• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

线虫对采煤矿区水环境和土壤环境质量评价的作用

耿文敬, 张鑫, 郭肖颖, 齐俊, 朱江

耿文敬, 张鑫, 郭肖颖, 等. 线虫对采煤矿区水环境和土壤环境质量评价的作用[J]. 华南农业大学学报, 2022, 43(3): 79-88. DOI: 10.7671/j.issn.1001-411X.202105042
引用本文: 耿文敬, 张鑫, 郭肖颖, 等. 线虫对采煤矿区水环境和土壤环境质量评价的作用[J]. 华南农业大学学报, 2022, 43(3): 79-88. DOI: 10.7671/j.issn.1001-411X.202105042
GENG Wenjing, ZHANG Xin, GUO Xiaoying, et al. Effect of nematode on the evaluation of water and soil environment quality in coal mining area[J]. Journal of South China Agricultural University, 2022, 43(3): 79-88. DOI: 10.7671/j.issn.1001-411X.202105042
Citation: GENG Wenjing, ZHANG Xin, GUO Xiaoying, et al. Effect of nematode on the evaluation of water and soil environment quality in coal mining area[J]. Journal of South China Agricultural University, 2022, 43(3): 79-88. DOI: 10.7671/j.issn.1001-411X.202105042

线虫对采煤矿区水环境和土壤环境质量评价的作用

基金项目: 国家自然科学基金(21407002);安徽省自然科学基金(1508085MB39);农业部农村可再生能源开发利用重点实验室开放课题(2018-007)
详细信息
    作者简介:

    耿文敬,硕士研究生,主要从事农业生态环境和植物营养学研究,E-mail: 1390748857@qq.com

    通讯作者:

    郭肖颖,研究员,博士,主要从事农业生态环境研究,E-mail: gxy2@mail.ustc.edu.cn

    朱 江,副教授,硕士,主要从事植物营养学研究,E-mail: sy96123@163.com

  • 中图分类号: X822

Effect of nematode on the evaluation of water and soil environment quality in coal mining area

  • 摘要:
    目的 

    评价淮北采煤矿区生态环境质量,为矿区生态环境变化监测提供理论依据。

    方法 

    采用秀丽隐杆线虫Caenorhabditis elegans在矿区水质中的生长发育状况及矿区土壤线虫群落结构的变化进行淮北采煤矿区生态环境质量的评价研究。

    结果 

    采煤矿区水环境使秀丽隐杆线虫寿命和成活率降低、体长变短、产卵数减少,同时诱导线虫生殖细胞凋亡,且煤矿开采时间越长,采样点距离矿井愈近,对线虫发育指标的抑制作用越显著。采煤矿区土壤环境使土壤线虫属的数目减少,植物寄生线虫的相对丰度增高,同时线虫香农多样性指数、瓦斯乐斯卡指数和自由生活线虫成熟度指数显著降低,植物寄生线虫成熟度指数显著提高,表明采煤矿区环境降低了土壤质量。煤矿开采时间越长、采样点距离矿井愈近,对土壤线虫群落结构的影响越大。

    结论 

    秀丽隐杆线虫生长发育指标对水环境的响应,以及土壤线虫群落结构对土壤环境的响应,很好地指示了淮北采煤矿区的水环境质量和土壤环境质量;因此,可以利用线虫对采煤矿区水环境和土壤环境质量进行评价。

    Abstract:
    Objective 

    To evaluate the ecological environment quality of coal mining area in Huaibei, and provide a scientific and theoretical basis for monitoring the ecological environment change in the mining area.

    Method 

    The growth and development condition of Caenorhabditis elegans in the water environment of the mining area and the change of soil nematode community structure were studied to evaluate the ecological environment quality.

    Result 

    The water environment in the coal mining area reduced the life span, the survival rate, the body length and the number of eggs laid by C. elegans, meanwhile induced the apoptosis of C. elegans germ cells. The longer the coal mining time was and the closer the sampling site was to the mine, the more significant the inhibitory effect on the nematode development indicators was. Soil environment in coal mining area decreased the number of nematode genera, increased the relative abundance of phytophagous. At the same time, the Shannon diversity index, Wasilewska index and free-living nematode maturity index significantly decreased, and the phytophagous maturation index significantly increased, indicating that the mining environment reduced the soil health status. The longer the coal mining time was and the closer the sampling site was to the mine, the greater the influence on the soil nematode community structure was.

    Conclusion 

    The responses of C. elegans growth and development index to water environment and soil nematode community structure to soil environment have well indicated the quality of water environment and soil environment in Huaibei coal mining area, therefore nematode can be used to evaluate the quality of water environment and soil environment of coal mining area.

  • 图  1   采样点分布示意图

    CK:对照区,1:距离沈庄矿井100 m的矿区,2:距离沈庄矿井1 500 m的矿区,3:距离沈庄矿井3 000 m的矿区,4:距离石台矿井100 m的矿区,5:距离石台矿井1 500 m的矿区,6:距离石台矿井3 000 m的矿区

    Figure  1.   Distribution of sampling site

    CK: Control area, 1: Mining area of 100 m away from Shenzhuang Mine, 2: Mining area of 1 500 m away from Shenzhuang Mine, 3: Mining area of 3 000 m away from Shenzhuang Mine, 4: Mining area of 100 m away from Shitai Mine, 5: Mining area of 1 500 m away from Shitai Mine, 6: Mining area of 3 000 m away from Shitai Mine

    图  2   矿区水环境对秀丽隐杆线虫半数致死时间和存活率的影响

    图A柱子上的不同小写字母表示样品间差异显著(P<0.05,LSD法)

    Figure  2.   Influence of mining area water environment on lethal time of 50% and survival rate of Caenorhabditis elegans

    Different lowercase letters on the columns in Fig. A indicate significant differences among different samples (P<0.05, LSD method)

    图  3   矿区水环境对秀丽隐杆线虫体长的影响

    柱子上的不同小写字母表示样品间差异显著(P<0.05,LSD法)

    Figure  3.   Effects of mining area water environment on body length of Caenorhabditis elegans

    Different lowercase letters on the columns indicate significant differences among different samples (P<0.05, LSD method)

    图  4   矿区水环境对秀丽隐杆线虫产卵数的影响

    柱子上的不同小写字母表示样品间差异显著(P<0.05,LSD法)

    Figure  4.   Effects of mining area water environment on the number of eggs laid by Caenorhabditis elegans

    Different lowercase letters on the columns indicate significant differences amnong different samples (P<0.05, LSD method)

    图  5   矿区水环境诱导的秀丽隐杆线虫生殖细胞凋亡

    不同样品柱子上的不同小写字母表示样品间差异显著(P<0.05,LSD法)

    Figure  5.   The apoptosis of Caenorhabditis elegans germ cells induced by mining area water environment

    Different lowercase letters on the columns indicate significant differences among different samples (P<0.05, LSD method)

    图  6   不同营养类群的土壤线虫占比

    Figure  6.   The proportions of different soil nematode trophic groups

    表  1   矿区水样主要污染元素的含量1)

    Table  1   Contents of the major pollutant elements in water samples of mining area ρ/(μg·L−1)

    水样
    Water sample

    Copper

    Zinc

    Chrome

    Arsenic

    Fluorine
    WCK 0.04±0.001g 0.29±0.002f 7.05±0.001g 1.77±0.004g 0.38±0.001g
    W1 1.45±0.003a 5.01±0.001a 22.77±0.003a 15.85±0.004a 2.20±0.006a
    W2 1.06±0.004c 3.24±0.003b 16.86±0.001b 9.54±0.003c 1.57±0.005b
    W3 0.78±0.002d 1.08±0.002d 12.54±0.003d 7.25±0.002d 1.26±0.004d
    W4 1.19±0.002b 1.53±0.001c 16.56±0.002c 11.57±0.004b 1.33±0.003c
    W5 0.71±0.002e 0.78±0.002e 11.67±0.002e 5.36±0.004f 1.07±0.003e
    W6 0.43±0.004f 0.23±0.002g 11.12±0.006f 6.18±0.003e 0.73±0.002f
     1)同列数据后不同小写字母表示样品间差异显著(P<0.05,LSD法 )
     1) Different lowercase letters in the same column represent significant differences among different water samples of mining area (P<0.05, LSD method)
    下载: 导出CSV

    表  2   秀丽隐杆线虫发育指标与水环境中污染元素含量的相关性分析1)

    Table  2   Correlation analyses of Caenorhabditis elegansgrowth and development indexes and pollution element contents in water environment

    生长发育指标
    Growth and development index

    Copper

    Zinc

    Chrome

    Arsenic

    Fluorine
    半数致死时间 50% lethal time −0.958** −0.790* −0.916** −0.890** −0.942**
    体长 Body length −0.903** −0.606 −0.798* −0.790* −0.840*
    产卵数目 Number of eggs laid −0.879** −0.589 −0.794* −0.792* −0.819*
    生殖细胞凋亡数目 Number of apoptotic germ cell 0.935** 0.950** 0.949** 0.905** 0.975**
     1) “*”和“**”分别表示在0.05和0.01水平显著相关(Pearson法)
     1) “*” and “**” indicate significant correlations at 0.01 and 0.05 levels respectively (Pearson method)
    下载: 导出CSV

    表  3   不同类群的土壤线虫占比

    Table  3   The proportions of different soil nematode genera %

    属 Genus 相对丰度1) Relative abundance
    SCK S1 S2 S3 S4 S5 S6
    螺旋属 Helicotylenchus 8.20 63.36# 13.08# 16.93# 21.58# 11.45# 28.16#
    盘旋属 Rotylenchus 2.56 5.27 3.88 5.16 1.45 2.55
    矮化属 Tylenchorhynchus 7.38 6.80 22.61# 17.60# 18.70# 23.93# 19.60#
    短体属 Pratylenchus 28.62# 1.87 18.72# 8.00 17.89# 19.05# 6.94
    丝尾垫刃属 Filenchus 3.45 2.80 15.70 6.40 2.44 4.29 5.79
    垫刃属 Tylenchus 7.38 1.87 19.96# 3.25 2.86 1.65
    潜根属 Hirschmanniella 2.30 1.25 6.67
    板唇属 Chiloplacus 5.84 3.62 1.63
    盆咽属 Panagrolaimus 0.68 0.32 2.74 0.12 0.15 1.26
    绕线属 Plectus 4.23 2.24 1.03 2.39 2.56 5.24 6.57
    头叶属 Cephalobus 1.72 2.54 1.42 0.84 3.25 4.56
    真头叶属 Eucephalobus 6.20 3.87 2.48 2.40 5.48 5.71 8.40
    茎属 Ditylenchus 1.66 1.45 1.55 5.61 1.54 3.40 2.21
    真滑刃属 Aphelenchus 8.20 2.33 3.01 0.80 3.00 0.15 3.44
    滑刃属 Aphelenchoides 3.10 1.80 1.04 2.24
    孔咽属 Aporcelaimus 2.46 3.31 4.80 6.20 8.30 1.10
    单齿属 Mononchus 0.42 2.54 2.70 0.15 1.25 1.40
    真矛线属 Eudorylaimus 6.56 0.93 6.47 6.40 7.06 2.86 4.13
    中矛线属 Mesodorylaimus 1.36 0.96 3.25
     1) SCK、S1、S2、S3、S4、S5、S6为采样矿区土壤环境样品;“#”表示优势属;“—"表示未检测到
     1) SCK, S1, S2, S3, S4, S5 and S6 are soil environment samples in the mining area; “#” indicates dominant genus;“—” indicates no genus detected
    下载: 导出CSV

    表  4   矿区土壤样品中线虫的生态指数1)

    Table  4   The ecological indices of nematode in soil samples of mining area

    土样
    Soil
    sample
    香农多样性
    指数(H′)
    Shannon
    diversity index
    瓦斯乐斯卡
    指数(WI)
    Wasilewska
    index
    优势度
    指数(λ)
    Dominance
    index
    均匀度
    指数(J′)
    Evenness
    index
    自由生活线虫
    成熟度指数(MI)
    Free-living nematode
    maturity index
    植物寄生线虫
    成熟度指数(PPI)
    Phytophagous
    maturity index
    SCK 2.47±0.10a 0.55±0.02a 0.12±0.00b 0.85±0.04a 1.12±0.01a 1.62±0.05d
    S1 1.56±0.07c 0.18±0.00e 0.41±0.02a 0.57±0.02b 0.44±0.06d 2.41±0.11a
    S2 2.26±0.02b 0.20±0.01d 0.14±0.01b 0.82±0.01a 0.89±0.02c 2.02±0.03b
    S3 2.33±0.04b 0.20±0.02d 0.12±0.01b 0.86±0.04a 0.88±0.04c 1.96±0.02c
    S4 2.18±0.12b 0.21±0.02d 0.13±0.02b 0.81±0.03a 1.10±0.07a 2.01±0.07b
    S5 2.25±0.09b 0.26±0.01c 0.14±0.01b 0.83±0.02a 0.97±0.02b 2.02±0.04b
    S6 2.30±0.05b 0.44±0.02b 0.14±0.01b 0.83±0.03a 0.90±0.01c 1.87±0.04c
     1) 同列数据后不同小写字母表示样品间差异显著(P<0.05,LSD法)
     1) Different lowercase letters in the same column represent significant differences among different samples (P<0.05, LSD method)
    下载: 导出CSV

    表  5   土壤样品中主要污染元素含量1)

    Table  5   Contents of major pollutant elements in soil samples w/(mg·kg−1)

    土样
    Soil sample

    Chrome

    Copper

    Zinc

    Plumbum

    Cadmium

    Arsenic

    Mercury
    SCK 41.47±0.02g 14.82±0.03g 42.07±0.05g 18.21±0.02f 0.16±0.00c 8.55±0.02g 0.02±0.00g
    S1 54.24±0.02a 23.62±0.02a 60.58±0.08a 23.77±0.03a 0.19±0.00a 16.35±0.01a 0.11±0.00d
    S2 49.56±0.03c 20.48±0.02c 57.89±0.07b 20.54±0.01b 0.18±0.00b 13.58±0.01c 0.09±0.00e
    S3 45.89±0.01e 19.24±0.10d 52.64±0.05e 18.47±0.02e 0.16±0.00c 12.14±0.01e 0.08±0.00f
    S4 51.85±0.02b 18.98±0.03e 55.11±0.01c 20.17±0.02c 0.13±0.00d 13.01±0.02d 0.28±0.00a
    S5 45.84±0.02f 21.44±0.11b 53.31±0.06d 19.89±0.02d 0.12±0.00e 9.28±0.01f 0.15±0.00c
    S6 48.47±0.02d 17.91±0.01f 50.99±0.07f 15.78±0.01g 0.10±0.00f 14.51±0.03b 0.17±0.00b
     1) 同列数据后不同小写字母表示样品间差异显著 (P<0.05,LSD法)
     1) Different lowercase letters in the same column represent significant differences among different samples (P<0.05, LSD method)
    下载: 导出CSV

    表  6   土壤线虫生态指标与土壤环境中污染元素含量的相关性分析1)

    Table  6   Correlation analysis of soil nematode ecological indexes and pollution element contents in soil environment

    生态指数
    Ecological index

    Chrome

    Copper

    Zinc

    Plumbum

    Cadmium

    Arsenic

    Mercury
    PP′ 0.750 0.920** 0.909** 0.749 0.506 0.677 0.122
    BF′ −0.534 −0.627 −0.729 −0.714 −0.636 −0.362 −0.108
    FF′ −0.632 −0.807* −0.819* −0.453 0.097 −0.361 −0.615
    OP′ −0.225 −0.287 −0.137 −0.137 −0.195 −0.494 0.352
    H′ −0.813* −0.802* −0.748 −0.811* −0.449 −0.712 −0.164
    WI −0.681 −0.823* −0.890** −0.668 −0.364 −0.480 −0.346
    λ 0.662 0.690 0.589 0.757* 0.524 0.638 −0.065
    J −0.725 −0.695 −0.625 −0.790* −0.509 −0.662 −0.029
    MI −0.638 −0.769* −0.687 −0.622 −0.512 −0.735 0.159
    PPI 0.855* 0.953** 0.924** 0.808* 0.397 0.713 0.269
     1) PP′:植物寄生线虫相对丰度,BF′:食细菌线虫相对丰度,FF′:食真菌线虫相对丰度,OP′:杂食/捕食线虫相对丰度,H′:香农多样性指数,WI:瓦斯乐斯卡指数,λ:优势度指数,J′:均匀度指数,MI:自由生活线虫成熟度指数,PPI:植物寄生线虫成熟度指数;“*”和“**”分别表示在0.05和0.01水平显著相关(Pearson法)
     1) PP′:Relative abundance of phytophagous, BF′:Relative abundance of bacterivores, FF′:Relative abundance of fungivores, OP′:Relative abundance of omnivore/predator, H′:Shannon diversity index, WI:Wasilewska index, λ:Dominance index, J′:Evenness index, MI:Free-living nematode maturity index, PPI:Phytophagous maturity index; “*” and “**” indicate significant correlations at 0.01 and 0.05 levels respectively (Pearson method)
    下载: 导出CSV
  • [1] 张妍, 张磊, 程红光, 等. 南方某矿区土壤镉污染及作物健康风险研究[J]. 农业环境科学学报, 2020, 39(12): 2752-2761. doi: 10.11654/jaes.2020-0485
    [2] 耿宜佳, 彭书传, 王晓辉, 等. 淮南煤矿区生态环境综合评价[J]. 安徽农业科学, 2016, 44(17): 73-76. doi: 10.3969/j.issn.0517-6611.2016.17.026
    [3] 周晓雪, 孙建明, 刘建霞. 某大型铁钛矿区地下水环境现状调查与评价[J]. 城市地质, 2013, 8(3): 35-38. doi: 10.3969/j.issn.1007-1903.2013.03.009
    [4] 陆金, 赵兴青. 铜陵狮子山矿区土壤重金属污染特征及生态风险评价[J]. 环境化学, 2017, 36(9): 1958-1967. doi: 10.7524/j.issn.0254-6108.2017010304
    [5] 张浩, 王辉, 汤红妍, 等. 铅锌尾矿库土壤和蔬菜重金属污染特征及健康风险评价[J]. 环境科学学报, 2020, 40(3): 1085-1094.
    [6] 杨莎, 程雨蒙, 王雷, 等. 安徽淮北百善煤矿废弃地土壤重金属污染评价[J]. 江苏师范大学学报(自然科学版), 2017, 35(2): 4-6.
    [7] 孙立强, 孙崇玉, 刘飞, 等. 淮北煤矿周边土壤重金属生物可给性及人体健康风险[J]. 环境化学, 2019, 38(7): 1453-1460. doi: 10.7524/j.issn.0254-6108.2018092801
    [8]

    OCHIAGHA K E, OKOYE P A C, EBOAGU N C. The geo-accumulation index of some heavy metals in the roadsides soils of Onitsha South Local Government Area Anambra State[J]. Science Journal of Chemistry, 2020, 8(2): 42-47.

    [9]

    YEATES G W. Nematodes as soil indicators: Functional and biodiversity aspects[J]. Biology and Fertility of Soils, 2003, 37(4): 199-210. doi: 10.1007/s00374-003-0586-5

    [10]

    BONGERS T. The maturity index: An ecological measure of environmental disturbance based on nematode species composition[J]. Oecologia, 1990, 83(1): 14-19. doi: 10.1007/BF00324627

    [11]

    WANG X, NIELSEN U N, YANG X, et al. Grazing induces direct and indirect shrub effects on soil nematode communities[J]. Soil Biology & Biochemistry, 2018, 121: 193-201.

    [12]

    LIU Y B, LI X Y, LIU Q Z. Soil nematode communities in jujube (Ziziphus jujuba Mill. ) rhizosphere soil under monoculture and jujube/wheat (Triticum aestivum Linn. ) intercropping systems, a case study in Xinjiang arid region, northwest of China[J]. European Journal of Soil Biology, 2016, 74: 52-59. doi: 10.1016/j.ejsobi.2016.02.001

    [13]

    KALETTA T, HENGARTNER M O. Finding function in novel targets: C. elegans as a model organism[J]. Nature Reviews Drug Discovery, 2006, 5(5): 387-398. doi: 10.1038/nrd2031

    [14]

    GILES A C, RANKIN C H. Behavioral and genetic characterization of habituation using Caenorhabditis elegans[J]. Neurobiology of Learning and Memory, 2009, 92(2): 139-146. doi: 10.1016/j.nlm.2008.08.004

    [15]

    LAKOWSKI B, HEKIMI S. Determination of life-span in Caenorhabditis elegans by four clock genes[J]. Science, 1996, 272(5264): 1010-1013. doi: 10.1126/science.272.5264.1010

    [16] 郭肖颖, 王磊, 王斌, 等. 铁矿区水环境样品对秀丽隐杆线虫的毒性研究[J]. 生态毒理学报, 2015, 10(6): 219-228.
    [17]

    DHAWAN R, DUSENBERY D B, WILLIAMS P L. Comparison of lethality, reproduction, and behavior as toxicological endpoints in the nematode Caenorhabditis elegans[J]. Journal of Toxicology and Environmental Health: Part A, 1999, 58(7): 451-462. doi: 10.1080/009841099157179

    [18]

    KELLY K O, DERNBURG A F, STANFIELD G M, et al. Caenorhabditis elegans msh-5 is required for both normal and radiation-induced meiotic crossing over but not for completion of meiosis[J]. Genetics, 2000, 156(2): 617-630. doi: 10.1093/genetics/156.2.617

    [19]

    JENKINS W R. A rapid centrifugal-flotation technique for separating nematodes from soil[J]. Plant Disease Reporter, 1964, 48: 692-692.

    [20]

    YEATES G W, BONGERS T. Nematode diversity in agroecosystems[J]. Agriculture Ecosystems and Environment, 1999, 74(1/2/3): 113-135.

    [21]

    YEATES G W, BONGERS T, DE GOEDE R G, et al. Feeding habits in soil nematode families and genera: An outline for soil ecologists[J]. Journal of Nematology, 1993, 25(3): 315-331.

    [22] 尹文英. 中国土壤动物检索图鉴[M]. 北京: 科学出版社, 1998: 51-89.
    [23]

    HARADA H, KURAUCHI M, HAYASHI R, et al. Shortened lifespan of nematode Caenorhabditis elegans after prolonged exposure to heavy metals and detergents[J]. Ecotoxicology and Environmental Safety, 2007, 66(3): 378-383. doi: 10.1016/j.ecoenv.2006.02.017

    [24]

    TEJEDA-BENÍTEZ L, NOGUERA-OVIEDO K, AGA D S, et al. Toxicity profile of organic extracts from Magdalena River sediments[J]. Environmental Science and Pollution Research, 2018, 25(2): 1519-1532. doi: 10.1007/s11356-017-0364-9

    [25] 国家环境保护总局科技标准司. 地表水环境质量标准: GB3838—2002[S]. 北京: 中国标准出版社, 2002: 1-5.
    [26]

    ŠALAMÚN P, HANZELOVÁ V, MIKLISOVÁ D. Variability in responses of soil nematodes to trace element contamination[J]. Chemosphere, 2018, 210: 166-174. doi: 10.1016/j.chemosphere.2018.07.009

    [27] 国家环境保护局科技标准司. 土壤环境质量标准: GB15616—1995[S]. 北京: 中国标准出版社, 1995: 1-3.
    [28]

    HUNT P R. The C. elegans model in toxicity testing[J]. Journal of Applied Toxicology, 2017, 37(1): 50-59. doi: 10.1002/jat.3357

    [29] 吉宗慧, 高珊, 王旗, 等. 硫化汞对灭活菌喂饲的秀丽隐杆线虫生长发育的影响[J]. 毒理学杂志, 2019, 33(3): 173-178.
    [30] 蔡月, 李小平, 赵亚楠, 等. 蒙陕大型煤矿开采区水质化学特征与健康风险[J]. 生态学杂志, 2018, 37(2): 482-491.
    [31]

    HOEKSEMA J D, LUSSENHOP J, TEERI J A. Soil nematodes indicate food web responses to elevated atmospheric CO2[J]. Pedobiologia, 2000, 44(6): 725-735. doi: 10.1078/S0031-4056(04)70085-2

    [32]

    LI J, WANG D, FAN W, et al. Comparative effects of different organic materials on nematode community in continuous soybean monoculture soil[J]. Applied Soil Ecology, 2018, 125: 12-17. doi: 10.1016/j.apsoil.2017.12.013

    [33]

    SONG D, TARIQ A, PAN K, et al. Effects of straw mulching practices on soil nematode communities under walnut plantation[J]. Scientific Reports, 2020, 10(1): 15351. doi: 10.1038/s41598-020-72530-5.

    [34] 华建峰, 林先贵, 尹睿, 等. 矿区砷污染对土壤线虫群落结构特征的影响[J]. 生态与农村环境学报, 2009, 25(1): 79-84. doi: 10.3969/j.issn.1673-4831.2009.01.016
    [35] 高雅, 陆兆华, 魏振宽, 等. 露天煤矿区生态风险受体分析: 以内蒙古平庄西露天煤矿为例[J]. 生态学报, 2014, 34(11): 2844-2854.
    [36] 孙浩, 周春财, 徐仲雨, 等. 淮北矿区土壤重金属空间分布与环境评价[J]. 中国科学技术大学学报, 2018, 48(7): 560-566. doi: 10.3969/j.issn.0253-2778.2018.07.006
图(6)  /  表(6)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-26
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2022-05-09

目录

    Corresponding author: ZHU Jiang, sy96123@163.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回