Abstract:
Objective This study was aimed to evaluate the effect of nodes within a green banana bunch harvested in suitable period, inner and outer row layers nested in nodes, fruit finger surface area and impact level on fruit impact bruise susceptibility, providing references for targeted protection to ensure fruit finger quality in subsequent production and handling processes.
Method Nested, one-way and orthogonal experimental designs were combined with one-way and multi-way ANOVAs to determine the factors and primary-secondary relationship that significantly affect the bruise susceptibility of fruits. A pendulum impact bench was designed and constructed to carry out the impact damage test on fruits. The bruise susceptibility (bruise volume per unit absorbed energy) of fruits was calculated based on measuring bruise volume and corresponding absorbed energy.
Result The results of the nested test showed that the nodes within a banana bunch had no significant effect on the bruise susceptibility while the row layer nested in nodes had an extremely significant effect. The 14 levels of the row layers nested in nodes could be divided into four groups according to the results of multiple comparisons analysis. The results of the one-way test showed that fruit finger surface area had highly significant effect on the bruise susceptibility which was in order of near fruit apex >fruit middle >near fruit pedicel. The bruise susceptibility increased with the increase of impact level. The results of the orthogonal test showed that the order of the factors affecting fruit bruise susceptibility was impact level > growth location> fruit finger surface area.
Conclusion The impact bruise susceptibilities were significantly different between inner and outer row layers nested in nodes within a banana bunch, and among different fruit finger surface areas.