al. How will the next-generation of sensor-based decision systems look in the context of intelligent agriculture? A case-study[J]. Field Crops Research, 2021, 270(6): 108-205.

    [7] 陈一飞. 智能农业: “十二五”期间我国农业科技进步前瞻[J]. 中国农业科技导报, 2010, 12(6): 1-4.
    [8] 阮俊虎, 刘天军, 冯晓春, 等. 数字农业运营管理: 关键问题、理论方法与示范工程[J]. 管理世界, 2020, 36(8): 222-233. doi: 10.3969/j.issn.1002-5502.2020.08.018
    [9] 钟文晶, 罗必良, 谢琳. 数字农业发展的国际经验及其启示[J]. 改革, 2021(5): 64-75.
    [10] 承继成, 易善桢. 数字农业: 数字地球的应用之一[J]. 地球信息科学, 2000(1): 15-19.
    [11]

    PRAUSE L. Digital agriculture and labor: A few challenges for social sustainability[J]. Sustainability, 2021, 13(11): 5980. doi: 10.3390/su13115980

    [12] 李树君, 方宪法, 南国良, 等. 数字农业工程技术体系及其发展[J]. 农业机械学报, 2003, 34(5): 157-160. doi: 10.3969/j.issn.1000-1298.2003.05.045
    [13] 赵春江. 对我国未来精准农业发展的思考[J]. 农业网络信息, 2010(4): 5-8. doi: 10.3969/j.issn.1672-6251.2010.04.001
    [14]

    CASSMAN K G. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(11): 5952-5959. doi: 10.1073/pnas.96.11.5952

    [15]

    MULLA D J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps[J]. Biosystems Engineering, 2013, 114(4): 358-371. doi: 10.1016/j.biosystemseng.2012.08.009

    [16] 中国信息通信研究院. 2021年中国数字经济发展白皮书[M]. 北京: 中国信息通信研究院, 2021.
    [17] 宋超, 孙胜凯, 陈进东, 等. 世界主要国家工程科技重大计划与前沿问题综述[J]. 中国工程科学, 2017, 19(1): 4-12.
    [18]

    Research and Markets. Smart agriculture market by type, and component: Global opportunity analysis and industry forecase, 2021—2027 [R/OL]. (2020-09-10)[2021-08-20]. https://www.researchandmarkets.com/reports/5214894/smart-agriculture-market-by-type-and-component#rela2-5349308

    [19] 孙九林, 李灯华, 许世卫, 等. 农业大数据与信息化基础设施发展战略研究[J]. 中国工程科学, 2021, 23(4): 10-18.
    [20]

    MOYSIADIS V, SARIGIANNIDIS P, VITSAS V, et al. Smart farming in Europe[J]. Computer Science Review, 2021, 39: 100345. doi: 10.1016/j.cosrev.2020.100345

    [21] 新华社. 习近平在东北三省考察并主持召开深入推进东北振兴座谈会[A/OL]. (2018-09-28) [2021-08-10]. http://www.gov.cn/xinwen/2018-09/28/content_5326563.htm.
    [22] 马晨, 李瑾, 张骞, 等. 农业软件产业发展的现实格局与路径选择[J]. 中国工程科学, 2021, 23(4): 19-29.
    [23] 赵春江, 郭新宇, 肖博祥. 玉米数字化可视化技术[M]. 北京: 中国农业出版社, 2021.
    [24] 韩佳伟, 李佳铖, 任青山, 等. 农产品智慧物流发展研究[J]. 中国工程科学, 2021, 23(4): 30-36.
    [25] 杨天阳, 田长青, 刘树森. 生鲜农产品冷链储运技术装备发展研究[J]. 中国工程科学, 2021, 23(4): 37-44.
  • 期刊类型引用(3)

    1. 贾新蕾,黄增朝,杨林狄,吕静,李妍萍,简纪常,黄郁葱. 不同培养温度的鱼源海豚链球菌转录组分析. 热带生物学报. 2024(01): 109-121 . 百度学术
    2. 杨林狄,贾新蕾,黄增朝,吕静,梁华芳,黄郁葱. 银鼓鱼海豚链球菌的分离、鉴定及毒力基因检测. 大连海洋大学学报. 2023(02): 233-241 . 百度学术
    3. 徐伟,施慧,汪玮,张鼎元,许文军,柴学军. 小黄鱼海豚链球菌的分离鉴定. 中国预防兽医学报. 2022(07): 725-730 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  4962
  • HTML全文浏览量:  815
  • PDF下载量:  4938
  • 被引次数: 5
出版历程
  • 收稿日期:  2021-08-19
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2021-11-09

目录

/

返回文章
返回