Design and experiment of soil covering and compacting device for Panax notoginseng seedling sowing
-
摘要:目的
为提高三七育苗品质,针对槽式三七育苗播种行株距小、播深浅的特殊农艺要求,设计一种集覆土、镇压功能为一体的密集型种沟覆土镇压装置。
方法在田间试验确定三七出苗率高、种苗品级最佳的基质紧实度范围的基础上,对镇压辊与土壤接触进行动力学分析,确定覆土镇压装置相关参数;借助离散元法对覆土镇压过程进行仿真分析;以开沟深度、播种机前进速度为试验因素,以覆土厚度及一致性为试验指标进行土槽试验,验证覆土镇压装置相关结构参数是否满足要求。
结果由田间试验得到基质紧实度范围为200~400 kPa。覆土镇压装置结构参数为:镇压轮直径150 mm、弹簧最大刚度140.5 N/mm。由仿真分析得到覆土厚度为9.77~11.40 mm,粒距偏移量为0.07~6.23 mm,行距偏移量为0.03~1.43 mm。土槽试验结果表明,最优工作参数为:开沟深度为25 mm、播种机前进速度为0.16 m/s,此时覆土厚度均值为11 mm、覆土厚度一致性为85.15%,覆土镇压后基质紧实度为300~360 kPa。
结论由仿真分析和土槽试验可知,覆土镇压装置设计满足三七育苗播种时基质紧实度和覆土厚度的农艺要求,研究结果可为三七覆土镇压装置设计提供参考。
Abstract:ObjectiveAiming at the special agronomy of small row spacing and shallow sowing depth of slot type Panax notoginseng seedling, a compact soil covering and compacting device for seed ditch was designed to improve the quality of P. notoginseng seedlings.
MethodOn the basis of the field experiment to determine the range of matrix compactness with high emergence rate and the best seedling grade of P. notoginseng, the dynamic analysis of the contact between roller and soil was carried out to determine the relevant parameters of the soil covering and compacting device. The process of soil covering and compacting was simulated and analyzed using discrete element method. Taking ditching depth and forward speed of the planter as test factors, the covering soil thickness and consistency as the test indexes, soil trough test was carried out to verify whether the relevant structural parameters of soil covering and compacting device met the requirements.
ResultThe results of field experiment showed that the range of substrate compactness was 200 to 400 kPa. The structural parameters of the soil covering and compacting device were as follows: The diameter of the pressing wheel was 150 mm, and the maximum spring stiffness was 140.5 N/mm. The simulation results showed that the soil covering thickness was 9.77 to 11.40 mm, the offset of grain spacing was 0.07 to 6.23 mm, and the offset of row spacing was 0.03 to 1.43 mm.The results of soil trough test showed that the optimal working parameters were as following: The trench depth was 25 mm, the forward speed of planter was 0.16 m/s, the average covering thickness was 11 mm, the consistency of soil covering thickness was 85.15%, and the compactness of substrate after compaction was 300 to 360 kPa.
ConclusionAccording to the simulation analysis and soil trough test, the design of the soil covering and compacting device can meet the agronomic requirements of substrate compactness and covering soil thickness for P. notoginseng seedlings. The research results can provide references for the design of soil covering and compacting device of P. notoginseng.
-
Keywords:
- Panax notoginseng /
- Seedling raising /
- Seeding /
- Compactness /
- Soil covering and compacting /
- EDEM simulation
-
-
图 8 覆土镇压辊受力分析图
FP为牵引力;Q为覆土镇压辊的重力及其附加载荷;F为轮缘上的基质总反力;Fy为垂直反力;Fx为摩擦力;r为覆土镇压辊的半径;lh为A点与轮心之间的水平距离;lv为A点与轮心之间的垂直距离;Z为下陷量;Z0为下陷深度; Mm和Mk为摩擦力矩;FN为支撑反力法向合力;FT为切向摩擦力的合力
Figure 8. Force analysis diagram of the soil covering and pressing roller
FP: Traction force; Q : Gravity of the roller and its additional load; F: Radius of the covering roller; Fy : Vertical reaction force; Fx: Friction force; lh : Horizontal distance between point A and wheel center; lv: Vertical distance between point A and wheel center; Z : Subsidence; Z0: Subsidence depth; Mm and MK: Friction torque; FN : Normal resultant force of support reaction; FT: Resultant force of tangential friction
图 9 覆土镇压辊连接机构受力分析
FN为地面对覆土镇压轮作用力;L为杆AB的长度;l1为压力弹簧接触点距A点的距离;α为杆AB与水平面之间的夹角;F´为牵引力;Fk为弹簧压缩力; Ff为地面与覆土镇压辊之间的摩擦力
Figure 9. Force analysis of the connecting mechanism of soil covering and pressing roller
FN : Force acting on the ground surface of the soil covering and pressing wheel; L: Length of rod AB; l1 is the distance between the contact point of pressure spring and point A; α: Angle between the rod AB and the horizontal plane; F´: Fraction force; Fk: Spring compression force; Ff : Friction force between the ground and the soil covering and pressing roller
图 10 不同下陷量的覆土镇压辊弹簧平衡受力图
FN1和FN2为地面对覆土镇压轮作用力;L1和L2为杆AB的长度;γ1和γ2为杆AB与垂直平面之间的夹角;F1和F2为牵引力;Fk1和Fk2为弹簧压缩力; Ff1和Ff2为地面与覆土镇压辊之间的摩擦力
Figure 10. Spring balance force diagram of soil covering and pressing rollers with different sinkage
FN1,FN2: Force acting on the ground surface of soil covering and pressing roller; L1, L2 : Length of rod AB; γ1 , γ2 : Angle between the rod AB and the vertical plane; F1 , F2 : Traction force; Fk1 , Fk2 : Spring compression force; Ff1, Ff2 : Friction force between the ground and the soil covering and pressing roller
表 1 三七种苗各项指标统计
Table 1 Index statistics of Panax notoginseng seedlings
项目
Item单株质量/g
Weight per plant主根长/mm
Taproot length种苗直径/mm
Seedling diameter休眠芽直径/mm
Dormant bud diameter根须数
Root number最小值
Minimum value0.38 12.60 4.70 2.20 2 最大值
Maximum value2.86 72.20 14.30 10.30 20 均值 Mean value 1.27 32.38 9.07 4.49 9.81 标准差
Standard deviation0.22 4.32 0.63 0.33 1.45 变异系数/%
Coefficient of variation17 13 7 7 15 表 2 不同土壤湿度和紧实度下三七种苗分级比例
Table 2 Grading proportions of Panax notoginseng seedlings under different soil humidity and compactness
湿度/%
Humidity紧实度/kPa
Compactness一级/%
Level 1二级/%
Level 2三级/%
Level 3三级以下/%
Below level 315 0 0 10 51 29 200 0 10 59 21 400 0 6 53 31 600 0 16 55 19 800 0 13 68 9 1000 0 12 62 16 25 0 0 10 69 11 200 0 23 55 12 400 0 27 54 9 600 0 9 64 17 800 0 12 55 23 1000 0 4 42 44 35 0 0 12 60 18 200 0 13 45 32 400 0 6 32 52 600 0 1 28 61 800 0 3 21 66 1000 0 1 26 63 表 3 试验因素水平编码表
Table 3 Table of test factors and levels
水平
Level开沟深度/mm
Trenching depth
(A)播种机前进速度/( m·s−1)
Planter forward speed
(B)1 20 0.12 0 25 0.16 −1 30 0.22 表 4 试验结果表
Table 4 Table of test results
试验号
Test
numberA B 覆土厚度/ mm
Soil covering thickness
(Y1)覆土厚度一致性/%
Consistency of soil
covering thickness
(Y2)1 1 1 10 78.48 2 1 −1 11 79.56 3 −1 1 12 80.62 4 −1 −1 13 83.75 5 1 0 11 79.08 6 −1 0 13 82.71 7 0 1 10 82.99 8 0 −1 12 84.31 9 0 0 11 85.15 表 5 覆土厚度的方差分析
Table 5 Variance analysis of soil covering thickness
方差来源
Source平方和
Sum of squares自由度
Degree of
freedom均方和
Sum of mean squareF P 模型
Model9.78 5 1.96 13.20 0.0296 A 6.00 1 6.00 40.50 0.0079 B 2.67 1 2.67 18.00 0.0240 AB 0.00 1 0.00 0.00 1.0000 A2 0.89 1 0.89 6.00 0.0917 B2 0.22 1 0.22 1.50 0.3081 残差
Residual0.44 3 0.15 总和
Total10.22 8 表 6 覆土厚度一致性的方差分析
Table 6 Variance analysis of consistency of soil covering thickness
方差来源
Source平方和
Sum of squares自由度
Degree of
freedom均方和
Sum of mean squareF
P 模型
Model47.45 5 9.49 30.76 0.0088 A 16.53 1 16.53 53.59 0.0053 B 5.10 1 5.10 16.52 0.0269 AB 1.05 1 1.05 3.41 0.1622 A2 23.81 1 23.81 77.16 0.0031 B2 0.97 1 0.97 3.13 0.1749 残差
Residual0.93 3 0.31 总和
Total48.38 8 表 7 最佳参数镇压结果
Table 7 Compaction result with the optimal parameters
组别
No. of groups
开沟深度均值/mm
Average trenching depth土壤紧实度均值/kPa
Average soil compactness1 25 300 2 25 320 3 25 360 -
[1] 杨文彩, 朱有勇, 杜迁, 等. 基于农机农艺融合的三七机械化精密播种系统研究[J]. 广东农业科学, 2014, 41(2): 175-180. doi: 10.3969/j.issn.1004-874X.2014.02.041 [2] 杨文彩, 朱有勇, 杜迁, 等. 云南三七工厂化育苗工程技术体系分析[J]. 南方农业学报, 2012, 43(12): 2069-2073. doi: 10.3969/j:issn.2095-1191.2012.12.2069 [3] BERTI M T, JOHNSON B L, HENSON A. Seeding depth and soil packing affect pure live seed emergence of cuphea[J]. Industrial Crops and Products, 2008, 27(3): 272-297. doi: 10.1016/j.indcrop.2007.10.004
[4] 郭慧, 陈志, 贾洪雷, 等. 锥形轮体结构的覆土镇压器设计与试验[J]. 农业工程学报, 2017, 33(12): 56-65. doi: 10.11975/j.issn.1002-6819.2017.12.008 [5] 刘选伟, 金亮, 赵亚祥, 等. 基于均匀设计的双层圆盘式覆土器的试验研究[J]. 中国农机化学报, 2016, 37(2): 26-28. [6] 苟文, 马荣朝, 樊高琼, 等. 套作模式下链环式覆土器的参数优化[J]. 农业工程学报, 2011, 27(12): 33-37. doi: 10.3969/j.issn.1002-6819.2011.12.007 [7] 侯守印, 魏志鹏, 史乃煜, 等. 弹性螺旋式覆土镇压器的设计与参数优化试验[J]. 农机化研究, 2021, 43(3): 42-51. doi: 10.3969/j.issn.1003-188X.2021.03.008 [8] 杨文彩, 徐路路, 杜一帆, 等. 三七育苗播种压轮仿形开沟装置的设计与试验[J]. 农业工程学报, 2020, 36(7): 53-62. doi: 10.11975/j.issn.1002-6819.2020.07.006 [9] 赵淑红, 刘宏俊, 谭贺文, 等. 丘陵地区双向仿形镇压装置设计与试验[J]. 农业机械学报, 2017, 48(4): 82-89. [10] 张仕林, 赵武云, 戴飞, 等. 全膜双垄沟起垄覆膜机镇压作业过程仿真分析与试验[J]. 农业工程学报, 2020, 36(1): 20-30. doi: 10.11975/j.issn.1002-6819.2020.01.003 [11] LI B, CHEN Y, CHEN J, et al. Modeling of soil-claw interaction using the discrete element method(DEM)[J]. Soil & Tillage Research, 2016, 158(1): 177-185.
[12] CHIROUX R C, FOSTER W A, JOHNSON C E, et al. Three-dimensional finite element analysis of soil interaction with a rigid wheel[J]. Applied Mathematics & Computation, 2005, 162(2): 707-722.
[13] VIKTOR M, LARS J, MUNKHOLM, et al. Modelling approach for soil displacement in tillage using discrete element method[J]. Soil & Tillage Research, 2018, 183: 60-71.
[14] 林涛, 汤秋香, 郝卫平, 等. 地膜残留量对棉田土壤水分分布及棉花根系构型的影响[J]. 农业工程学报, 2019, 35(19): 117-125. doi: 10.11975/j.issn.1002-6819.2019.19.014 [15] 朱卫红, 铁双贵, 孙建军, 等. 不同土壤质地及播种深度对甜玉米出苗潜势的影响[J]. 河南农业科学, 2005(11): 35-36. doi: 10.3969/j.issn.1004-3268.2005.11.011 [16] 曹慧英, 王丁波, 史建国, 等. 播种深度对夏玉米幼苗性状和根系特性的影响[J]. 应用生态学报, 2015, 6(8): 397-404. [17] 崔晓明, 张亚如, 张晓军, 等. 土壤紧实度对花生根系生长和活性变化的影响[J]. 华北农学报, 2016, 31(6): 131-136. doi: 10.7668/hbnxb.2016.06.021 [18] 李瑞杰, 陈垣, 郭凤霞, 等. 素花党参种苗质量分级标准研究[J]. 中国中药杂志, 2012, 37(20): 3041-3046. [19] International Organization for Standardization. Traditional Chinese medicine - Panax notoginseng seeds and seedlings: ISO 20408: 2017[S]. Geneva: ISO International Standards, 2017.
[20] 贾铭钰. 免耕播种机镇压装置的实验研究与计算机辅助设计[D]. 北京: 中国农业大学, 2000. [21] 刘其潼, 张晋国, 杨娜, 等. 玉米免耕深松全层施肥精量播种机播前碎土镇压轮的研制[J]. 农机化研究, 2015, 37(7): 127-130. doi: 10.3969/j.issn.1003-188X.2015.07.029 [22] 李宝筏. 农业机械学[M]. 北京: 中国农业出版社, 2018, 19-24. [23] 王益, 刘军, 王益权, 等. 黄土高原南部3种农田土壤剖面坚实度的变化规律[J]. 西北农林科技大学学报(自然科学版), 2007, 35(9): 200-204. [24] 汤庆, 吴崇友, 袁文胜, 等. 油菜毯状苗高速移栽机覆土镇压装置结构设计[J]. 中国农机化学报, 2016, 37(3): 20-22. [25] 贾洪雷, 郭慧, 郭明卓, 等. 行间耕播机弹性可覆土镇压轮性能有限元仿真分析及试验[J]. 农业工程学报, 2015, 31(21): 9-16. doi: 10.11975/j.issn.1002-6819.2015.21.002 [26] 杨文彩, 杜一帆, 宋志鹏, 等. 2BQ-27型三七精密播种机仿形开沟器的改进设计[J]. 农机化研究, 2018, 40(3): 109-114. doi: 10.3969/j.issn.1003-188X.2018.03.022 [27] 中华人民共和国国家质量监督检验检疫总局. 普通圆柱螺旋压缩弹簧尺寸及参数: GB/T 2089—2009 [S]. 北京: 中国标准出版社, 2009. [28] 李超群. 2BQ-28型三七精密播种机关键部件的研究与设计[D]. 昆明: 云南农业大学, 2016. [29] 向伟, 吴明亮, 吕江南, 等. 基于堆积试验的黏壤土仿真物理参数标定[J]. 农业工程学报, 2019, 35(12): 116-123. doi: 10.11975/j.issn.1002-6819.2019.12.014 [30] 中华人民共和国农业部农业机械化管理司. 单粒(精密)播种机作业质量: NY/T 503—2015[S]. 北京: 中国标准出版社, 2015.