• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

不同滴灌施肥处理对种植马铃薯土壤有机碳组分和酶活性的影响

陈思静, 杜爱林, 李伏生

陈思静, 杜爱林, 李伏生. 不同滴灌施肥处理对种植马铃薯土壤有机碳组分和酶活性的影响[J]. 华南农业大学学报, 2022, 43(3): 34-41. DOI: 10.7671/j.issn.1001-411X.202107044
引用本文: 陈思静, 杜爱林, 李伏生. 不同滴灌施肥处理对种植马铃薯土壤有机碳组分和酶活性的影响[J]. 华南农业大学学报, 2022, 43(3): 34-41. DOI: 10.7671/j.issn.1001-411X.202107044
CHEN Sijing, DU Ailin, LI Fusheng. Effects of different drip fertigation treatments on organic carbon fraction and enzyme activity in potato-planting soil[J]. Journal of South China Agricultural University, 2022, 43(3): 34-41. DOI: 10.7671/j.issn.1001-411X.202107044
Citation: CHEN Sijing, DU Ailin, LI Fusheng. Effects of different drip fertigation treatments on organic carbon fraction and enzyme activity in potato-planting soil[J]. Journal of South China Agricultural University, 2022, 43(3): 34-41. DOI: 10.7671/j.issn.1001-411X.202107044

不同滴灌施肥处理对种植马铃薯土壤有机碳组分和酶活性的影响

基金项目: 广西科技计划——基地和人才专项(AD17195060)
详细信息
    作者简介:

    陈思静,硕士研究生,主要从事水肥资源利用与环境方面的研究,E-mail: 3294992091@qq.com

    通讯作者:

    李伏生,教授,博士,主要从事水肥资源利用与环境方面的研究,E-mail: 19880066@gxu.edu.cn

  • 中图分类号: S275.6; S143.1

Effects of different drip fertigation treatments on organic carbon fraction and enzyme activity in potato-planting soil

  • 摘要:
    目的 

    获得种植马铃薯土壤有机碳库调控的水肥管理模式,并揭示土壤酶活性对土壤有机碳组分和碳库管理指数(Carbon pool management index,CPMI)的影响。

    方法 

    在南宁市防雨棚内进行2种滴灌灌水量水平(高灌水量:苗期、块茎形成期、块茎膨大期和淀粉积累期土壤含水量分别保持在田间持水量的60%~70%、70%~80%、75%~85%和50%~60%;低灌水量:苗期、块茎形成期、块茎膨大期和淀粉积累期土壤含水量保持在田间持水量的50%~60%、60%~70%、70%~80%和40%~50%)和3种滴灌施肥比例(NK100-0:N、K肥以100%作基肥土施;NK70-30:N、K肥以70%作基肥土施,30%作滴灌追肥;NK50-50:N、K肥以50%作基肥土施,50%作滴灌追肥)的田间试验。测定马铃薯收获后土壤总有机碳(Total organic carbon,TOC)、可溶性有机碳(Dissolved organic carbon,DOC)、微生物量碳(Microbial biomass carbon,MBC)、活性有机碳(Labile organic carbon,LOC)含量以及蔗糖酶、纤维素酶和过氧化氢酶活性,计算碳库管理指数,并分析土壤有机碳库组分含量和碳库管理指数与土壤酶活性之间的关系。

    结果 

    滴灌灌水量显著影响土壤有机碳及其组分含量。相同施肥比例下,高灌水量土壤有机碳及其组分含量、CPMI和蔗糖酶活性较低灌水量土壤高。高灌水量下,NK50-50土壤TOC含量分别比NK100-0和NK70-30提高15.2%和7.1%,NK50-50土壤LOC含量较NK100-0增加25.0%,且高灌水量NK50-50处理土壤TOC和LOC含量显著高于其他处理。在相同滴灌灌水量下,滴灌施肥比例对3种酶活性的影响不显著。土壤蔗糖酶活性以高灌水量NK50-50处理最高。高灌水量下NK50-50土壤碳库指数(Carbon pool index,CPI)和CPMI比NK100-0分别提高15.1%和25.8%;低灌水量下NK50-50土壤CPI和CPMI比NK100-0分别提高12.6%和8.4%。所有处理土壤CPI和CPMI以高灌水量NK50-50处理较高。此外,土壤TOC、DOC和MBC含量均与蔗糖酶活性呈极显著或显著正相关,相关系数分别为0.61、0.48和0.46。

    结论 

    高灌水量NK50-50处理提高了土壤有机碳及其组分含量和蔗糖酶活性,可作为马铃薯种植土壤有机碳库调控的水肥管理模式;土壤TOC、DOC和MBC含量受到土壤蔗糖酶活性的影响。

    Abstract:
    Objective 

    The aim was to obtain a water and fertilizer management mode that regulates potato-planting soil organic carbon storage, and reveal the influence of soil enzyme activity on soil organic carbon fraction and carbon pool management index (CPMI).

    Method 

    Field experiment was carried out in Nanning under the rain-shelter condition with two drip irrigation levels (high irrigation amount: Soil water content was maintained at 60%–70%, 70%–80%, 75%–85% and 50%–60% of field capacity at the seedling, tuber formation, tuber expansion and starch accumulation stages, respectively; Low irrigation amount: Soil water content was maintained at 50%–60%, 60%–70%, 70%–80% and 40%–50% of field capacity at the seedling, tuber formation, tuber expansion and starch accumulation stages, respectively) and three drip fertigation ratios (NK100-0: All N,K fertilizer were applied to soil as base fertilizer; NK70-30: 70% N,K fertilizer were applied to soil as base fertilizer and 30% as topdressing with drip fertigation; NK50-50: 50% N,K fertilizer were applied to soil as base fertilizer and 50% as topdressing with drip fertigation). The contents of total organic carbon (TOC), dissolved organic carbon (DOC), microbial biomass carbon (MBC) and labile organic carbon (LOC) and the activities of sucrase, cellulase and catalase in the soils were measured after harvesting the potato. Then CPMI was calculated and the relationships of soil organic carbon fraction and CPMI with soil enzyme activities were analyzed.

    Result 

    Drip irrigation amount affected organic carbon contents and components in the soils significantly. Under the same fertigation ratio, high irrigation amount had higher organic carbon contents and components, CPMI and sucrase activity in the soils than those of low irrigation amount. Under the high irrigation amount condition, NK50-50 increased TOC content by 15.2% and 7.1% respectively compared with NK100-0 and NK70-30, and NK50-50 increased LOC content by 25.0% compared with NK100-0. Moreover, NK50-50 of high irrigation amount treatment had significant higher contents of TOC and LOC than those of other treatments. Under the same drip irrigation amount, the effect of drip fertigation ratio on the activities of three enzymes was not significant. Among all treatments, NK50-50 of high irrigation amount treatment had the highest sucrase activity. Compared with NK100-0, NK50-50 increased soil CPI and CPMI by 15.1% and 25.8% respectively under the high irrigation amount condition, and NK50-50 increased carbon pool index (CPI) and CPMI by 12.6% and 8.4% respectively under the low irrigation amount condition. Among all treatments, NK50-50 of high irrigation amount treatment had higher CPI and CPMI. In addition, soil TOC, DOC and MBC were extremely significantly or significantly correlated with the sucrase activity (with correlation coefficients of 0.61, 0.48 and 0.46, respectively).

    Conclusion 

    NK50-50 of high irrigation amount treatment increases the contents of organic carbon and its components and sucrase activity in soil, and can be used as the water and fertilizer management mode regulating potato-planting soil organic carbon storage. Soil sucrase activity affects the contents of TOC, DOC and MBC.

  • 在基因工程相关研究中,对淀粉合成相关酶及基因方面的研究已经取得了一定的进展[1],但启动子作为基因表达的重要调控区域,在淀粉相关研究中报道相对较少。选择合适的启动子是有目的地表达外源基因面临的重要科学问题,也是培育安全、高效转基因作物的首要问题[2]。淀粉是玉米Zea mays中的主要物质,玉米中淀粉含量的高低直接影响玉米的产量[3],直链淀粉与支链淀粉的比例影响淀粉的品质[4],玉米淀粉是一种优良并且可靠的淀粉来源,全世界80%淀粉来源于玉米[5],玉米淀粉在化工、医药、纺织、造纸和建筑等领域得到广泛的应用,淀粉的需求量在日益增加,因此提高玉米淀粉含量和改良玉米淀粉品质已成为重要议题,对于玉米淀粉的研究具有显著的社会效益和经济效益[6-7]

    淀粉是在胚乳造粉质体中经一系列酶的配合作用合成的,其中淀粉合成酶在其合成中起到决定性作用,可溶型淀粉合成酶主要包括SSⅠ、SSⅡ、SSⅢ[8-10],其中SSⅠ和SSⅢ的表达已相继被证明具有胚乳特异性。玉米淀粉合成酶SSⅡa是淀粉合成酶中的关键酶,能够参与玉米支链淀粉的合成[11],对其启动子的研究有助于从调控水平上改善及改变SSⅡa活性及作用,进而实现增产及改良目的,完善淀粉代谢网络调控的研究。

    本研究克隆并分析SSⅡa启动子,构建5个缺失体植物表达载体,采用三亲杂交法将目标质粒转入农杆菌Agrobacterium tumefacies,用蘸花法将农杆菌转入拟南芥Arabidopsis thaliana,使用除草剂筛选获得阳性植株。PCR检测鉴定拟南芥阳性植株,采用GUS染色和gus基因定量分析启动子的作用部位和活性,以期通过基因工程手段提高玉米淀粉含量,改良淀粉品质提供候选特异性启动子,并为玉米SSⅡa启动子功能研究提供理论依据。

    玉米B73种子由吉林省农业科学院农业生物技术研究所提供,盆栽砂培,取三叶期的叶片提取基因组DNA,-20 ℃保存备用。植物表达载体pCAMBIA3301由吉林农业大学生命科学学院生物化学与分子生物学实验室保存。

    基因组DNA提取试剂盒(Bio Teke)、限制性内切酶EcoRⅠ、BglⅡ和LA Taq均购自TaKaRa生物有限公司,质粒提取试剂盒及DNA凝胶回收试剂盒为AxyGEN公司产品。

    克隆SSⅡa基因所用上游引物SSⅡaF:5′-TGTCAGACTGGTTAGTGGAGC-3′;下游引物SSⅡaR:5′-AGAAGGTGGAGGAAGAGGACG-3′。

    构建不同长度启动子表达载体的上游引物如下:

    SSⅡaF1:5′-CGGAATTCCCTTGACTGGCATCCTT-CCTA-3′,

    SSⅡaF2:5′-CGGAATTCTAGAAAGATGTCCCAC-AGAGA-3′,

    SSⅡaF3:5′-CGGAATTCTAGCCTATGCTTACCTT-TCAG-3′,

    SSⅡaF4:5′-CGGAATTCACGCCATTTTCCATCGT-GCCA-3′,

    SSⅡaF5:5′-CGGAATTCCTCGCTGGGCTGCCGTA-GGTA-3′,

    共同的下游引物为SSⅡaR:5′-GAAGATCTGG-CGGCGGGATCGATCG-3′。

    下划线分别为EcoR I(GAATTC)和BglⅡ(AGATCT)的酶切位点序列。

    gus基因检测所用上游引物GUS-F:5′-TTCCTGATTAACCACAAACC-3′;下游引物GUS-R:CGGTTCGTTGGCAATACTCC。

    gus基因的定量分析所用β-Actin内参基因上游引物Actin-F:5′-TGCCAATCTACGAGGGTTTC-3′;下游引物Actin-R:5′-GCTCTGCTGTTGTGGTGAAC-3′;目的gus基因上游引物qGUS-F:5′-CTCACACCG-ATACCATCAGC-3′; 下游引物qGUS-R:5′-TACCTT-CTCTGCCGTTTCCA-3′。

    利用试剂盒提取玉米B73三叶期叶片基因组DNA,根据玉米数据库(http://www.maizegdb.org.ssr/)公布信息,BLAST找到SSⅡa基因5′侧翼序列,利用Primer 5.0软件设计克隆引物SSⅡaF和SSⅡaR,采用常规PCR方法扩增SSⅡa基因5′侧翼序列,PCR条件为:95 ℃ 5 min; 94 ℃ 30 s,69.7 ℃ 40 s,72 ℃ 150 s,35个循环;72 ℃,15 min。扩增产物连接到pMD-18T载体上,转化到大肠埃希菌DH5α,挑取单菌落经PCR鉴定后送至上海生工生物工程公司测序,测序结果与已知序列比对后,利用PlantCare(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)启动子在线分析软件分析及预测启动子顺式作用元件等功能元件信息[12]

    克隆的SSⅡa启动子经序列分析后,依据功能元件所在位置,设计5对引物SSⅡaF1和SSⅡaR、SSⅡaF2和SSⅡaR、SSⅡaF3和SSⅡaR、SSⅡaF4和SSⅡaR、SSⅡaF5和SSⅡaR,并在上下游引物两侧分别加上EcoRⅠ和BglⅡ酶切位点,扩增SSⅡa启动子序列的长度分别为1 407、867、633、483和365 bp,用于构建5个不同长度SSⅡa启动子缺失的植物表达载体[13]。扩增5种长度启动子序列的退火温度分别为56.5、56.5、56.5、62.9和62.9 ℃。将PCR产物与植物表达载体pCAMBIA3301分别双酶切后,16 ℃过夜连接,构建5种重组载体(命名为:P1、P2、P3、P4和P5),分别转化大肠埃希菌DH5α,挑取经PCR及酶切验证后的阳性克隆菌液,送至上海生工生物工程公司测序。

    哥伦比亚型拟南芥,农杆菌EHA105和含HELP质粒菌株均由吉林农业大学生命科学学院生物化学与分子生物学实验室提供,德国泥炭土、蛭石、MS盐、SilwetL-77、6-苄氨基嘌呤(6-BA)、B5维生素、蔗糖、利福平(Rif)抗生素、Kan抗生素等试剂,以及LB培养基和YEP培养基均购置于上海生工生物工程公司。

    三亲杂交法将重组植物表达载体导入农杆菌,植物材料培养于人工气候室,拟南芥长至开花期采用农杆菌介导的花序侵染法侵染拟南芥,收获种子,种植,用除草剂筛选阳性植株,作为功能验证试验材料[13]

    提取含5种不同类型启动子的转基因拟南芥阳性植株(以非转基因拟南芥为对照)的叶片基因组DNA,以其为模板,植物表达载体pCAMBIA3301上的gus基因为目标基因设计的引物(GUS-F, GUS-R)进行PCR扩增,序列长度为402 bp,经10 g·L-1琼脂糖凝胶电泳检测。

    分别取转P1、P2、P3、P4和P5载体的阳性植株和野生型拟南芥,成熟期后分别取叶片和果荚进行GUS染色,参照Jefferson方法[14](略有改动),具体步骤包括:

    1) 清洗:使用无菌水清洗样品,去除样品表面杂物;

    2)染色:将材料放置培养皿中,使样品完全浸入到GUS染色液中,置于37 ℃培养箱中过夜;

    3) 脱色:将染色材料置于体积分数为80%的乙醇溶液中脱色,期间视乙醇溶液颜色及时更换乙醇溶液,直至拟南芥材料完全脱色(绿色褪去,呈现白色)。脱色后的材料拍照观察,记录。

    提取上述不同试验材料成熟期叶片和种子的RNA,反转录成cDNA为模板,以β-Actin基因为内参,实时荧光定量PCR法测定gus基因的表达,3次重复,采用2-ΔΔCt法进行分析,计算gus基因的相对表达量[15]

    用玉米B73基因组DNA为模板,SSⅡaF, SSⅡaR为引物进行克隆,得到2 526 bp序列(见图 1A),与pMD18T连接,转化后摇菌,菌液PCR验证结果如图 1B所示,将验证好的阳性克隆测序表明,获得的2 526 bp中有1个碱基突变,与参考序列比对一致性为99.96%,经PlantCare软件分析表明此碱基的差异并未在启动子功能元件处,不影响启动子的功能。

    图  1  SSⅡa启动子克隆和PCR验证的电泳结果
    M:DL2000 DNA Marker;1~3:SSⅡa启动子。
    Figure  1.  Electrophoresis results of SSⅡa promoter cloning and PCR amplification

    核酸测序结果及功能元件分析结果如图 2所示,经PlantCare软件分析发现,SSⅡa序列含有众多启动子必需的顺式作用元件,具体元件信息如表 1所示,其中包括TATA-box,CAAT-box等元件。该序列存在9个TATA-box,离SSⅡa基因ATG最近的为处于504 bp处的TATA-box(图 2红色方框中显示),除此之外,分析还发现了众多重要的功能元件和结合位点(表 1),例如1)MBS:MYB结合位点,能够响应水分、盐、低温等逆境胁迫;2)Skn-1-motif和GCN4-motif:胚乳表达所需的顺式作用元件;3)motif IIb:参与脱落酸响应的功能元件;4)O2-site:参与玉米醇溶蛋白代谢调控的功能元件。这些功能元件的存在,说明玉米SSⅡa基因能够受到多种生物及非生物胁迫的诱导及影响,而且拥有胚乳特异性表达的功能元件。该启动子相关功能元件的研究,对于玉米SSⅡa基因的表达调控途径的探究及开发胚乳特异型启动子具有重要意义。

    图  2  玉米SSⅡa启动子的序列分析
    附有黄色底纹的序列为相关顺式作用元件,由上至下红色方框内依次为克隆突变碱基、胚乳特异性表达功能元件、参与抗旱诱导的MYB结合位点、TATA-box、SSⅡa基因起始密码子ATG。
    Figure  2.  Sequence analysis of maize SSⅡa promoter
    表  1  SSⅡa启动子区顺式作用元件
    Table  1.  Cis-acting elements of SSⅡa promoter
    元件名称 序列 元件功能 元件位置
    CAAT-box CAATT、CAAAT、CAAT 启动子和增强子区常见的顺式作用元件 -2 380、-1 094、-2 088、-1 165、-1 377、-1 166、-1 095、-1 915、-2 013、-1 032、-815
    CAT-box GCCACT 与分生组织表达相关的作用元件 -1 225、-546、-127
    CE3 GACGCGTGTC 参与ABA和VP1响应的作用元件 -2 430
    CG-motif CCATGGGG 光响应元件 -1 945
    G-box CACATGG 光响应元件 -1 601、-392
    I-box GGATAAGGTG 光响应元件 -2 419
    MBS CGGTCA MYB结合位点 -2 452
    Skn-1-motif GTCAT 胚乳表达所需的作用元件 -1 497、-1 087
    GCN4-motif CAAGCCA 胚乳表达调控作用元件 -875
    Sp1 CC(G/A)CCC 光响应元件 -1 279、-1 145
    TATA-box TAATA、TATA、ATATAA、 核心启动子元件(在转录起始位点上游) -1 850、-2 028、-1 389、-1 847、-1 931、-1 848、-2 030、-529、-508
    TC-rich repeats ATTTTCTCCA 参与防御和应激反应的作用元件 -1 815
    TGA-element AACGAC 生长素响应的作用元件 -1 256、-247
    TGACG-motif TGACG 参与茉莉酸甲酯响应的作用元件 -2 458、-1 198、-754
    ABRE CACGTG 参与脱落酸响应的元件 -392
    CGTCA-motif CGTCA 参与茉莉酸甲酯响应的作用元件 -213
    GARE-motif TCTGTTG 赤霉素应答作用元件 -1 029
    HSE AAAAAATTTC 参与热胁迫应答的作用元件 -824
    MBS CAACTG 参与抗旱诱导的MYB结合位点 -1 000、-761
    O2-site GATGATGTGG 参与玉米醇溶蛋白代谢调控的作用元件 -1 044
    motif IIb CCGCCGCGCT 脱落酸响应元件 -796
    下载: 导出CSV 
    | 显示表格

    本研究成功克隆了玉米淀粉合成酶启动子SSⅡa的2 526 bp片段,并利用PlantCare软件对其进行分析[16],针对此片段上的顺式作用元件分别设计了5种5′缺失载体,其中:构建缺失体P1中含有8个常见顺式作用元件(CAAT),3个与分生组织表达相关的元件CAT-box,3个茉莉酸甲酯响应的元件CGTCA-motif和TGACG-motif,3个光响应元件GAG-motif和SP1,1个赤霉素应答元件GARE-motif,2个胚乳表达相关作用元件GCN4-motif和Skn-1 motif,1个热响应作用元件HSE,2个参与抗旱诱导的MYB结合位点MBS,1个参与玉米醇溶蛋白代谢调控的作用元件O2-site,2个TATA-box,2个生长素响应元件TGA-element,1个脱落酸响应元件motif IIb。

    缺失体P2包括2个常见顺式作用元件(CAAT),2个与分生组织表达相关的元件CAT-box,2个茉莉酸甲酯响应的元件CGTCA-motif和TGACG-motif,1个光响应元件GAG-motif,1个热响应作用元件HSE,1个参与抗旱诱导的MYB结合位点MBS,2个TATA-box,1个生长素响应元件TGA-element,1个脱落酸响应元件motif IIb。

    缺失体P3包括2个与分生组织表达相关的元件CAT-box,1个茉莉酸甲酯响应的元件CGTCA-motif,2个TATA-box,1个生长素响应元件TGA-element。

    缺失体P4包括1个与分生组织表达相关的元件CAT-box,1个茉莉酸甲酯响应的元件CGTCA-motif,1个生长素响应元件TGA-element。

    缺失体P5包括1个与分生组织表达相关的元件CAT-box,1个茉莉酸甲酯响应的元件CGTCA-motif,1个生长素响应元件TGA-element,P4与P5功能元件相同但P5与P4相比缺少预测到的转录起始位点(TSS)序列。

    根据SSⅡa启动子分析结果,分别使用设计的缺失体引物进行PCR扩增,扩增结果如图 3A所示。采用EcoRⅠ、BglⅡ分别对5种不同长度SSⅡa启动子的PCR产物和植物表达载体pCAMBIA3301进行双酶切,分别构建了5个缺失体植物表达载体,转化大肠埃希菌感受态细胞后,以菌液为模板进行菌液PCR验证(图 3B),分别提取质粒进行双酶切验证,结果见图 3C。说明不同长度SSⅡa启动子植物表达载体构建成功,分别命名为:pCAMBIA-3301-P1、pCAMBIA-3301-P2、pCAMBIA-3301-P3、pCAMBIA-3301-P4和pCAMBIA-3301-P5,以下简称为P1、P2、P3、P4和P5。

    图  3  不同长度SSⅡa启动子片段的扩增、重组载体PCR验证及双酶切验证结果
    M:DL2000 DNA Marker;1~5分别为缺失体P1、P2、P3、P4和P5。
    Figure  3.  Amplification of SSⅡa promoter fragments of different length, PCR verification of recombinant vectors and double enzyme digestion verification

    用除草剂喷洒拟南芥,获得的抗性植株分别提取基因组DNA,以其为模板,gus基因为目标基因进行PCR检测,结果见图 4,由缺失体P1~P5均扩增出402 bp的条带,而非转基因对照的扩增结果为阴性,证明所采样的拟南芥均为成功转化不同长度启动子的阳性植株。

    图  4  不同表达载体gus基因PCR扩增验证电泳结果
    M:DL2000 DNA Marker;1~2为缺失体P5,3~4为缺失体P4,5~6为缺失体P3,7~8为缺失体P2,9~10为缺失体P1;CK:非转基因对照。
    Figure  4.  PCR detection results of gus gene in different expression vectors by electrophoresis

    在成熟期阶段,分别采取叶片和果荚为试验材料进行GUS染色,结果见图 5,野生型拟南芥(CK)叶片未见蓝色,5种类型不同转启动子的拟南芥叶片均呈现不均匀蓝色;野生型拟南芥果荚未见蓝色,转基因拟南芥果荚均有蓝色,且不同长度启动子的果荚,蓝色深浅不同,P1和P2果荚染色较深,P3、P4和P5果荚染色较浅。

    图  5  成熟期转基因拟南芥植株叶片和果荚GUS组织化学染色
    Figure  5.  Histochemical analysis of GUS activities in leaves and pods of transgenic Arabidopsis thaliana plant at maturity

    转基因植株经组织化学染色分析后,可以初步判断启动子驱动的gus基因的表达部位和大致表达强度,但并不能判断启动子的活力大小,为了进一步明确5种启动子的活性,利用荧光定量PCR技术从转录水平上检测各启动子驱动的gus基因的表达情况,图 6所示为成熟期5种转基因植株叶片和种子gus基因相对表达量。由图 6可知,野生型拟南芥(CK)叶片和种子中gus基因均不表达,这与GUS染色结果一致。5种转基因叶片中,gus基因表达量P1最高,其他基本一致。种子中gus基因P1和P2表达量相近,高于P3、P4和P5,P5表达量最低。P1和P2中含有胚乳特异性表达的功能元件。本研究结果表明,缺失胚乳表达功能元件可导致所驱动的gus基因在种子中表达量下降(P3、P4和P5)。SSⅡa启动子具有的胚乳特异性,种子gus基因表达量差异可能与功能元件的数量有关[16]

    图  6  成熟期转基因拟南芥叶片和种子中gus基因的相对表达量
    Figure  6.  Relative expression levels of gus gene in leaves and seeds of transgenic Arabidopsis thaliana plant at maturity

    2009年玉米基因组测序工作的完成,为玉米功能基因及启动子序列的克隆带来了极大的方便。本试验利用玉米淀粉合成酶基因SSⅡa核酸序列,BLAST分析出SSⅡa 5′上游DNA序列,设计特异引物,利用常规PCR方法克隆了2 526 bp SSⅡa基因5′侧翼序列,与NCBI中公布的玉米基因组序列比对后,一致性为99.96%。

    目前,对玉米SSⅡa启动子的研究报道较少[17],但Harn等[8]1998年最先从玉米胚乳中成功的克隆了zmSSⅡazmSSⅡb的cDNA,SSⅡa在玉米淀粉代谢网络中也主要在胚乳中行使功能,参与支链淀粉的合成;任红丽等[18]与Hu等[19]分别鉴定了玉米可溶性淀粉合成酶基因的SSⅠ和SSⅢ启动子均为胚乳特异性启动子;Li等[20]研究表明籼稻SSⅡa启动子为胚乳特异性启动子。以上研究结果预示本研究克隆的玉米SSⅡa启动子可能具有胚乳特异性。

    本研究结果经PlantCare在线分析软件分析,发现其除具有典型启动子基本顺式作用元件之外,还含有胚乳特异性表达功能元件,抗旱诱导结合位点,光诱导元件等胁迫诱导顺式作用元件。为了研究部分顺式作用元件的功能,构建了5个缺失体载体,主要研究胚乳特异性功能元件、抗旱诱导MYB结合位点等的功能。重新设计5种类型的引物,扩增SSⅡa启动子序列的长度分别为1 407 bp(P1)、867 bp(P2)、633 bp(P3)、483 bp(P4)和365 bp(P5),用于构建5个不同长度SSⅡa启动子缺失的植物表达载体,分别转化拟南芥,通过基因组PCR检测,均扩增出402 bp的条带,可证明所采样的拟南芥均为成功转化不同长度启动子的阳性植株。利用GUS化学法对转基因阳性拟南芥成熟期叶片和果荚进行染色,初步验证了gus基因表达部位和大致表达强度;通过荧光定量技术对转基因阳性拟南芥成熟期叶片和种子进行gus基因定量表达,证明了长度为1 407 bp(P1)和867 bp(P2)的SSⅡa启动子具有胚乳特异性。

    本研究对5种启动子的功能比较分析只是初步结果,利用P1和P2联合考察胚乳特异性功能元件的作用,对其功能的深入探讨,如利用P2和P3联合考察抗旱诱导MYB结合位点的作用,利用P3和P4联合考察启动子中TATA序列是否为此启动子行使功能的TATA-box等功能的深入研究,还有待后续实验验证。通过对以上5种启动子缺失体功能的进一步研究,期望能够明确SSⅡa启动子中部分顺式作用元件的功能,为SSⅡa启动子的应用提供理论依据,为组织特异性启动子的开发和应用提供候选启动子,为玉米淀粉代谢网络调控的研究提供基础。

  • 表  1   田间试验处理及N、K肥的基、追肥比例

    Table  1   Treatments for field experiment and radio of base fertilizer and topdressing for N,K fertilizer

    处理
    Treatment
    滴灌灌水量
    Drip irrigation amount
    滴灌施肥比例
    Fertigation ratio
    基肥/%
    Base fertilizer
    追肥 Topdressing/%
    苗期
    Seedling stage
    块茎形成期
    Tuber formation stage
    块茎膨大期
    Tuber expansion stage
    T1 高灌水量
    High irrigation amount
    NK100-0 100 0 0 0
    T2 NK70-30 70 7.5 15 7.5
    T3 NK50-50 50 12.5 25 12.5
    T4 低灌水量
    Low irrigation amount
    NK100-0 100 0 0 0
    T5 NK70-30 70 7.5 15 7.5
    T6 NK50-50 50 12.5 25 12.5
    下载: 导出CSV

    表  2   不同处理对土壤有机碳及其组分的影响1)

    Table  2   Effects of different treatments on soil organic carbon and its components

    处理
    Treatment
    滴灌灌水量
    Drip irrigation amount
    滴灌施肥比例
    Fertigation ratio
    w/(g·kg−1) w/(mg·kg−1)
    总有机碳
    Total organic carbon(TOC)
    活性有机碳
    Labile organic carbon(LOC)
    可溶性有机碳
    Dissolved organic carbon(DOC)
    微生物量碳
    Microbial biomass carbon(MBC)
    T1 高灌水量
    High irrigation amount
    NK100-0 6.18±0.15bc 0.44±0.03b 323.0±57.0ab 374.8±25.3ab
    T2 NK70-30 6.65±0.24ab 0.49±0.01b 369.5±27.5a 384.8±20.3a
    T3 NK50-50 7.12±0.24a 0.55±0.02a 328.7±14.8ab 370.6±3.1b
    T4 低灌水量
    Low irrigation amount
    NK100-0 5.46±0.15d 0.43±0.01b 189.5±49.8b 325.8±8.5b
    T5 NK70-30 5.60±0.16cd 0.44±0.01b 241.3±93.5ab 343.0±9.6ab
    T6 NK50-50 6.15±0.18bc 0.47±0.01b 215.6±7.6ab 324.1±18.7b
    显著性检验
    (P值)
    Significance test
    (P value)
    滴灌灌水量 Drip irrigation amount 0.004 0.008 0.011 0.005
    滴灌施肥比例 Fertigation ratio 0.001 0.003 0.626 0.567
    滴灌灌水量×滴灌施肥比例
    Drip irrigation amount × Fertigation ratio
    0.674 0.125 0.979 0.975
     1) 同列数据后的不同小写字母表示处理间差异显著 (P<0.05,Duncan’s法)
     1) Different lowercase letters in the same column indicate significant differences among treatments (P<0.05,Duncan’s test)
    下载: 导出CSV

    表  3   不同处理对土壤酶活性的影响1)

    Table  3   Effects of different treatments on soil enzyme activity

    处理
    Treatment
    滴灌灌水量
    Drip irrigation amount
    滴灌施肥比例
    Fertigation ratio
    蔗糖酶活性/(mg·g−1·d−1)
    Sucrase activity
    纤维素酶活性/U
    Cellulase activity
    过氧化氢酶活性/(mL·g−1)
    Catalase activity
    T1 高灌水量
    High irrigation amount
    NK100-0 7.17±0.36ab 0.73±0.06a 0.45±0.03a
    T2 NK70-30 7.29±0.14a 0.75±0.04a 0.47±0.03a
    T3 NK50-50 7.39±0.24a 0.75±0.03a 0.46±0.02a
    T4 低灌水量
    Low irrigation amount
    NK100-0 6.03±0.56b 0.64±0.06a 0.39±0.06a
    T5 NK70-30 6.30±0.18ab 0.67±0.06a 0.45±0.04a
    T6 NK50-50 6.25±0.44ab 0.66±0.03a 0.44±0.04a
    显著性检验
    (P值)
    Significance
    Test
    (Pvalue)
    滴灌灌水量 Drip irrigation amount 0.003 0.062 0.311
    滴灌施肥比例 Fertigation ratio 0.799 0.906 0.602
    滴灌灌水量×滴灌施肥比例
    Drip irrigation amount × Fertigation ratio
    0.969 0.999 0.873
     1)同列数据后的不同小写字母表示处理间差异显著 (P<0.05,Duncan’s法)
     1) Different lowercase letters in the same column indicate significant differences among treatments (P<0.05,Duncan’s test)
    下载: 导出CSV

    表  4   不同处理对土壤碳库管理指数的影响1)

    Table  4   Effects of different treatments on soil carbon pool management index

    处理
    Treatment
    滴灌灌水量
    Drip irrigation amount
    滴灌施肥比例
    Fertigation ratio
    碳库指数
    Carbon pool index
    (CPI)
    碳库管理指数
    Carbon pool management index
    (CPMI)
    T1 高灌水量
    High irrigation amount
    NK100-0 1.26±0.03bc 121.65±7.57b
    T2 NK70-30 1.35±0.05ab 134.36±4.23b
    T3 NK50-50 1.45±0.05a 153.04±5.71a
    T4 低灌水量
    Low irrigation amount
    NK100-0 1.11±0.03d 120.08±4.93b
    T5 NK70-30 1.14±0.03cd 122.43±4.23b
    T6 NK50-50 1.25±0.04bc 130.19±2.63b
    显著性检验
    (P值)
    Significance test
    (P value)
    滴灌灌水量 Drip irrigation amount 0.001 0.111
    滴灌施肥比例 Fertigation ratio 0.113 0.194
    滴灌灌水量×滴灌施肥比例
    Drip irrigation amount × Fertigation ratio
    0.000 0.001
     1)同列数据后的不同小写字母表示处理间差异显著(P<0.05,Duncan’s法)
     1)Different lowercase letters in the same column indicate significant differences among treatments (P<0.05,Duncan’s test)
    下载: 导出CSV

    表  5   土壤有机碳及其组分含量和碳库管理指数与酶活性的相关性分析1)

    Table  5   Correlation analyses of soil organic carbon and fraction contents and carbon pool management index with enzyme activity

    指标
    Index
    蔗糖酶
    Sucrase
    纤维素酶
    Cellulase
    过氧化氢酶
    Catalase
    总有机碳 Total organic carbon (TOC) 0.61** 0.24 0.33
    活性有机碳 Labile organic carbon (LOC) 0.29 0.23 0.14
    可溶性有机碳 Dissolved organic carbon (DOC) 0.48* 0.02 0.29
    微生物量碳 Microbial biomass carbon (MBC) 0.46* 0.29 0.03
    碳库指数 Carbon pool index (CPI) 0.60** 0.24 0.31
    碳库管理指数 Carbon pool management index (CPMI) 0.23 0.24 0.20
     1)“*”和“**”分别表示达0.05和0.01水平的显著相关(n=3,Pearson法)
     1)“*” and “**” indicate significant correlations at 0.05 and 0.01 levels, respectively(n=3, Pearson method)
    下载: 导出CSV
  • [1] 冯志文, 万书勤, 康跃虎, 等. 滴灌施肥条件下减量施肥对马铃薯田土壤养分积累及产量的影响[J]. 节水灌溉, 2019(8): 28-33. doi: 10.3969/j.issn.1007-4929.2019.08.006
    [2] 宇万太, 柳敏, 赵鑫, 等. 不同有机物料及其配施对潮棕壤轻组有机碳的动态影响[J]. 土壤通报, 2008, 39(6): 1307-1310. doi: 10.3321/j.issn:0564-3945.2008.06.016
    [3] 沈舒雨, 王芳, 南雄雄, 等. 氮磷养分配施对土壤碳氮特征及叶用枸杞生长的影响[J]. 青海环境, 2020, 30(1): 26-33. doi: 10.3969/j.issn.1007-2454.2020.01.007
    [4] 邓少虹, 林明月, 李伏生, 等. 施肥对喀斯特地区植草土壤碳库管理指数及酶活性的影响[J]. 草业学报, 2014, 23(4): 262-268. doi: 10.11686/cyxb20140432
    [5] 齐玉春, 郭树芳, 董云社, 等. 灌溉对农田温室效应贡献及土壤碳储量影响研究进展[J]. 中国农业科学, 2014, 47(9): 1764-1773. doi: 10.3864/j.issn.0578-1752.2014.09.011
    [6]

    SINGH A, GULATI I J, CHOPRA R, et al. Effect of drip-fertigation with organic manures on soil properties and tomato (Lycopersicon esculentum Mill. ) yield under arid condition[J]. Annals of Biology, 2014, 30(2): 345-349.

    [7] 缑倩倩, 王国华, 屈建军. 农田土壤有机碳库研究述评[J]. 中国农学通报, 2017, 33(33): 107-114. doi: 10.11924/j.issn.1000-6850.casb16100003
    [8] 俞华林, 张恩和, 王琦, 等. 灌溉和施氮对免耕留茬春小麦农田土壤有机碳、全氮和籽粒产量的影响[J]. 草业学报, 2013, 22(3): 227-233. doi: 10.11686/cyxb20130330
    [9] 韩琳, 张玉龙, 金烁, 等. 灌溉模式对保护地土壤可溶性有机碳与微生物量碳的影响[J]. 中国农业科学, 2010, 43(8): 1625-1633. doi: 10.3864/j.issn.0578-1752.2010.08.011
    [10] 刘瑞, 王星辰, 束良佐, 等. 滴灌施肥条件下氮去向及其对土壤环境影响的研究进展[J]. 安徽农业科学, 2018, 46(15): 24-27. doi: 10.3969/j.issn.0517-6611.2018.15.008
    [11] 马瑞萍, 安韶山, 党廷辉, 等. 黄土高原不同植物群落土壤团聚体中有机碳和酶活性研究[J]. 土壤学报, 2014, 51(1): 104-113. doi: 10.11766/trxb201302050071
    [12] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
    [13] 史万恩. 滴灌条件下脱毒马铃薯灌溉制度试验研究[J]. 水资源与水工程学报, 2017, 28(5): 255-260. doi: 10.11705/j.issn.1672-643X.2017.05.43
    [14] 赵鸿, 任丽雯, 赵福年, 等. 马铃薯对土壤水分胁迫响应的研究进展[J]. 干旱气象, 2018, 36(4): 537-543.
    [15] 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986.
    [16] 杜爱林, 傅丰贝, 李伏生. 赤红壤碳库管理的滴灌施氮模式研究[J]. 华南农业大学学报, 2019, 40(2): 14-20. doi: 10.7671/j.issn.1001-411X.201805014
    [17]

    BICHARANLOO B, SHIRVAN M B, KEITEL C, et al. Rhizodeposition mediates the effect of nitrogen and phosphorous availability on microbial carbon use efficiency and turnover rate [J/OL]. Soil Biology and Biochemistry, 2020, 142: 107705. [2021-07-15] . https://doi.org/10.1016/j.soilbio.2020.107705.

    [18] 王振龙, 包蕾, 葛新伟, 等. 有机滴灌肥对酿酒葡萄园土壤微生物量碳、氮及酶活性的影响[J]. 中国土壤与肥料, 2019(2): 61-67. doi: 10.11838/sfsc.1673-6257.18229
    [19]

    YOON T K, NOH N J, HAN S, et al. Soil moisture effects on leaf litter decomposition and soil carbon dioxide efflux in wetland and upland forests[J]. Soil Science Society of America Journal, 2014, 78(5): 1804-1816. doi: 10.2136/sssaj2014.03.0094

    [20] 唐海明, 程凯凯, 肖小平, 等. 不同冬季覆盖作物对双季稻田土壤有机碳的影响[J]. 应用生态学报, 2017, 28(2): 465-473.
    [21] 钱虹宇, 周宏鑫, 罗原骏, 等. 土壤活性有机碳及碳库管理指数对高寒湿地退化的响应[J]. 生态学杂志, 2020, 39(7): 2273-2282.
    [22] 滕秋梅, 沈育伊, 徐广平, 等. 桂北喀斯特山区不同植被类型土壤碳库管理指数的变化特征[J]. 生态学杂志, 2020, 39(2): 422-433.
    [23] 张鹏, 钟川, 周泉, 等. 不同冬种模式对稻田土壤碳库管理指数的影响[J]. 中国生态农业学报, 2019, 27(8): 1163-1171.
    [24] 薛萐, 刘国彬, 潘彦平, 等. 黄土丘陵区人工刺槐林土壤活性有机碳与碳库管理指数演变[J]. 中国农业科学, 2009, 42(4): 1458-1464. doi: 10.3864/j.issn.0578-1752.2009.04.042
    [25] 田幼华, 吕光辉, 杨晓东, 等. 水盐胁迫对干旱区植物根际土壤酶活性的影响[J]. 干旱区资源与环境, 2012, 26(3): 158-163.
    [26] 高丽敏, 苏晶, 田倩, 等. 施氮对不同水分条件下紫花苜蓿氮素吸收及根系固氮酶活性的影响[J]. 草业学报, 2020, 29(3): 130-136. doi: 10.11686/cyxb2019268
    [27] 万忠梅, 宋长春, 郭跃东, 等. 毛苔草湿地土壤酶活性及活性有机碳组分对水分梯度的响应[J]. 生态学报, 2008, 28(12): 5980-5986. doi: 10.3321/j.issn:1000-0933.2008.12.025
    [28] 杨雪艳, 蒋代华, 杨钙仁, 等. 甘蔗水肥一体化种植对土壤微生物量碳氮和酶活性的影响[J]. 土壤通报, 2018, 49(4): 889-896.
    [29] 崔东, 邓霞, 刘影, 等. 镰叶锦鸡儿湿地土壤酶活性分布特征及其与活性有机碳表征指数的关系[J]. 干旱地区农业研究, 2017, 35(5): 195-201. doi: 10.7606/j.issn.1000-7601.2017.05.29
    [30] 曲成闯, 陈效民, 张志龙, 等. 施用生物有机肥对黄瓜连作土壤有机碳库和酶活性的持续影响[J]. 应用生态学报, 2019, 30(9): 3147-3154.
    [31] 张英英. 不同耕作措施下旱作农田土壤活性有机碳组分与酶活性关系研究[D]. 兰州: 甘肃农业大学, 2016.
表(5)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-27
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2022-05-09

目录

/

返回文章
返回