Preparation and properties of microporous scaffolds by 3D printing of bio-based polylactic acid composites
-
摘要:目的
探讨生物基聚乳酸复合材料用于3D打印直接构建含微孔支架的可行性。
方法采用热重分析仪和差示扫描量热仪探究聚乳酸复合材料的热性能,扫描电镜表征支架的微观形貌,活/死细胞染色检测支架的细胞黏附情况。
结果所制备的0.6%ADC-PHAP和40%NaCl-PHAP复合材料具有良好的热稳定性和加工性,适用于熔融沉积3D打印。当压缩应变为80%时,0.6%ADC-PHAP和40%NaCl-PHAP支架相应的压缩应力分别为45.27和52.11 MPa;0.6%ADC-PHAP复合材料的初始分解温度比40%NaCl-PHAP复合材料低19.5 ℃;0.6%ADC-PHAP支架的孔隙率达到63.33%,有利于细胞黏附,且细胞相容性比40%NaCl-PHAP支架更好。
结论生物基聚乳酸复合材料可通过熔融沉积型3D打印直接构建含微孔支架,所制备的0.6%ADC-PHAP支架具有一定的应用潜力。
Abstract:ObjectiveTo explore the feasibility of using bio-based polylactic acid composites to directly construct microporous scaffolds by 3D printing.
MethodThermogravimetric analyzer and differential scanning calorimeter were used to explore the thermal properties of bio-based polylactic acid composites, scanning electron microscopy was used to characterize the microscopic morphology of the bio-scaffold, and the live/dead cell staining was used for detecting cell adhesion of the scaffold.
ResultThe prepared 0.6%ADC-PHAP and 40%NaCl-PHAP composites had good thermal stability and processability, and were suitable for the fused deposition modeling 3D printing process. When the compressive strain was 80%, the corresponding compressive stresses of the 0.6%ADC-PHAP and 40%NaCl-PHAP scaffolds were 45.27 and 52.11 MPa, respectively. The initial decomposition temperature of the 0.6%ADC-PHAP composite was 19.5 ℃ lower than that of the 40%NaCl-PHAP composite. The porosity of the 0.6%ADC-PHAP scaffold reached 63.33% which was conducive to cell adhesion, and the cell compatibility was better than that of the 40%NaCl-PHAP scaffold.
ConclusionThe bio-based polylactic acid composites can be used to directly construct microporous bio-scaffolds through fused deposition modeling 3D printing, and the prepared 0.6%ADC-PHAP bio-scaffold has certain application potential.
-
Keywords:
- Melt blending /
- 3D printing /
- Scaffold /
- Polylactic acid /
- Bio-based material
-
-
表 1 PLA复合材料热降解数值统计
Table 1 Numerical statistics of thermal degradation of PLA composites
样品 Sample θ0/℃ θmax1(θmax2)/℃ θend/℃ 残余量/% Residue PHAP 344.4 363.4 377.5 6.03 10%NaCl-PHAP 336.1 355.4(399.9) 374.9 17.26 40%NaCl-PHAP 328.5 348.1(397.8) 368.5 37.96 0.2%ADC-PHAP 310.5 332.9(390.0) 367.4 10.72 0.6%ADC-PHAP 309.0 336.7(390.3) 373.4 5.82 表 2 PLA复合材料的DSC测试结果
Table 2 DSC test results of PLA composites
样品
Sample玻璃化温度(θg)/℃
Glass transition temperature熔融温度(θm)/℃
Melting temperature熔融焓(ΔΗm)/(J·g−1)
Melting enthalpy结晶度(Xc)/%
CrystallinityPHAP 56.23 167.53 27.06 37.75 10%NaCl-PHAP 56.04 167.66 26.44 40.98 40%NaCl-PHAP 56.79 167.50 22.28 51.80 0.2%ADC-PHAP 60.89 167.77 22.43 31.35 0.6%ADC-PHAP 56.16 167.89 21.69 30.44 -
[1] OSTAFINSKA A, FORTELNÝ I, HODAN J, et al. Strong synergistic effects in PLA/PCL blends: Impact of PLA matrix viscosity[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 69(5): 229-241.
[2] 宋中波, 甄卫军. PCL增韧PLA材料的流变行为及其热降解动力学[J]. 塑料, 2017, 46(4): 32-38. [3] BAI Z F, DOU Q. Rheology, morphology, crystallization behaviors, mechanical and thermal Properties of poly(lactic acid)/polypropylene/maleic anhydride-grafted polypropylene blends[J]. Journal of Polymers and the Environment, 2018, 26(3): 959-969. doi: 10.1007/s10924-017-1006-5
[4] 程思敏, 陈丽杰, 洪阳阳, 等. 羟基磷灰石的表面改性及其对聚乳酸基多孔支架性能的影响[J]. 复合材料学报, 2018, 35(5): 1087-1094. [5] ZHOU C, YANG K, WANG K, et al. Combination of fused deposition modeling and gas foaming technique to fabricated hierarchical macro/microporous polymer scaffolds[J]. Materials & Design, 2016, 109(21): 415-424.
[6] SCOTT G D, KILGOUR D M. The density of random close packing of spheres[J]. Journal of Physics D: Applied Physics, 1969, 2(6): 863-866. doi: 10.1088/0022-3727/2/6/311
[7] ZHANG J, XIAO D, HE X, et al. A novel porous bioceramic scaffold by accumulating hydroxyapatite spheres for large bone tissue engineering: III: Characterization of porous structure[J]. Materials Science & Engineering : C, 2018, 89(8): 223-229.
[8] KAKUMANU V, SRINIVAS SUNDARRAM S. Dual pore network polymer foams for biomedical applications via combined solid state foaming and additive manufacturing[J]. Materials Letters, 2018, 213(4): 366-369.
[9] SONG P, ZHOU C, FAN H, et al. Novel 3D porous biocomposite scaffolds fabricated by fused deposition modeling and gas foaming combined technology[J]. Composites Part B:Engineering, 2018, 152(21): 151-159.
[10] LU T, LI Y,CHEN T. Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering[J]. International Journal of Nanomedicine, 2013, 8(1): 337-350.
[11] HAIDER A, HAIDER S, KUMMARA M R, et al. Advances in the scaffolds fabrication techniques using biocompatible polymers and their biomedical application: A technical and statistical review[J]. Journal of Saudi Chemical Society, 2020, 24(2): 186-215. doi: 10.1016/j.jscs.2020.01.002
[12] LI X, ZHANG S J, ZHANG X, et al. Biocompatibility and physicochemical characteristics of poly(Ɛ-caprolactone)/poly(lactide-co-glycolide)/nano-hydroxyapatite composite scaffolds for bone tissue engineering[J]. Materials & Design, 2017, 114(2): 149-160.
[13] PATI F, SONG T H, RIJAL G, et al. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration[J]. Biomaterials, 2015, 37(2): 230-241.
[14] FERRI J M, JORDÁ J, MONTANES N, et al. Manufacturing and characterization of poly(lactic acid) composites with hydroxyapatite[J]. Journal of Thermoplastic Composite Materials, 2017, 31(7): 865-881.
[15] ZHAO H, ZHAO G. Mechanical and thermal properties of conventional and microcellular injection molded poly (lactic acid)/poly (ε-caprolactone) blends[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 53(1): 59-67.
[16] HO M P, LAU K T, WANG H, et al. Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles[J]. Composites Part B:Engineering, 2015, 81(14): 14-25.
[17] ABBASI H, ANTUNES M, VELASCO J I. Graphene nanoplatelets-reinforced polyetherimide foams prepared by water vapor-induced phase separation[J]. Express Polymer Letters, 2015, 9(5): 412-423. doi: 10.3144/expresspolymlett.2015.40
[18] ABU HASSAN N A, AHMAD S, CHEN R S, et al. Cells analyses, mechanical and thermal stability of extruded polylactic acid/kenaf bio-composite foams[J]. Construction and Building Materials, 2020, 240(11): 117884.
[19] FRACKOWIAK S, LUDWICZAK J, LELUK K, et al. Foamed poly(lactic acid) composites with carbonaceous fillers for electromagnetic shielding[J]. Materials and Design, 2015, 65(1): 749-756.
[20] 张学盈, 崔永岩. AC发泡剂与增塑剂对PVC发泡材料性能的影响[J]. 塑料, 2016, 45(1): 32-34.