• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

基于Logistic算法与遥感影像的棉花虫害监测研究

地力夏提•依马木, 周建平, 许燕, 樊湘鹏, 亚里坤•沙吾提

地力夏提•依马木, 周建平, 许燕, 等. 基于Logistic算法与遥感影像的棉花虫害监测研究[J]. 华南农业大学学报, 2022, 43(2): 87-95. DOI: 10.7671/j.issn.1001-411X.202106004
引用本文: 地力夏提•依马木, 周建平, 许燕, 等. 基于Logistic算法与遥感影像的棉花虫害监测研究[J]. 华南农业大学学报, 2022, 43(2): 87-95. DOI: 10.7671/j.issn.1001-411X.202106004
DILIXIATI Yimamu, ZHOU Jianping, XU Yan, et al. Cotton pest monitoring based on Logistic algorithm and remote sensing image[J]. Journal of South China Agricultural University, 2022, 43(2): 87-95. DOI: 10.7671/j.issn.1001-411X.202106004
Citation: DILIXIATI Yimamu, ZHOU Jianping, XU Yan, et al. Cotton pest monitoring based on Logistic algorithm and remote sensing image[J]. Journal of South China Agricultural University, 2022, 43(2): 87-95. DOI: 10.7671/j.issn.1001-411X.202106004

基于Logistic算法与遥感影像的棉花虫害监测研究

基金项目: 国家自然科学基金(51765063);国家级大学生创新创业训练计划项目(201810755079S);新疆维吾尔自治区研究生科研创新项目 (XJ2019G033)
详细信息
    作者简介:

    地力夏提•依马木,硕士,主要从事水肥一体化数字滴灌系统研究,E-mail: 965001772@qq.com

    通讯作者:

    周建平,教授,博士,主要从事水肥一体化数字滴灌系统研究,E-mail: linkzhou@163.com

  • 中图分类号: S251;TP751.1

Cotton pest monitoring based on Logistic algorithm and remote sensing image

  • 摘要:
    目的 

    借助多光谱遥感影像和Logistic算法,实现对棉田虫害的田间监测。

    方法 

    以患虫害棉花区域为研究对象,利用无人机获取棉田多光谱遥感影像,并对影像进行预处理;结合受虫害棉花光谱特征,利用虫害敏感波段反射率与植被指数构建Logistic回归模型,开展棉花虫害识别监测研究。

    结果 

    由土壤调节植被指数(Soil adjusted vegetation index,SAVI)模型和归一化植被指数(Normalized vegetation index,NDVI)模型构建的棉蚜虫、棉红蜘蛛、棉铃虫识别模型为最优模型,其训练样本准确率达到93.7%,测试样本准确率达到90.5%,召回率为96.6%,F1值为93.5%,对棉蚜虫、棉红蜘蛛和棉铃虫的识别模型决定系数分别为0.942、0.851和0.663。

    结论 

    该模型可满足棉田中棉蚜虫、棉红蜘蛛和棉铃虫3种虫害的发生区域识别,且可基本满足棉田精准植保作业相关要求。

    Abstract:
    Objective 

    The purpose of this article is to monitor cotton pest in field based on Logistic algorithms and multi-spectral remote sensing images.

    Method 

    The cotton areas with insect pests were selected as the research object. The multi-spectral remote sensing images of cotton field were acquired by UAV, and then pre-processed. Based on the spectral characteristics of cotton pests, the Logistic regression model was constructed by the reflectivity of pest-sensitive band and vegetation index to identify and monitor cotton pests.

    Result 

    The cotton aphid, cotton red spider mite, and cotton bollworm identification models constructed by the soil adjusted vegetation index (SAVI) model and the normalized vegetation index (NDVI) model were the optimal models, and their accuracy for training sample and test sample reached 93.7% and 90.5% respectively the recall rate and F1 value were 96.6% and 93.5% respectively and the determination coeffecients of recognition models for three types of pests were 0.942, 0.851 and 0.663 respectively.

    Conclusion 

    This model can identify the occurrence area of cotton aphid, cotton red spider mite and cotton bollworm, which can basically meet the requirements of precision plant protection operation in cotton field.

  • 图  1   采样节点位置示意图

    Figure  1.   Schematic diagram of sampling node location

    图  2   棉花叶片采样位置示意图

    Figure  2.   Schematic diagram of sampling position of cotton leaves

    图  3   研究区正射影像图

    Figure  3.   Orthophoto map of the study area

    图  4   辐射校正前(a)、后(b)单位像元内像素覆盖密度

    Figure  4.   Pixel coverage density in unit pixel before (a) and after radiation collection (b)

    图  5   BP神经网络模型对辐射校正模型光谱反射率估测结果

    Figure  5.   Estimation results of spectral reflectance of image pixel after radiation correction by BP neural network model

    图  6   4种波段像素覆盖密度

    Figure  6.   ROC curves of pixel coverage densities of four bands

    图  7   健康棉叶及棉花虫害光谱波长反射率曲线

    Figure  7.   Spectral wavelength reflectance curves of healthy cotton leaves and cotton pests

    图  8   3种害虫为害区域识别结果

    Figure  8.   Identification results of three pests infested arer

    图  9   3种虫害发生区域识别精准度

    Figure  9.   Accuracy of the occurrence area of three types of pests

    图  10   3种棉田虫害受灾面积相关性分析

    Figure  10.   Correlation a Analysis of the areas affected by three types of pests in cotton field

    表  1   绝对位置和方向不确定性参数

    Table  1   Absolute geographic location and directional uncertainty parameters

    指标
    Item
    X/m Y/m Z/m 偏转角/(°)
    Deflection angle
    平移角/(°)
    Translation angle
    扭转角/(°)
    Twist angle
    均值 Average value 0.134 0.133 0.319 0.079 0.068 0.015
    离散值(σ) Discrete value 0.022 0.026 0.067 0.009 0.014 0.002
    下载: 导出CSV

    表  2   4种波段像素覆盖密度预测价值比较

    Table  2   Comparison of the prediction values for the pixel coverage densities of four bands

    辐射校正波段
    Radiation correction band
    最佳截点
    Best cut point
    举例数
    No. of cases
    校正情况例数
    No.of correction situation
    灵敏度/%
    Sensitivity
    ROC曲线下面积
    The area under the ROC curve
    好 Good 差 Bad
    红光 Red <0.1 25 22 3 88.3 0.875
    ≥0.1 225 199 26
    蓝光 Blue 0 125 100 25 79.3 0.750
    ≥0 125 100 25
    近红外 Nir <0.5 13 11 2 80.9 0.688
    ≥0.5 237 192 45
    绿光 Green <0.5 63 55 8 87.1 0.875
    ≥0.5 187 163 24
    下载: 导出CSV

    表  3   模型分类比较结果1)

    Table  3   Comparison results of model classification

    模型
    Model
    实际样本
    Actual
    sample
    训练样本 Training sample 测试样本 Test sample 召回率/%
    Recall rate
    F1
    健康
    Health
    B1 B2 B3 总和
    Sum
    准确率/%
    Accuracy
    健康
    Health
    B1 B2 B3 总和
    Sum
    准确率/%
    Accuracy
    RMSE=0.193
    n=1
    健康Health 50 3 1 1 55 91.4 28 1 1 2 32 85.8 93.9 89.8
    B1 3 46 2 1 52 2 24 1 1 28
    B2 2 0 46 0 48 1 1 18 1 21
    B3 3 2 0 40 45 2 0 1 16 19
    总和Sum 58 51 49 42 200 33 26 21 20 100
    RMSE=0.187
    n=2
    健康Health 50 1 1 1 53 93.7 25 1 0 0 26 90.5 96.6 93.5
    B1 3 53 1 0 57 2 24 1 1 28
    B2 3 0 45 0 48 2 1 29 1 33
    B3 1 0 1 40 42 0 1 0 12 13
    总和Sum 57 54 48 41 200 29 27 30 14 100
    RMSE=0.376
    n=3
    健康Health 67 6 5 2 80 83.1 22 3 3 2 30 75.1 90.4 82.8
    B1 4 48 5 3 60 2 16 1 2 21
    B2 3 1 25 1 30 2 2 20 2 26
    B3 2 0 2 26 30 3 1 2 17 23
    总和Sum 76 55 37 32 200 29 22 26 23 100
     1) B1、B2和B3 分别表示棉蚜虫、棉红蜘蛛和棉铃虫
     1) B1, B2 and B3 indicate cotton aphid, cotton red spider mite and cotton bollworm respectively
    下载: 导出CSV
  • [1] 乔艳艳, 吴洁, 操宇林, 等. 不同药剂处理对棉种出苗及苗期病虫害发生的影响[J]. 安徽农业科学, 2020, 48(4): 125-127. doi: 10.3969/j.issn.0517-6611.2020.04.037
    [2] 新疆农业科学院. 新疆棉花产量全国占比84.9%比重创新高[J]. 新疆农机化, 2020(1): 6.
    [3] 杜江涛. 棉花灌溉决策指标研究[J]. 农业科学, 2021, 11(4): 6.
    [4] 杨忠娜, 唐继军, 喻晓玲. 新疆棉花产业对国民经济的影响及对策研究[J]. 农业现代化研究, 2013, 34(3): 298-302.
    [5] 宋桂红. 新疆奎屯垦区机采棉品种引用、推广现状及对棉花品质的影响[J]. 中国种业, 2016(8): 44-45.
    [6] 王磊, 周建平, 许燕, 等. 农用无人机的应用现状与展望[J]. 农药, 2019, 58(9): 6-11.
    [7] 崔美娜, 戴建国, 王守会, 等. 基于无人机多光谱影像的棉叶螨识别方法[J]. 新疆农业科学, 2018(8): 1457-1466.
    [8] 兰玉彬, 邓小玲, 曾国亮. 无人机农业遥感在农作物病虫草害诊断应用研究进展[J]. 智慧农业, 2019, 1(2): 1-19.
    [9] 赵亮, 陈兵, 肖春华, 等. 棉花棉叶螨叶片遥感监测技术研究[J]. 甘肃农业大学学报, 2015(5): 94-99. doi: 10.3969/j.issn.1003-4315.2015.05.016
    [10]

    PRABHAKAR M, PRASAD Y G, THIRUPATHI M, et al. Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper (Hemiptera: Cicadellidae)[J]. Computers & Electronics in Agriculture, 2011, 79(2): 189-198.

    [11] 竞霞, 黄文江, 琚存勇, 等. 基于PLS算法的棉花黄萎病高空间分辨率遥感监测[J]. 农业工程学报, 2010(8): 229-235. doi: 10.3969/j.issn.1002-6819.2010.08.039
    [12] 胡根生, 吴问天, 罗菊花, 等. 结合HJ卫星影像和最小二乘孪生支持向量机的小麦蚜虫遥感监测[J]. 浙江大学学报(农业与生命科学版), 2017(2): 211-219.
    [13]

    STELLA I R, GHOSH M. Modeling and analysis of plant disease with delay and logistic growth of insect vector[J]. Communications in Mathematical Biology and Neuroscience, 2018: 2018.

    [14] 冯炼, 吴玮, 陈晓玲, 等. 基于HJ卫星CCD数据的冬小麦病虫害面积监测[J]. 农业工程学报, 2010, 26(7): 213-219. doi: 10.3969/j.issn.1002-6819.2010.07.037
    [15] 马勇, 徐鑫, 徐文君, 等. Logistic方程模拟森林病虫害发生[J]. 辽宁林业科技, 2001(3): 17-18. doi: 10.3969/j.issn.1001-1714.2001.03.008
    [16]

    MARCUS R. Deterministic and stochastic logistic models for describing increase of plant diseases[J]. 1991, 10(2): 155-159.

    [17]

    YANG C, EVERITT J H, FERNANDEZ C J. Comparison of airborne multispectral and hyperspectral imagery for mapping cotton root rot[J]. Biosystems Engineering, 2010, 107(2): 131-139. doi: 10.1016/j.biosystemseng.2010.07.011

    [18] 张连翔, 惠兴学, 赵树清. 植物病害I-S关系:Logistic衍生模型的研究[J]. 沈阳农业大学学报, 2001(4): 270-273. doi: 10.3969/j.issn.1000-1700.2001.04.008
    [19] 谭宏卫, 曾捷. Logistic回归模型的影响分析[J]. 数理统计与管理, 2013(3): 476-485.
    [20]

    LI Y X, SHI H M. Research on data processing of low altitude photogrammetry based on Pix4D[J]. International Journal of Intelligent Information and Management Science, 2020, 9(1): 195-197.

    [21]

    NISHAR A, RICHARDS S, BREEN D, et al. Thermal infrared imaging of geothermal environments and by an unmanned aerial vehicle (UAV): A case study of the Wairakei – Tauhara geothermal field, Taupo, New Zealand[J]. Renewable Energy, 2016, 86: 1256-1264. doi: 10.1016/j.renene.2015.09.042.

    [22] 刘坦. Inpho、PhotoScan及Pix4D无人机正射影像处理软件对比[J]. 海峡科技与产业, 2017(11): 82-84. doi: 10.3969/j.issn.1006-3013.2017.11.031
    [23] 刘世生, 王仁宗, 李叶民, 等. 一种基于卫星影像数据的新疆棉花区域识别方法及系统: CN111345214A[P]. 2020 - 06 - 30 [ 2020 - 03 - 04 ] .
    [24] 杨杰, 张莹莹, 王建雄, 等. 利用NDVI与EVI再合成的植被指数算法[J]. 遥感信息, 2020, 35(5): 131-137.
    [25] 邓江, 谷海斌, 王泽, 等. 基于无人机遥感的棉花主要生育时期地上生物量估算及验证[J]. 干旱地区农业研究, 2019, 37(5): 55-61. doi: 10.7606/j.issn.1000-7601.2019.05.09
    [26] 唐亮, 何明珠, 许华, 等. 基于无人机低空遥感的荒漠植被覆盖度与归一化植被指数验证及其对水热梯度的响应[J]. 应用生态学报, 2020(1): 35-44.
    [27] 贾洁琼, 刘万青, 孟庆岩, 等. 基于GF-1 WFV影像和机器学习算法的玉米叶面积指数估算[J]. 中国图象图形学报, 2018, 23(5): 107-117.
图(10)  /  表(3)
计量
  • 文章访问数:  2092
  • HTML全文浏览量:  8
  • PDF下载量:  730
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-02
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2022-03-09

目录

    /

    返回文章
    返回