• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

干旱胁迫对玉米雄穗发育特征及产量的影响

李锦秀, 郭勇智, 崔蓉, 张欣宇, 王呈玉, 刘淑霞

李锦秀, 郭勇智, 崔蓉, 等. 干旱胁迫对玉米雄穗发育特征及产量的影响[J]. 华南农业大学学报, 2022, 43(3): 26-33. DOI: 10.7671/j.issn.1001-411X.202107025
引用本文: 李锦秀, 郭勇智, 崔蓉, 等. 干旱胁迫对玉米雄穗发育特征及产量的影响[J]. 华南农业大学学报, 2022, 43(3): 26-33. DOI: 10.7671/j.issn.1001-411X.202107025
LI Jinxiu, GUO Yongzhi, CUI Rong, et al. Influence of drought stress on tassel development characteristics and yield of maize[J]. Journal of South China Agricultural University, 2022, 43(3): 26-33. DOI: 10.7671/j.issn.1001-411X.202107025
Citation: LI Jinxiu, GUO Yongzhi, CUI Rong, et al. Influence of drought stress on tassel development characteristics and yield of maize[J]. Journal of South China Agricultural University, 2022, 43(3): 26-33. DOI: 10.7671/j.issn.1001-411X.202107025

干旱胁迫对玉米雄穗发育特征及产量的影响

基金项目: 吉林省重点研发计划(20200403069SF)
详细信息
    作者简介:

    李锦秀,硕士研究生,主要从事施肥与环境相关研究, E-mail: lijinxiu96@163.com

    通讯作者:

    刘淑霞,教授,博士,主要从事施肥与环境相关研究, E-mail: liushuxia2005824@163.com

  • 中图分类号: S513

Influence of drought stress on tassel development characteristics and yield of maize

  • 摘要:
    目的 

    探究干旱胁迫对玉米雄穗发育特征及产量的影响,以期为中国东北地区玉米种植抗旱保产提供一定理论基础。

    方法 

    采用盆栽试验,设置原土处理和添加土壤改良剂处理,并于玉米大喇叭口期至吐丝期进行不同程度的干旱胁迫:正常供水、轻度干旱胁迫、中度干旱胁迫和重度干旱胁迫,研究不同程度干旱胁迫对玉米的抽雄吐丝间隔、雄穗形态特征、生理指标以及产量的影响。

    结果 

    干旱胁迫导致玉米雌穗吐丝时间延后,雌、雄穗开花吐丝不同步,且在重度干旱胁迫时达到最大值,其中原土处理较CK延长了6.33 d,添加土壤改良剂处理延长了4.67 d;不同程度干旱胁迫会导致玉米雄穗变小、主轴缩短,轻度干旱胁迫有利于雄穗积累干物质,原土处理和添加土壤改良剂处理的雄穗干物质分别比CK增加了5.18%和14.87%;干旱胁迫会促使雄穗分泌抗氧化系统酶以及渗透调节物质抵御逆境伤害,但重度干旱胁迫时雄穗内部产生过多丙二醛(MDA)以及有害物质,会导致抗氧化系统酶活性有所降低;干旱胁迫会造成玉米产量严重下降,重度干旱胁迫时原土处理的产量与CK相比下降了62.39%,添加土壤改良剂处理的产量则下降了57.77%。

    结论 

    干旱胁迫会对玉米雄穗发育以及产量造成严重影响,尤其在重度干旱胁迫时,影响程度最为严重,会对雄穗造成不可逆伤害;施用土壤改良剂可以在一定程度上提高玉米雄穗抗逆性,从而保证玉米雄穗正常生长发育以及产量。

    Abstract:
    Objective 

    To explore the effects of drought stress on maize tassel development characteristics and yield, and provide a theoretical basis for drought resistance and yield protection of maize planting in northeast China.

    Method 

    In the pot experiment, original soil treatment and adding soil conditioner treatment were set up. Different drought stress degrees of normal water supply (CK), light drought stress, moderate drought stress, and severe drought stress were conducted from the big trumpet stage to silking stage of maize, to study the effects of different drought stress degrees on maize anthesis-silking interval, tassel morphological and physiological characteristics and yield.

    Result 

    Drought stress delayed the silking time of the female inflorscence of maize causing the tasseling and, silking of the maize to be asynchronous, most seriously under severe drought stress. Compared with CK, the anthesis-silking interval in the original soil and adding soil conditioner treatments was extended by 6.33 and 4.67 d, respectively. Different drought stress degrees decreased the maize size and spindle length. Light drought stress was conducive to the accumulation of dry matter in the maize tassels, and compared with CK, the tassel dry matter in the original soil treatment and the adding soil conditioner treatment increased by 5.18% and 14.87%, respectively. Drought stress prompted the tassels to secrete antioxidant system enzymes and osmotic adjustment substances to resist adversity damage. However, under severe drought stress, too much malondialdehyde (MDA) and harmful substances were produced in the tassel, which caused the activity of the antioxidant system enzyme to decrease. Drought stress caused a serious decline in maize yield. Under severe drought stress, the maize yield in the original soil treatment decreased by 62.39% compared with CK, and the yield in the adding soil conditioner treatment decreased by 57.77%.

    Conclusion 

    Drought stress seriously affects the development and yield of maize tassels, especially under severe drought stress, which causes irreversible damage to the tassels. The application of soil conditioner can improve the stress resistance of maize tassels to a certain extent, thereby ensuring the normal growth and development of maize tassels and yield.

  • 图  1   干旱胁迫对玉米抽雄吐丝间隔的影响

    CK:正常供水,LD:轻度干旱胁迫,MD:中度干旱胁迫,SD:重度干旱胁迫;相同土壤处理不同干旱胁迫程度柱子上的不同小写字母表示差异显著(P<0.05,Duncan’s法)

    Figure  1.   Effects of drought stress on maize tasseling-silking interval

    CK: Normal water supply, LD: Light drought stress, MD: Moderate drought stress, SD: Severe drought stress; Different lowercase letters on the columns of different drought stress degrees in the same soil treatment indicate significant differences (P<0.05, Duncan’s method)

    图  2   干旱胁迫对玉米雄穗抗氧化系统酶活性及丙二醛含量的影响

    CK:正常供水,LD:轻度干旱胁迫,MD:中度干旱胁迫,SD:重度干旱胁迫;各小图中相同土壤处理不同干旱胁迫程度柱子上的不同小写字母表示差异显著(P<0.05,Duncan’s法)

    Figure  2.   Effects of drought stress on antioxidant system enzyme activities and MDA content in maize tassels

    CK: Normal water supply, LD: Light drought stress, MD: Moderate drought stress, SD: Severe drought stress; Different lowercase letters on the columns of different drought stress degrees in the same soil treatment in each figure indicate significant differences (P<0.05, Duncan’s method)

    图  3   干旱胁迫对玉米雄穗渗透调节物质含量的影响

    CK:正常供水,LD:轻度干旱胁迫,MD:中度干旱胁迫,SD:重度干旱胁迫;各小图中相同土壤处理不同干旱胁迫程度柱子上的不同小写字母表示差异显著(P<0.05,Duncan’s法)

    Figure  3.   Effects of drought stress on the content of osmotic adjustment substances in maize tassels

    CK: Normal water supply, LD: Light drought stress, MD: Moderate drought stress, SD: Severe drought stress; Different lowercase letters on the columns of different drought stress degrees in the same soil treatment in each figure indicate significant differences (P<0.05, Duncan’s method)

    表  1   2种土壤处理土壤水分基础数据

    Table  1   Basic data of soil moisture in two soil treatments

    土壤处理
    Soil treatment
    含水量/%
    Water content
    田间持水量/%
    Field water capacity
    饱和含水量/%
    Saturated water content
    容重/(g·cm−3)
    Bulk density
    萎蔫系数/%
    Wilting coefficient
    原土
    Original soil
    3.55±0.04 17.53±0.22 35.33±0.95 1.47±0.04 8.83±0.08
    添加土壤改良剂
    Adding soil conditioner
    7.72±0.12 23.19±0.28 40.81±0.24 1.48±0.12 7.22±0.11
    下载: 导出CSV

    表  2   干旱胁迫对玉米雄穗形态特征的影响1)

    Table  2   Effects of drought stress on morphological characteristics of maize tassels

    土壤处理
    Soil treatment
    干旱胁迫
    Drought stress
    大小/cm
    Size
    主轴长/cm
    Spindle length
    主轴粗/mm
    Spindle thickness
    干质量/g
    Dry weight
    原土
    Original soil
    CK 202.47±9.41a 43.80±1.50a 7.73±0.11a 4.76±079a
    LD 167.60±18.49ab 42.77±4.20ab 6.67±0.10ab 5.02±0.43a
    MD 127.83±32.04bc 40.83±0.76ab 5.33±0.12bc 4.02±0.96ab
    SD 99.70±22.25c 38.70±0.75b 3.67±0.06c 2.98±0.71b
    添加土壤改良剂
    Adding soil conditioner
    CK 213.40±11.84a 44.17±2.84a 8.33±0.08a 4.75±0.88ab
    LD 178.73±7.92b 43.17±1.26ab 7.33±0.06ab 5.58±0.80a
    MD 150.20±20.19c 41.87±3.46ab 6.10±0.07bc 4.20±0.92ab
    SD 108.67±3.18d 39.17±1.26b 5.17±0.08c 3.44±0.69b
     1) CK:正常供水,LD:轻度干旱胁迫,MD:中度干旱胁迫,SD:重度干旱胁迫;相同土壤处理同列数据后的不同小写字母表示不同干旱胁迫程度间差异显著(P<0.05,Duncan’s法)
     1) CK: Normal water supply, LD: Light drought stress, MD: Moderate drought stress, SD: Severe drought stress; Different lowercase letters in the same column of the same soil treatment indicate significant differences among different drought stress degrees (P<0.05, Duncan’s method)
    下载: 导出CSV

    表  3   干旱胁迫对玉米产量性状的影响1)

    Table  3   Effects of drought stress on maize yield characteristics

    土壤处理
    Soil
    treatment
    干旱胁迫
    Drought
    stress
    穗长/cm
    Spike
    length
    秃尖长/cm
    Bald tip
    length
    穗粗/cm
    Spike
    thickness
    行数
    Row
    number
    行粒数
    Row grain
    number
    百粒质量/g
    100-grain
    weight
    单株产量/g
    Yield per
    plant
    原土
    Original soil
    CK 16.17±1.53a 0.37±0.32c 2.47±0.35a 18.67±2.31a 25.67±3.79a 37.92±0.76a 134.62±5.60a
    LD 14.00±0.50b 0.87±0.32bc 2.13±0.23ab 17.33±2.83ab 22.33±3.21b 34.79±0.90b 110.66±5.55b
    MD 11.17±1.61c 1.60±0.4ab 1.93±0.12bc 11.30±5.03bc 15.00±2.00c 30.82±1.28c 76.28±2.95c
    SD 7.17±0.76c 2.10±0.79a 1.50±0.2c 9.33±3.79c 5.67±2.52c 27.77±1.15d 50.63±2.90d
    添加土壤改良剂
    Adding soil conditioner
    CK 16.33±0.29a 0.17±0.29c 2.73±0.25a 19.33±6.73a 29.33±2.08a 40.56±1.32a 163.14±5.04a
    LD 14.83±0.58b 0.63±0.25bc 2.33±0.15a 17.33±1.00a 27.00±2.00b 39.09±1.90a 117.47±5.83b
    MD 13.50±0.5c 0.90±0.46ab 2.03±0.06b 14.67±1.91b 23.67±3.21bc 35.12±2.51b 100.56±5.38c
    SD 10.67±0.58d 1.50±0.40a 1.77±0.06c 12.00±1.91c 12.33±3.06c 31.31±1.47c 68.89±0.53d
     1) CK:正常供水,LD:轻度干旱胁迫,MD:中度干旱胁迫,SD:重度干旱胁迫;相同土壤处理同列数据后的不同小写字母表示不同干旱胁迫程度间差异显著(P<0.05,Duncan’s法)
     1) CK: Normal water supply, LD: Light drought stress, MD: Moderate drought stress, SD: Severe drought stress; Different lowercase letters in the same column of the same soil treatment indicate significant differences among different drought stress degrees (P<0.05, Duncan’s method)
    下载: 导出CSV

    表  4   玉米抽雄吐丝间隔与产量构成因素的相关分析1)

    Table  4   Correlation analysis between tasseling-silking interval and output composition of maize

    性状
    Trait
    抽雄吐丝间隔
    Anthesis-silking interval
    秃尖长
    Bald tip length
    行数
    Row number
    行粒数
    Row grain number
    百粒质量
    100-grain weight
    秃尖长 Bald tip length 0.968*
    行数 Row number −0.956** −0.980**
    行粒数 Row grain number −0.947** −0.973** 0.947**
    百粒质量 100-grain weight −0.925** −0.967** 0.940** 0.950**
    单株产量 Yield per plant −0.975** −0.980** 0.964** 0.949** 0.935**
     1)“*”和“**”分别表示在P<0.05和P<0.01水平显著相关(Pearson法)
     1) “*” and “**” indicate significant correlations at P<0.05 andP<0.01 respeectively (Pearson method)
    下载: 导出CSV
  • [1] 杨若子. 东北玉米主要农业气象灾害的时空特征与风险综合评估[D]. 北京: 中国气象科学研究院, 2015.
    [2] 倪深海, 顾颖, 彭岳津, 等. 近七十年中国干旱灾害时空格局及演变[J]. 自然灾害学报, 2019, 28(6): 176-181.
    [3] 张淑杰, 张玉书, 纪瑞鹏, 等. 东北地区玉米干旱时空特征分析[J]. 干旱地区农业研究, 2011, 29(1): 231-236.
    [4]

    LI W, HAO Z, PANG J, et al. Effect of water-deficit on tassel development in maize[J]. Gene, 2019, 681: 86-92. doi: 10.1016/j.gene.2018.09.018

    [5] 贾双杰, 李红伟, 江艳平, 等. 干旱胁迫对玉米叶片光合特性和穗发育特征的影响[J]. 生态学报, 2020, 40(3): 854-863.
    [6]

    MAAZOU A-R S, TU J, QIU J, et al. Breeding for drought tolerance in maize (Zea mays L. )[J]. American Journal of Plant Sciences, 2016, 7(14): 1858-1870

    [7] 宋凤斌, 戴俊英. 玉米对干旱胁迫的反应和适应性Ⅱ: 玉米雌穗和雄穗生长发育对干旱胁迫的反应[J]. 吉林农业大学学报, 2005(1): 1-5. doi: 10.3969/j.issn.1000-5684.2005.01.001
    [8]

    FATHI A, TARI D B. Effect of drought stress and its mechanism in plants[J]. International Journal of Life Sciences, 2016, 10(1). doi: 10.3126/ijls.vloil.14509.

    [9] 杨娟, 姜阳明, 周芳, 等. PEG模拟干旱胁迫对不同抗旱性玉米品种苗期形态与生理特性的影响[J]. 作物杂志, 2021(1): 82-89.
    [10]

    LIU C, LIU Y, GUO K, et al. Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China[J]. Environmental and Experimental Botany, 2011, 71(2): 174-183. doi: 10.1016/j.envexpbot.2010.11.012

    [11]

    ZAHER-ARA T, BOROOMAND N, SADAT-HOSSEINI M. Physiological and morphological response to drought stress in seedlings of ten citrus[J]. Trees, 2016, 30(3): 985-993. doi: 10.1007/s00468-016-1372-y

    [12] 杨晓龙. 不同生育期干旱胁迫对水稻产量品质影响的生理机制研究[D]. 武汉: 华中农业大学, 2019.
    [13] 张凤路, KIRUBI D. 玉米雌雄穗开花间隔与产量关系研究[J]. 作物学报, 2002(1): 76-78. doi: 10.3321/j.issn:0496-3490.2002.01.015
    [14] 郭江, 石中泉, 张凤路, 等. 玉米的雌雄穗开花间隔对产量的影响及其潜在原因研究[J]. 玉米科学, 2004(S2): 20-22.
    [15] 郭艳阳, 刘佳, 朱亚利, 等. 玉米叶片光合和抗氧化酶活性对干旱胁迫的响应[J]. 植物生理学报, 2018, 54(12): 1839-1846.
    [16] 张永福, 黄鹤平, 银立新, 等. 冷(热)激对干旱胁迫下玉米活性氧清除及膜脂过氧化的调控机制[J]. 江苏农业科学, 2015, 43(5): 56-60.
    [17] 邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2007.
    [18]

    ARUMINGTYAS E L, WIDORETNO W, INDRIYANI S. Somaclonal variations of soybeans (Glycine Max. L. Merr) stimulated by drought stress based on random amplified polymorphic DNAs (RAPDs)[J]. American Journal of Molecular Biology, 2012, 2(1): 85-91. doi: 10.4236/ajmb.2012.21009

    [19] 贾波, 谢庆春, 蒋学祥, 等. 玉米雄穗主要性状研究进展[J]. 安徽农业科学, 2016, 44(32): 24-26. doi: 10.3969/j.issn.0517-6611.2016.32.008
    [20] 王艺煊, 王瑞莲, 李成, 等. 玉米自交系雌雄穗开花间隔与产量及抗旱性的相关性[J]. 作物研究, 2020, 34(5): 427-430.
    [21] 张翠梅. 不同抗旱性紫花苜蓿响应干旱的生理及分子机制研究[D]. 兰州: 甘肃农业大学, 2019.
    [22]

    SONG Y, LI J, LIU M, et al. Nitrogen increases drought tolerance in maize seedlings[J]. Functional Plant Biology, 2019, 46(4): 350-359. doi: 10.1071/FP18186

    [23] 刘佳. 不同抗旱性玉米品种响应干旱及复水的光合生理机制[D]. 杨凌: 西北农林科技大学, 2019.
    [24] 周客, 王利书, 程东娟, 等. 保水剂对土壤水分运移和水吸力变化的影响[J]. 节水灌溉, 2021(2): 52-57.
    [25] 田丽, 苏改艳, 高平安, 等. 不同土壤改良剂对玉米幼苗生理生长特性的影响[J]. 陕西农业科学, 2021, 67(3): 20-23. doi: 10.3969/j.issn.0488-5368.2021.03.006
    [26] 张翠梅, 师尚礼, 吴芳. 干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响[J]. 中国农业科学, 2018, 51(5): 868-882. doi: 10.3864/j.issn.0578-1752.2018.05.006
    [27]

    BLUM A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production[J]. Plant Cell and Environment, 2017, 40(1): 4-10. doi: 10.1111/pce.12800

    [28] 贾斯淳, 王娜, 郝兴宇, 等. 不同干旱胁迫处理对大豆品种生长及逆境生理的影响[J]. 华北农学报, 2019, 34(5): 137-144. doi: 10.7668/hbnxb.201751770
    [29]

    XU H, LU Y, XIE Z, et al. Changes in nitrogen metabolism and antioxidant enzyme activities of maize tassel in black soils region of northeast China[J]. Frontiers in Plant Science, 2014, 5: 515.

    [30]

    EFEOĞLU B, EKMEKÇI Y, ÇIÇEK N. Physiological responses of three maize cultivars to drought stress and recovery[J]. South African Journal of Botany, 2009, 75(1): 34-42. doi: 10.1016/j.sajb.2008.06.005

图(3)  /  表(4)
计量
  • 文章访问数:  270
  • HTML全文浏览量:  11
  • PDF下载量:  446
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-15
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2022-05-09

目录

    Corresponding author: LIU Shuxia, liushuxia2005824@163.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回