• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

生物基聚乳酸复合材料3D打印制备含微孔支架及性能研究

覃柳琪, 董先明, 苏祥郁, 周武艺, 郑文旭

覃柳琪, 董先明, 苏祥郁, 等. 生物基聚乳酸复合材料3D打印制备含微孔支架及性能研究[J]. 华南农业大学学报, 2022, 43(1): 37-43. DOI: 10.7671/j.issn.1001-411X.202106012
引用本文: 覃柳琪, 董先明, 苏祥郁, 等. 生物基聚乳酸复合材料3D打印制备含微孔支架及性能研究[J]. 华南农业大学学报, 2022, 43(1): 37-43. DOI: 10.7671/j.issn.1001-411X.202106012
QIN Liuqi, DONG Xianming, SU Xiangyu, et al. Preparation and properties of microporous scaffolds by 3D printing of bio-based polylactic acid composites[J]. Journal of South China Agricultural University, 2022, 43(1): 37-43. DOI: 10.7671/j.issn.1001-411X.202106012
Citation: QIN Liuqi, DONG Xianming, SU Xiangyu, et al. Preparation and properties of microporous scaffolds by 3D printing of bio-based polylactic acid composites[J]. Journal of South China Agricultural University, 2022, 43(1): 37-43. DOI: 10.7671/j.issn.1001-411X.202106012

生物基聚乳酸复合材料3D打印制备含微孔支架及性能研究

基金项目: 广东省科技厅国际合作项目(2020A0505100050);广东省自然科学基金(2020A1515011004);广东普通高校新冠肺炎疫情防控科研专项(2020KZDZX1035)
详细信息
    作者简介:

    覃柳琪,硕士研究生,主要从事生物医用3D打印材料的研究,E-mail: ruqe67@163.com

    通讯作者:

    周武艺,教授,博士,主要从事微纳纤维超滤膜和3D 打印材料制备及应用研究,E-mail: zhouwuyi@scau.edu.cn

    郑文旭,副教授,博士,主要从事分子模拟研究,E-mail: wzheng@scau.edu.cn

  • 中图分类号: S511;S502

Preparation and properties of microporous scaffolds by 3D printing of bio-based polylactic acid composites

  • 摘要:
    目的 

    探讨生物基聚乳酸复合材料用于3D打印直接构建含微孔支架的可行性。

    方法 

    采用热重分析仪和差示扫描量热仪探究聚乳酸复合材料的热性能,扫描电镜表征支架的微观形貌,活/死细胞染色检测支架的细胞黏附情况。

    结果 

    所制备的0.6%ADC-PHAP和40%NaCl-PHAP复合材料具有良好的热稳定性和加工性,适用于熔融沉积3D打印。当压缩应变为80%时,0.6%ADC-PHAP和40%NaCl-PHAP支架相应的压缩应力分别为45.27和52.11 MPa;0.6%ADC-PHAP复合材料的初始分解温度比40%NaCl-PHAP复合材料低19.5 ℃;0.6%ADC-PHAP支架的孔隙率达到63.33%,有利于细胞黏附,且细胞相容性比40%NaCl-PHAP支架更好。

    结论 

    生物基聚乳酸复合材料可通过熔融沉积型3D打印直接构建含微孔支架,所制备的0.6%ADC-PHAP支架具有一定的应用潜力。

    Abstract:
    Objective 

    To explore the feasibility of using bio-based polylactic acid composites to directly construct microporous scaffolds by 3D printing.

    Method 

    Thermogravimetric analyzer and differential scanning calorimeter were used to explore the thermal properties of bio-based polylactic acid composites, scanning electron microscopy was used to characterize the microscopic morphology of the bio-scaffold, and the live/dead cell staining was used for detecting cell adhesion of the scaffold.

    Result 

    The prepared 0.6%ADC-PHAP and 40%NaCl-PHAP composites had good thermal stability and processability, and were suitable for the fused deposition modeling 3D printing process. When the compressive strain was 80%, the corresponding compressive stresses of the 0.6%ADC-PHAP and 40%NaCl-PHAP scaffolds were 45.27 and 52.11 MPa, respectively. The initial decomposition temperature of the 0.6%ADC-PHAP composite was 19.5 ℃ lower than that of the 40%NaCl-PHAP composite. The porosity of the 0.6%ADC-PHAP scaffold reached 63.33% which was conducive to cell adhesion, and the cell compatibility was better than that of the 40%NaCl-PHAP scaffold.

    Conclusion 

    The bio-based polylactic acid composites can be used to directly construct microporous bio-scaffolds through fused deposition modeling 3D printing, and the prepared 0.6%ADC-PHAP bio-scaffold has certain application potential.

  • 图  1   用于制备3D打印支架的线材

    Figure  1.   Wires used for scaffolds preparation by 3D printing

    a: PHAP; b: 10%NaCl-PHAP; c: 20%NaCl-PHAP; d: 30%NaCl-PHAP; e: 40%NaCl-PHAP; f: 0.2%ADC-PHAP; g: 0.4%ADC-PHAP; h: 0.6%ADC-PHAP; i: 0.8%ADC-PHAP

    图  2   3D打印蜂窝结构支架实物图

    Figure  2.   Physical images of 3D printed scaffolds with honeycomb structure

    图  3   PLA复合材料的TG曲线和DTG曲线

    Figure  3.   TG and DTG curves of PLA composites

    图  4   PLA复合材料的DSC升温曲线

    Figure  4.   DSC heating curve of PLA composites

    图  5   PLA复合材料3D打印支架SEM图

    a1、 a2: PHAP; b1、 b2: 40%NaCl-PHAP;c1、c2: 0.6%ADC-PHAP, a2、b2、 c2为a1、b1、 c1的局部放大图

    Figure  5.   SEM image of PLA composites 3D printed scaffold

    a1, a2: PHAP; b1, b2: 40%NaCl-PHAP;c1, c2: 0.6%ADC-PHAP, a2, b2 and c2 are partial enlarged views of a1, b1, c1, respectively

    图  6   PLA复合材料3D打印支架孔隙率

    “*”“**”分别表示0.05、0.01水平的差异显著( LSD法)

    Figure  6.   Porosity of PLA composites 3D printed scaffold

    “*”and“**”represent significant differences at 0.05 and 0.01 levels, respectively( LSD method)

    图  7   PLA复合材料3D打印支架压缩性能

    Figure  7.   Compression performance of 3D printed scaffold using PLA composites

    图  8   3D打印支架接种BMSC细胞染色的共聚焦显微镜照片

    图中,绿色为活细胞,红色为死细胞

    Figure  8.   Confocal microscope photo of 3D printed scaffold inoculated with BMSC cells

    In the figure, green cells are live cells, red cells are dead cells

    图  9   3D打印支架接种BMSC细胞的存活率

    “**”表示0.01水平的差异显著(n=3,Tamhane法)

    Figure  9.   Cell survival statistics of live/dead staining of 3D printed scaffold inoculated with BMSC cells

    “**” means significant difference at 0.01 level (n=3, Tamhane method)

    表  1   PLA复合材料热降解数值统计

    Table  1   Numerical statistics of thermal degradation of PLA composites

    样品 Sample θ0/℃ θmax1(θmax2)/℃ θend/℃ 残余量/% Residue
    PHAP 344.4 363.4 377.5 6.03
    10%NaCl-PHAP 336.1 355.4(399.9) 374.9 17.26
    40%NaCl-PHAP 328.5 348.1(397.8) 368.5 37.96
    0.2%ADC-PHAP 310.5 332.9(390.0) 367.4 10.72
    0.6%ADC-PHAP 309.0 336.7(390.3) 373.4 5.82
    下载: 导出CSV

    表  2   PLA复合材料的DSC测试结果

    Table  2   DSC test results of PLA composites

    样品
    Sample
    玻璃化温度(θg)/℃
    Glass transition temperature
    熔融温度(θm)/℃
    Melting temperature
    熔融焓(ΔΗm)/(J·g−1)
    Melting enthalpy
    结晶度(Xc)/%
    Crystallinity
    PHAP 56.23 167.53 27.06 37.75
    10%NaCl-PHAP 56.04 167.66 26.44 40.98
    40%NaCl-PHAP 56.79 167.50 22.28 51.80
    0.2%ADC-PHAP 60.89 167.77 22.43 31.35
    0.6%ADC-PHAP 56.16 167.89 21.69 30.44
    下载: 导出CSV
  • [1]

    OSTAFINSKA A, FORTELNÝ I, HODAN J, et al. Strong synergistic effects in PLA/PCL blends: Impact of PLA matrix viscosity[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 69(5): 229-241.

    [2] 宋中波, 甄卫军. PCL增韧PLA材料的流变行为及其热降解动力学[J]. 塑料, 2017, 46(4): 32-38.
    [3]

    BAI Z F, DOU Q. Rheology, morphology, crystallization behaviors, mechanical and thermal Properties of poly(lactic acid)/polypropylene/maleic anhydride-grafted polypropylene blends[J]. Journal of Polymers and the Environment, 2018, 26(3): 959-969. doi: 10.1007/s10924-017-1006-5

    [4] 程思敏, 陈丽杰, 洪阳阳, 等. 羟基磷灰石的表面改性及其对聚乳酸基多孔支架性能的影响[J]. 复合材料学报, 2018, 35(5): 1087-1094.
    [5]

    ZHOU C, YANG K, WANG K, et al. Combination of fused deposition modeling and gas foaming technique to fabricated hierarchical macro/microporous polymer scaffolds[J]. Materials & Design, 2016, 109(21): 415-424.

    [6]

    SCOTT G D, KILGOUR D M. The density of random close packing of spheres[J]. Journal of Physics D: Applied Physics, 1969, 2(6): 863-866. doi: 10.1088/0022-3727/2/6/311

    [7]

    ZHANG J, XIAO D, HE X, et al. A novel porous bioceramic scaffold by accumulating hydroxyapatite spheres for large bone tissue engineering: III: Characterization of porous structure[J]. Materials Science & Engineering : C, 2018, 89(8): 223-229.

    [8]

    KAKUMANU V, SRINIVAS SUNDARRAM S. Dual pore network polymer foams for biomedical applications via combined solid state foaming and additive manufacturing[J]. Materials Letters, 2018, 213(4): 366-369.

    [9]

    SONG P, ZHOU C, FAN H, et al. Novel 3D porous biocomposite scaffolds fabricated by fused deposition modeling and gas foaming combined technology[J]. Composites Part B:Engineering, 2018, 152(21): 151-159.

    [10]

    LU T, LI Y,CHEN T. Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering[J]. International Journal of Nanomedicine, 2013, 8(1): 337-350.

    [11]

    HAIDER A, HAIDER S, KUMMARA M R, et al. Advances in the scaffolds fabrication techniques using biocompatible polymers and their biomedical application: A technical and statistical review[J]. Journal of Saudi Chemical Society, 2020, 24(2): 186-215. doi: 10.1016/j.jscs.2020.01.002

    [12]

    LI X, ZHANG S J, ZHANG X, et al. Biocompatibility and physicochemical characteristics of poly(Ɛ-caprolactone)/poly(lactide-co-glycolide)/nano-hydroxyapatite composite scaffolds for bone tissue engineering[J]. Materials & Design, 2017, 114(2): 149-160.

    [13]

    PATI F, SONG T H, RIJAL G, et al. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration[J]. Biomaterials, 2015, 37(2): 230-241.

    [14]

    FERRI J M, JORDÁ J, MONTANES N, et al. Manufacturing and characterization of poly(lactic acid) composites with hydroxyapatite[J]. Journal of Thermoplastic Composite Materials, 2017, 31(7): 865-881.

    [15]

    ZHAO H, ZHAO G. Mechanical and thermal properties of conventional and microcellular injection molded poly (lactic acid)/poly (ε-caprolactone) blends[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 53(1): 59-67.

    [16]

    HO M P, LAU K T, WANG H, et al. Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles[J]. Composites Part B:Engineering, 2015, 81(14): 14-25.

    [17]

    ABBASI H, ANTUNES M, VELASCO J I. Graphene nanoplatelets-reinforced polyetherimide foams prepared by water vapor-induced phase separation[J]. Express Polymer Letters, 2015, 9(5): 412-423. doi: 10.3144/expresspolymlett.2015.40

    [18]

    ABU HASSAN N A, AHMAD S, CHEN R S, et al. Cells analyses, mechanical and thermal stability of extruded polylactic acid/kenaf bio-composite foams[J]. Construction and Building Materials, 2020, 240(11): 117884.

    [19]

    FRACKOWIAK S, LUDWICZAK J, LELUK K, et al. Foamed poly(lactic acid) composites with carbonaceous fillers for electromagnetic shielding[J]. Materials and Design, 2015, 65(1): 749-756.

    [20] 张学盈, 崔永岩. AC发泡剂与增塑剂对PVC发泡材料性能的影响[J]. 塑料, 2016, 45(1): 32-34.
图(9)  /  表(2)
计量
  • 文章访问数:  490
  • HTML全文浏览量:  5
  • PDF下载量:  983
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-09
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2022-01-09

目录

    /

    返回文章
    返回