Analyses of drug resistance, multi-locus sequence typing and genetic evolution of Peudomonas aeruginosa in pheasant farms
-
摘要:目的
探究广东省七彩山鸡养殖场中铜绿假单胞菌Pseudomonas aeruginosa的流行特点、耐药性、多位点序列分型(Multi-locus sequence typing,MLST)及遗传进化背景,为临床合理用药提供参考。
方法从广东省3个规模化七彩山鸡养殖场收集孵化死胚及周围环境样本进行铜绿假单胞菌的分离鉴定,采用K-B纸片扩散法测试其对22种抗菌药物的敏感性,利用MLST分析铜绿假单胞菌分离株的分子流行特点。将各ST型的7个管家基因序列按顺序拼接,用MEGA7软件对拼接好的序列进行遗传进化分析。
结果在采集的514份样本(死胚样本405份、环境样本109份)中共分离到铜绿假单胞菌145株(分离率28.2%),其中,24株来源于环境样本(分离率22.0%,24/109),121株来源于死胚样本(分离率29.9%,121/405)。145株铜绿假单胞菌除对氨苄西林、卡那霉素和萘啶酸天然耐药外,对复方新诺明、氯霉素和四环素的耐药性较强,耐药率分别为100%、80.0%和77.2%,其次为头孢噻肟(耐药率23.4%)。除天然耐药外,多重耐药的铜绿假单胞菌占比达73.1%(106/145),且对亚胺培南也显现出耐药性。MLST结果显示,89株耐药谱较广的铜绿假单胞菌可分为18个ST型,其中,6个ST型是本研究新发现的。铜绿假单胞菌死胚分离株的优势ST型是ST-260,环境分离株以ST-2100和ST-3202为主。遗传进化分析表明,环境和死胚样品中的铜绿假单胞菌具有较高的相似性。
结论本研究调查的3个七彩山鸡养殖场的死胚及周围环境中均存在不同程度的铜绿假单胞菌感染或污染,且分离株具有较强的耐药性;建议在养殖过程中不仅要加强饲养管理、提高生物安全意识,还应根据药敏试验结果合理选择抗菌药。
Abstract:ObjectiveTo investigate the epidemic characteristics, drug resistance, multi-locus sequence typing (MLST) and genetic evolution background of Pseudomonas aeruginosa in Guangdong Province, and provide a reference for clinical rational drug use.
MethodSamples from dead embryos of pheasant and their surrounding environment were collected for separation and identification of P. aeruginosa. The K-B paper disk diffusion method was used to analyze P. aeruginosa sensitivity to 22 kinds of antimicrobials. The MLST method was applied to analyze the molecular epidemiology of P. aeruginosa strains. Seven house-keeping genes of each ST type were spliced sequentially, and we used MEGA7 software to conduct genetic evolution analysis to the spliced sequence.
ResultA total of 145 P. aeruginosa strains (isolation rate 28.2%) were isolated from the collected 514 samples (405 dead embryo samples and 109 environment samples), including 24 strains from environmental samples (isolation rate 22.0%, 24/109) and 121 strains from dead embryos (isolation rate 29.9%, 121/405). Antibiotic drug sensitivity test showed that 145 strains of P. aeruginosa were naturally resistant to ampicillin, kanamycin and nalidixic acid, strongly resistant to complex sulfamethoxazole, chloramphenicol, tetracycline, followed by cefotaxime, with the drug resistance rates of 100%, 80.0%, 77.2% and 23.4% respectively. Except the natural drug resistance, the proportion of multiple drug resistant P. aeruginosa was up to 73.1% (106/145), and a certain proportion of P. aeruginosa strains which were resistant to imipenem appeared. MLST analysis showed that 89 P. aeruginosa strains with a broad spectrum of resistance were divided into 18 ST types, presenting high diversity. Among them, six ST types were the new types discovered in this study. The dead embryo isolates of P. aeruginosa were mainly ST-260, and the environmental sample isolates were mainly ST-2100 and ST-3202. Genetic evolution analysis showed that P. aeruginosa strains in environment were closely related to those in dead embryos.
ConclusionThere are different degrees of P. aeruginosa infection or contamination in dead embryos and surrounding environment of three pheasant farms, and the isolates have strong drug resistance. Therefore, it is recommended that we should not only strengthen the breeding management and raise the awareness of bio-safety in the process of breeding, but also use antibacterial drugs reasonably according to the results of the drug sensitivity test.
-
香菇Lentinus edodes又称花菇、香信、香蕈、冬菇、香菌,为侧耳科植物香蕈的子实体,作为世界第2大食用菌,在我国食用菌种植产业中占有很大比例[1],在民间素有“山珍”之称。香菇具有提高免疫、降血压、降血脂、降胆固醇、防癌抗癌等功效,且适合加工和烹调,受到消费者的极大青睐。当前除了直接烹调食用外,香菇还被制成香菇酱、脆片等食品[2]。但是香菇中含有大量水分,储藏时间短,难以运输,干制香菇可以很好地解决这个问题。
干燥过程对香菇的口感和储藏稳定性有很大影响,因此研究干燥工艺显得尤为重要。目前,普遍使用的干燥加工方法为热泵干燥,此干燥方式热效率高[3],常用于胡萝卜[4]、毛竹笋[5]、红枣[6]、杏鲍菇[7]等果蔬,但其存在多种缺陷,如微生物以及细菌总数易超标[4]等;真空干燥虽干燥时间长、成本高[8],但其干燥品质明显高于热泵干燥,故常用于对品质要求较高果蔬,如野生软枣猕猴桃[9]、黄秋葵[10]、雪莲果粉[11]、桑葚[12]等。目前,关于香菇的热泵–真空联合干燥还鲜有报道。本文将这2种干燥方式结合起来,进行分阶段干燥,期望优势互补,得到品质与真空干燥相近,能耗又低于真空干燥的干制香菇。另外,本文还利用响应面法优化香菇热泵–真空联合干燥工艺参数,建立动力学模型,并将试验结果与单一热泵干燥、单一真空干燥对比,为联合干制香菇实际生产提供参考依据。
1. 材料与方法
1.1 试验材料
新鲜香菇购于农贸批发市场,挑选大小、菇头厚度相近且表面无明显破损的香菇作为试验样品。试验测定新鲜香菇的初始湿基含水率(w)为(89.27±1)%。简单冲洗后,放入冰箱内4 ℃条件下保存待用。
1.2 试验方法
1.2.1 工艺流程
新鲜香菇→热泵干燥(热泵干燥机:LAD-060型,徐州市海涛制冷设备有限公司)→真空干燥(真空干燥机:LABCONCO FreeZone型,上海珂淮仪器有限公司),最终湿基含水率(w)在13%以下[7]→测定指标。
1.2.2 确定试验因素
香菇的热泵–真空联合干燥产品品质与很多因素有关,如热泵干燥的风速、湿度、温度和真空干燥的真空度(以下简称真空度)、温度以及装载量、转换点含水率等[13-16]。由于试验设备限制,很多参数都不可调,所以固定热泵干燥风速为1.6 m·s–1,湿度为10%,真空干燥冷阱温度为–50 ℃。根据王安建等[17]的研究,1 176 g·m–2为热泵干燥的最优装载量,本试验修正固定装载量为1.2 kg·m–2。每次试验物料质量为1.2 kg,当热泵干燥结束,转为真空干燥时,真空干燥铺料总面积为0.25 m2。
综上所述,确定热泵温度、真空度和转换点含水率为试验的3个因素,分别分析其对单位能耗、感官评分、复水比和硬度的影响。
1.2.3 单因素试验
用单因素试验法来确定因素(热泵温度、真空度和转换点含水率)的0水平。在装载量为1.2 kg·m–2,热泵干燥风速为1.6 m·s–1,湿度为10%,真空干燥冷阱温度为–50 ℃的条件下,分别进行试验,记录各组的4项指标。试验分为3组,共计12次联合干燥试验:
1)先进行热泵干燥,将热泵温度设置为30、40、50、60 ℃,待含水率降至55%,停止热泵干燥,转为真空干燥,设置真空度为100 Pa;
2)先进行热泵干燥,设置热泵温度为50 ℃,待含水率降至55%,停止热泵干燥,转为真空干燥,将真空度设置为50、75、100、125 Pa;
3)先进行热泵干燥,设置热泵温度为50 ℃,待含水率降至25、40、55、70%,转为真空干燥,真空度设置为100 Pa。
1.2.4 响应面优化试验设计
采用Box-Behnken Design(BBD)试验设计方法,以热泵温度(A)、真空度(B)、转换点含水率(C)为自变量,进一步研究这3个因素与联合干燥香菇产品单位能耗、感官评分、复水比和硬度的关系。试验因素水平见表1。
表 1 试验因素水平表Table 1. Factor levels of the test水平
Levelθ热泵/℃
Heat pump temperature
(A)真空度/Pa
Vacuum degree
(B)转换点含水率(w)/%
Conversion point moisture content
(C)–1 45 90 45 0 50 100 55 1 55 110 65 1.2.5 对比试验
分别进行3次单独的热泵干燥(温度49 ℃)和真空干燥试验(真空度110 Pa),取均值得出单位能耗、感官评分、复水比和硬度,并与联合干燥进行对比。
1.3 指标测定方法
1.3.1 含水率
含水率根据GB 5009.3—2016[18]测得,所用仪器为电热鼓风干燥箱(101-A型,上海锦昱科学仪器有限公司)。
1.3.2 单位能耗
单位能耗为香菇每损失1个单位质量水分所消耗的电能。从经济效益出发,单位能耗越小越好。根据电表读数来计算,计算公式[19]为:
$$C=3\,600({W_2}-{W_1})/M,$$ (1) 式中,C为单位能耗,kJ·g–1;W1和W2分别为试验开始时和结束后的电表读数,kW·h;M为干燥去除水分总质量,g。
1.3.3 复水比
复水比用质量的增加程度表示,其值越大越好。将装有蒸馏水的烧杯放入40 ℃的恒温水浴锅(HH-1型,金坛市城东超韵实验仪器厂)中,10 min后将联合干燥后的香菇样品浸没入蒸馏水30 min(料液质量比为1∶30),快速沥干,测质量,复水比(R)计算公式[20]为:
$$R={m_{\rm f}}/{m_{\rm g}},$$ (2) 式中,mg、mf分别为香菇复水前、后的质量,g。
1.3.4 感官评分
表 2 香菇感官品质评价标准Table 2. Evaluation standard of Lentinus edodes sensory quality评分
Score厚薄
Thickness色泽
Color肉质
Quality香气
Aroma8~10 内外均一 淡黄色,色泽均匀 肉质紧密,有脆感,软硬适中 菇香浓郁,气味怡人 4~8 内外基本均一 黄褐色,色泽均匀 肉质紧密,略有脆感 菇香一般,气味不足 0~4 内外严重不均,有薄有厚 深褐色,色泽不均 肉质较软,无脆感,或口感较硬 菇香不明显,有炭化味 1.3.5 硬度
将质构仪(TMS—PRO型,美国食品特性研究开发机构FTC)设置为TPA测量模式,测前和测后速度为8 mm·s–1,测试最大距离为20 mm,测试速度为2 mm·s–1,每组测10次,每次间隔时间为5 s,求平均值,得硬度指标[22]。
1.4 数据处理
运用Excel、Spss和Design-Expert.8.05b软件对香菇热泵–真空干燥试验数据进行分析。
2. 结果与分析
2.1 单因素试验
2.1.1 不同热泵温度对香菇干燥效果的影响
单因素第1组试验结果如图1所示。由图1可以看出,热泵温度从30 ℃增加到60 ℃,单位能耗和复水比显著降低,感官评分下降,硬度显著提高。温度过高,香菇的内部结构受到破坏,出现干燥不均匀现象,故在60 ℃时,香菇的感官评分和复水比下降,并且部分产品会因酶促和非酶促反应而出现褐变,产生褐色硬荚,导致硬度上升,质量变差。这与Jayaraman等[23]的结论相符,其研究发现在干燥过程中,果蔬因内部结构遭到破坏而吸水性能减弱,复水比下降。50 ℃时的单位能耗与60 ℃时相近,而且其他3项指标明显优于后者,因此选择50 ℃作为热泵温度的0水平。
图 1 热泵温度对香菇单位能耗、感官评分、复水比和硬度的影响各图中,柱子上方的不同小写字母表示差异显著 (P<0.05, Duncan’s法)Figure 1. The influences of heat pump temperature on unit energy consumption, sensory score, rehydration ratio and hardness of Lentinus edodesIn each figure, different lowercase letters on the bars indicated significant difference (P<0.05, Duncan’s test)2.1.2 不同真空度对香菇干燥效果的影响
单因素第2组试验结果如图2所示。由图2可以看出,真空度从50 Pa增加到100 Pa,单位能耗下降,但增加到125 Pa时,干燥罐内的气压过小,空气过于稀薄,影响了水分传递进程,导致单位能耗显著上升;随着真空度加大,感官评分和复水比增加,硬度下降(真空度为75 Pa时,其硬度与50和100 Pa时无显著差异性,但是50和100 Pa之间差异显著),这是因为干燥罐内气压下降,空气含量减少,减轻了香菇的氧化程度,香菇也较易形成疏松多孔的结构[24]。虽然真空度为125 Pa时的感官评分和复水比最高,硬度小,但是单位能耗为本研究最先考虑指标,因此选择100 Pa作为真空度的0水平。
图 2 真空度对香菇单位能耗、感官评分、复水比和硬度的影响各图中,柱子上方的不同小写字母表示差异显著 (P<0.05, Duncan’s法)Figure 2. The influences of vacuum degree on unit energy consumption, sensory score, rehydration ratio and hardness of Lentinus edodesIn each figure, different lowercase letters on the bars indicated significant difference (P<0.05, Duncan’s test)2.1.3 不同转换点含水率对香菇干燥效果的影响
单因素第3组试验结果如图3所示。由图3可以看出,随着转换点含水率的增加,单位能耗显著增大。这是因为热泵干燥的能耗远小于真空干燥,真空干燥时间越长,其单位能耗也越大;其次,转换点含水率越大,说明香菇由热泵转为真空干燥的水分比例就越大,这对感官评分、复水比和硬度都有积极的影响(各自组内都具有显著差异性)。虽然转换点含水率为70%时的复水比和感官评分都达到最高值,表面无明显硬荚,硬度小,但其单位能耗也最大,然而转换点含水率为55%时的感官评分、复水比和硬度与70%时相近且单位能耗低,因此选择55%作为转换点含水率的0水平。
图 3 转换点含水率对香菇单位能耗、感官评分、复水比和硬度的影响各图中,柱子上方的不同小写字母表示差异显著 (P<0.05, Duncan’s法)Figure 3. The influences of conversion point moisture content on unit energy consumption, sensory score, rehydration ratio and hardness of Lentinus edodesIn each figure, different lowercase letters on the bars indicated significant difference (P<0.05, Duncan’s test)2.2 香菇联合干燥工艺参数的优化
为了得到更加精确的干燥工艺条件,使用Design-Expert.8.05b软件,设计了3因素3水平响应面分析试验,试验设计及结果如表3所示。由表3可以看出,第12组试验条件下的单位能耗最低,第11组试验条件下的感官评分最高,第3组试验条件下的复水比最大,第3组试验条件下的硬度最小。
表 3 试验设计及结果Table 3. Experimental design and result序号
No.θ热泵/℃
Heat pump temperature
(A)真空度/Pa
Vacuum degree (B)转换点含水率(w)/%
Conversion point moisture content
(C)单位能耗/(kJ·g–1)
Unit energy consumption (Y1)感官评分
Sensory
score
(Y2)复水比
Rehydration ratio
(Y3)硬度/N
Hardness
(Y4)1 50 100 55 333.54 7.7 2.59 3.62 2 50 90 60 356.09 8.1 2.70 3.34 3 45 100 60 375.56 8.3 2.84 3.27 4 50 100 55 330.68 7.7 2.62 3.63 5 50 100 55 336.35 7.8 2.58 3.62 6 55 90 55 329.19 7.3 2.50 3.74 7 55 110 55 336.17 7.5 2.54 3.70 8 45 90 55 343.52 7.6 2.65 3.69 9 50 110 50 320.37 7.1 2.57 3.79 10 50 100 55 337.21 7.9 2.61 3.64 11 50 110 60 365.84 8.5 2.76 3.31 12 55 100 50 315.88 7.0 2.41 3.86 13 45 110 55 350.33 7.9 2.67 3.63 14 45 100 50 343.81 7.5 2.56 3.75 15 50 90 50 321.55 7.3 2.42 3.82 16 50 100 55 330.62 7.8 2.60 3.65 17 55 100 60 358.85 8.0 2.61 3.39 2.2.1 单响应指标回归分析
通过Design-Expert.8.05b软件,对单位能耗(Y1)、感官评分(Y2)、复水比(Y3)和硬度(Y4)进行回归分析,得到各自的二次回归方程(表4)。分析表4中的数据可知:单位能耗(Y1)回归方程的显著性F值为42.94,对应的PF <0.000 1,说明此模型拟合性极显著;失拟性 FLf为1.39,对应的
${P_{F_{\rm Lf}}}$ 为0.368 2(${P_{F_{\rm Lf}}}$ >0.05),说明失拟性不显著,在试验范围内误差较小,回归模型与实际情况拟合程度很高。 R2越接近1,模型拟合度越好,单位能耗(Y1)回归方程的R2为0.982 2,表明此模型可以解释响应值98.22%的变化。综上所述,此模型方程可以很好地分析和预测单位能耗指标。同理,对其他3个模型方程进行PF、${P_{F_{\rm Lf}}}$ 和R2分析,可知,这3个模型方程都可以对感官评分、复水比和硬度进行很好地预测和分析。表 4 单指标回归方程及分析结果Table 4. The regression equation of single index and analysis result指标
Indicator模型方程1)
Model equationF PF 失拟项 Lack of fit R2 FLf ${P_{F_{\rm Lf}}}$ 单位能耗
Unit energy consumption (Y1)Y1=333.68−9.14X1+2.80X2+19.34X3+0.042X1X2+
2.81X1X3+2.73X2X3+6.84X12−0.72X22+8.00X3242.94 <0.000 1 1.39 0.368 2 0.982 2 感官评分 Sensory score(Y2) Y2=7.71−0.19X1+0.088X2+0.50X3 38.03 <0.000 1 3.79 0.106 0 0.897 7 复水比 Rehydration ratio(Y3) Y3=2.60−0.082X1+0.034X2+0.12X3 77.42 <0.000 1 3.94 0.099 7 0.947 0 硬度 Hardness(Y4) Y4=3.63+0.044X1−0.020X2−0.24X3+0.005X1X2+
0.002 5X1X3+0.030X12+0.028X22−0.095X32167.40 <0.000 1 3.38 0.134 9 0.995 4 1) X1:θ热泵/℃;X2:真空度/Pa;X3:转换点含水率 (w)/%
1) X1: Heat pump temperature; X2: Vacuum degree; X3: Conversion point moisture content另外,通过比较各模型方程回归系数绝对值的大小可以得出结论:转换点含水率(C)、热泵温度(A)、真空度(B)对单位能耗(Y1)影响的主次顺序为C > A >B;对感官评分( Y2)影响的主次顺序为C > A > B;对复水比( Y3)影响的主次顺序为C > A > B;对硬度( Y4)影响的主次顺序为C > A > B。
利用Design-Expert.8.05b软件可以对相关数据进行优化,要求单位能耗(Y1)和硬度(Y4)在试验条件下达到最小值,感官评分(Y2)和复水比(Y3)在试验条件下达到最大值,各指标的单指标优化结果如表5所示。
表 5 指标回归方程优化结果Table 5. The optimization result of index regression equation项目
Item工艺参数优化组合
Optimized combination of technology parameters优化结果
Optimized resultθ热泵/℃
Heat pump temperature
(A)真空度/Pa
Vacuum
degree
(B)转换点含水率(w)/%
Conversion pointmoisture content
(C)单位能耗/(kJ·g–1)
Unit energy
consumption
(Y1)感官评分
Sensory score
(Y2)复水比
Rehydration ratio
(Y3)硬度/N
Hardness
(Y4)单指标
Single index54.35 90.00 50.00 316.31 45.00 110.00 60.00 8.5 45.00 110.00 60.00 2.84 46.01 104.37 60.00 3.28 综合指标
Comprehensive index49.26 110.00 56.48 344.35 8.0 2.68 3.55 由表5可知:较高的热泵温度,较低的真空度以及较低的转换点含水率可以降低单位能耗,当热泵温度为54.35 ℃、真空度为90.00 Pa、转换点含水率为50%时,单位能耗最低,为316.31 kJ·g–1;较低的热泵温度,较高的真空度以及较高的转换点含水率可以提高感官评分,当热泵温度为45 ℃、真空度为110 Pa、转换点含水率为60%时,感官评分最高,为8.5;较低的热泵温度,较高的真空度以及较高的转换点含水率可以提高复水比,当热泵温度为45 ℃、真空度为110 Pa、转换点含水率为60%时,复水比最高,为2.84;较低的热泵温度,较高的真空度以及较高的转换点含水率可以减小硬度,当热泵温度为46.01 ℃、真空度为104.37 Pa、转换点含水率为60%时,硬度最低,为3.28 N。
2.2.2 综合工艺参数优化
分析表5可知,较高的热泵温度虽然可以降低单位能耗,但是不能保证高感官评分、高复水比和低硬度;真空度和转换点含水率对这4个指标也有类似的影响。所以,需对这4个指标函数进行综合优化分析,寻找最佳工艺条件。
本文以降低加工成本为主要目的,其次,考虑到干制香菇在销售过程中消费者对感官品质的要求,故单位能耗最重要,感官评分次之;复水比和硬度在评价干制产品品质中也十分重要,但略次于前2个指标。所以将这4个指标的重要性设置为4∶3∶2∶1。优化后的工艺条件为:热泵温度49.26 ℃,真空度110 Pa,转换点含水率56.48%。在此条件下,单位能耗为344.35 kJ·g–1,感官评分为8.0,复水比为2.68,硬度为3.55 N (表5)。
为了便于实际生产,将工艺条件修正为热泵温度49 ℃,真空度110 Pa和转换点含水率56%。按照优化修正后的工艺条件进行3组平行验证试验,取平均值,测得单位能耗为345.01 kJ·g–1,感官评分为8.3,复水比为2.72,硬度为3.61 N,与预测值相近,相对误差分别为0.19%、3.61%、1.47%和1.66%。因此,上述工艺条件可行。
2.3 香菇的单一干燥和联合干燥比较
由表6可知,联合干燥的单位能耗比真空干燥减少37.69%,但高于热泵干燥;单一热泵干燥后的香菇皱缩,边缘出现焦化,内部结构受到破坏[25-28],导致其感官评分低、复水比低、硬度高,而单一真空干燥和联合干燥尽可能地保证了香菇内部结构的完整,故这2种干燥方式的复水比相近且高于热泵干燥;另外,联合干燥前期为热泵干燥,热泵干燥中的美拉德反应使香菇散发出香味[29],再经过真空干燥,颜色和硬荚变得均匀,所以联合干燥的感官评分得以提高。
表 6 各干燥方式比较1)Table 6. Comparison of different drying methods干燥方式
Drying method单位能耗 /(kJ·g–1)
Unit energy consumption
(Y1)感官评分
Sensory score
(Y2)复水比
Rehydration ratio
(Y3)硬度 /N
Hardness
(Y4)热泵干燥
Heat pump drying289.22±2.92a 6.4±0.05a 1.45±0.02a 4.50±0.03c 真空干燥
Vacuum drying553.67±2.59c 8.5±0.82c 2.62±0.03b 3.21±0.03a 联合干燥
Combined drying345.01±1.63b 8.3±0.47b 2.72±0.02b 3.61±0.03b 1) 同列数据后的不同小写字母表示差异显著 (P<0.05,Duncan’s 法)
1) Different lowercase letters in the same column indicated significant difference (P<0.05, Duncan’s test)综上所述,联合干燥可以得到能耗低于真空干燥,品质与真空干燥相近的干制香菇。
3. 讨论与结论
香菇在干燥过程中的水分扩散分为外扩散和内扩散,这2种扩散方式同时进行,既相辅相成,也相互制约,其扩散速度差影响着干燥品质[30]。热泵干燥后期水分分布不均,香菇内外水分扩散速度相差较大,内部水分未能及时转移到物料表面,使表面较易形成硬荚;真空干燥的单位能耗较高,排湿效果差,设备成本决定了其规模难以扩大,但在干燥过程中内外水分分布均匀,干燥后的香菇品质较好。热泵−真空联合干燥结合了2种干燥方式的优点,降低了干燥中的内外扩散速度差,不易形成硬荚,很好地保留了香菇的色、香、味,减少了单位能耗。本试验在固定的冷阱温度、热泵风速和湿度下进行,具有一定的局限性。
本研究确定最佳联合干燥工艺为热泵温度49 ℃,真空度110 Pa和转换点含水率56%,在此条件下实测得单位能耗345.01 kJ·g–1,感官评分8.3,复水比2.72,硬度3.61 N,与预测值相近,相对误差分别为0.19%、3.61%、1.47%和1.66%。联合干燥的单位能耗比真空干燥减少37.69%,但高于热泵干燥;其感官评分和复水比与真空干燥相近,高于热泵干燥;其硬度略大于真空干燥,小于热泵干燥。热泵干燥和真空干燥相结合,充分利用两者的优点,得到了能耗低、质量好的干制香菇。解决了热泵干燥品质不佳、真空干燥能耗高等问题,本研究可为香菇的热泵–真空联合干燥提供理论依据。
-
图 3 死胚和环境样品中不同铜绿假单胞菌ST型的遗传进化分析
“■”:铜绿假单胞菌死胚分离株所属的ST型;“□”:铜绿假单胞菌环境样品分离株所属的ST型;“▲”:2种样品共有的ST型
Figure 3. Genetic evolution analysis of different Pseudomonas aeruginosa ST types isolated from dead embryo and environment samples
“■”: ST type of Pseudomonas aeruginosa strain isolated from dead embryo; “□”: ST type of P. aeruginosa strain isolated from environment sample; “▲”: The common ST type of P. aeruginosa strain isolated from dead embryo and environment sample
表 1 不同七彩山鸡养殖场中铜绿假单胞菌临床分离株的数量及分离率
Table 1 Quantity and isolation rate of clinical isolates of Pseudomonas aeruginosa from different breeding poultry farms
养殖场
Poultry
farm样本类型
Sample type样品采集数
Collected sample number阳性样品数
Positive sample number分离率/%
Isolation rateA 死胚
Dead embryo222 85 38.3
(87/227)环境
Environment5 2 B 死胚
Dead embryo96 24 21.2
(28/132)环境
Environment36 4 C 死胚
Dead embryo87 12 19.4
(30/155)环境
Environment68 18 合计
Total514 145 28.2
(145/514)表 2 死胚和环境样品中耐药铜绿假单胞菌菌株数量及占比1)
Table 2 Number and proportion of drug-resistant Pseudomonas aeruginosa strain in dead embryo and environment samples
抗菌药
Antimicrobial死胚
Dead embryo环境
Environment总计
TotalAMP 121(100.0) 24(100.0) 145(100.0) NA 121(100.0) 24(100.0) 145(100.0) K 121(100.0) 24(100.0) 145(100.0) SXT 121(100.0) 24(100.0) 145(100.0) C 92(76.0) 24(100.0) 116(80.0) TE 90(74.4) 22(91.7) 112(77.2) CTX 27(22.3) 7(29.2) 34(23.4) LEV 7(5.8) 11(45.8) 18(12.4) CIP 7(5.8) 9(37.5) 16(11.1) TOB 7(5.8) 6(25.0) 13(9.0) CN 8(6.6) 5(20.8) 13(9.0) PRL 10(8.3) — 10(6.9) CFP 7(5.8) 3(12.5) 10(6.9) ATM 7(5.8) 1(4.2) 8(5.5) CAZ 5(4.1) — 5(3.5) FEP 4(3.3) — 4(2.8) TZP 3(1.9) — 3(2.1) IPM 1(0.8) 1(4.2) 2(1.4) MER — — — AMI — — — CES — — — POB — — — 1) AMP:氨苄西林,SXT:复方新诺明,NA:萘啶酸,K:卡那霉素,TE:四环素,C:氯霉素,PRL:哌拉西林,CTX:头孢噻肟,FEP:头孢吡肟,CAZ:头孢他啶,CFP:头孢哌酮,IPM:亚胺培南,ATM:氨曲南,TZP:哌拉西林/他唑巴坦,TOB:妥布霉素,CN:庆大霉素,CIP:环丙沙星,LEV:左氧氟沙星,IPM:亚胺培南,MER:美罗培南,AMI:阿米卡星,CES:头孢哌酮/舒巴坦,POB:多黏菌素B;括号内数据为占比;“—”表示未检测到耐药菌株
1) AMP: Ampicillin, SXT: Complex sulfamethoxazole, NA: Nalidixic acid, K: Kanamycin, TE: Tetracycline, C: Chloramphenicol, PRL: Piperacillin, CTX: Cefotaxime, FEP: Cefepime, CAZ: Ceftazidime, CFP: Cefoperazone, IPM: Imipenem, ATM: Aztreonam, TZP: Piperacillin/tazobactam, TOB: Tobramycin, CN: Gentamicin, CIP: Ciprofloxacin, LEV: Levofloxacin, IPM: Imipenem, MER: Meropenem, AMI: Amikacin, CES: Cefoperazone/sulbactam, POB: Polymyxin B; The data in brackets are proportions; “—” indicates no drug-resistant isolate表 3 铜绿假单胞菌的耐药谱及对应菌株数量
Table 3 Drug resistance spectrum and strain quantity of Pseudomonas aeruginosa
耐药数
Drug-resistant number耐药谱1)
Drug resistance spectrum菌株数量
Strain number4 AMP+K+NA+SXT 14 5 AMP+K+TE+NA+SXT 7 AMP+K+C+NA+SXT 18 6 AMP+K+TE+C+NA+SXT 59 AMP+CTX+K+TE+NA+SXT 6 7 AMP+CTX+K+TE+C+NA+SXT 12 AMP+PRL+CTX+CFP+K+NA+SXT 1 AMP+K+TE+C+NA+LEV+SXT 3 8 AMP+K+TE+C+NA+CIP+LEV+SXT 5 AMP+CTX+CFP+K+TE+C+NA+SXT 1 AMP+CTX+ATM+K+TE+C+NA+SXT 1 9 AMP+PRL+K+TOB+CN+TE+C+NA+SXT 2 10 AMP+PRL+CTX+K+TOB+CN+TE+C+NA+SXT 1 AMP+K+TOB+CN+TE+C+NA+CIP+LEV+SXT 2 AMP+CTX+K+CN+TE+C+NA+CIP+LEV+SXT 1 AMP+CTX+K+TOB+CN+TE+C+NA+CIP+SXT 1 AMP+CFP+K+TOB+TE+C+NA+CIP+LEV+SXT 1 11 AMP+PRL+CTX+CAZ+CFP+ATM+K+TE+C+NA+SXT 1 AMP+PRL+CTX+FEP+CAZ+CFP+ATM+K+TE+NA+SXT 1 AMP+CTX+K+TOB+CN+TE+C+NA+CIP+LEV+SXT 3 13 AMP+PRL+CTX+FEP+CAZ+CFP+ATM+TZP+K+TE+C+NA+SXT 3 AMP+CTX+IPM+ATM+K+TOB+CN+TE+C+NA+CIP+LEV+SXT 1 15 AMP+PRL+CTX+CFP+IPM+ATM+K+TOB+CN+TE+C+NA+CIP+LEV+SXT 1 1)AMP:氨苄西林,SXT:复方新诺明,NA:萘啶酸,K:卡那霉素,TE:四环素,C:氯霉素,PRL:哌拉西林,CTX:头孢噻肟,FEP:头孢吡肟,CAZ:头孢他啶,CFP:头孢哌酮,IPM:亚胺培南,ATM:氨曲南,TZP:哌拉西林/他唑巴坦,TOB:妥布霉素,CN:庆大霉素,CIP:环丙沙星,LEV:左氧氟沙星
1) AMP: Ampicillin, SXT: Complex sulfamethoxazole, NA: Nalidixic acid, K: Kanamycin, TE: Tetracycline, C: Chloramphenicol, PRL: Piperacillin, CTX: Cefotaxime, FEP: Cefepime, CAZ: Ceftazidime, CFP: Cefoperazone, IPM: Imipenem, ATM: Aztreonam, TZP: Piperacillin/tazobactam, TOB: Tobramycin, CN: Gentamicin, CIP: Ciprofloxacin, LEV: Levofloxacin表 4 89株铜绿假单胞菌菌株各ST型菌株数量及来源
Table 4 Quantity and source of each ST type in 89 Pseudomonas aeruginosa strains
ST型1)
ST type菌株数量
Strain number来源
SourceST型1)
ST type菌株数量
Strain number来源
SourceST-260 43 死胚 Dead embryo ST-3203 1 地面积水 Excess surface water ST-2100 15 死胚/孵化机
Dead embryo/IncubatorST-876 1 孵化机污垢 Incubator filth ST-3202 10 孵化机污垢 Incubator filth ST-1336 1 饲料Fodder ST-1971 5 死胚 Dead embryo ST-2640 1 死胚 Dead embryo ST-3200 2 死胚 Dead embryo ST-898 1 笼架污垢 Cage shelf filth ST-3201 2 饮水 Drinking water ST-1965 1 死胚 Dead embryo ST-3199 1 死胚 Dead embryo ST-3204 1 地面积水 Excess surface water ST-234 1 地面灰尘 Ground dust ST-1054 1 机械部件污垢
Mechanical component filthST-2552 1 笼架污垢 Cage shelf filth ST-2670 1 地面灰尘 Ground dust 1)ST-3199、ST-3200、ST-3201、ST-3202、ST-3203、ST-3204为本研究新发现的ST型
1)ST-3199, ST-3200, ST-3201 and ST-3202, ST-3203 and ST-3204 are the ST types discovered in this research -
[1] FOLIC M M, DJORDJEVIC Z, FOLIC N, et al. Epidemiology and risk factors for healthcare-associated infections caused by Pseudomonas aeruginosa[J]. Journal of Chemotherapy, 2020, 33(5): 294-301.
[2] GUPTA K K, DEVI D. Characteristics investigation on biofilm formation and biodegradation activities of Pseudomonas aeruginosa strain ISJ14 colonizing low density polyethylene (LDPE) surface[J]. Heliyon, 2020, 6(7): e04398. doi: 10.1016/j.heliyon.2020.e04398
[3] 孙理云, 孔瑞娜, 温广辉, 等. 健康肉鸡高比率携有多重耐药铜绿假单胞菌[J]. 中国人兽共患病学报, 2012, 28(2): 193-195. doi: 10.3969/j.issn.1002-2694.2012.02.025 [4] 李玲. 鸡铜绿假单胞菌的分离鉴定及生物学特性研究[D]. 保定: 河北农业大学, 2013. [5] HASSAN W H, IBRAHIM A M K, SHANY S A S, et al. Virulence and resistance determinants in Pseudomonas aeruginosa isolated from pericarditis in diseased broiler chickens in Egypt[J]. Journal of advanced veterinary and animal research, 2020, 7(3): 452-463. doi: 10.5455/javar.2020.g441
[6] SALEEM S, BOKHARI H. Resistance profile of genetically distinct clinical Pseudomonas aeruginosa isolates from public hospitals in central Pakistan[J]. Journal of Infection and Public Health, 2020, 13(4): 598-605. doi: 10.1016/j.jiph.2019.08.019
[7] MAUNDERS E A, TRINIMAN R C, WESTERN J, et al. Global reprogramming of virulence and antibiotic resistance in Pseudomonas aeruginosa by a single nucleotide polymorphism in elongation factor, fusA1[J]. Journal of Biological Chemistry, 2020, 295(48): 16411-16426. doi: 10.1074/jbc.RA119.012102
[8] 卢斌, 姚燕, 陆英, 等. 某二甲医院铜绿假单胞菌标本来源、病区分布及耐药性分析[J]. 浙江医学, 2021, 43(6): 653-655. doi: 10.12056/j.issn.1006-2785.2021.43.6.2020-3073 [9] MERRADI M, KASSAH-LAOUAR A, AYACHI A, et al. Occurrence of VIM-4 metallo-beta-lactamase-producing Pseudomonas aeruginosa in an Algerian hospital[J]. Journal of Infection in Developing Countries, 2019, 13(4): 284-290. doi: 10.3855/jidc.10679
[10] JAHAN M I, RAHAMAN M M, HOSSAIN M A, et al. Occurrence of intI1-associated VIM-5 carbapenemase and co-existence of all four classes of beta-lactamase in carbapenem-resistant clinical Pseudomonas aeruginosa DMC-27b[J]. Journal of Antimicrobial Chemotherapy, 2020, 75(1): 86-91.
[11] MARTINS W M B S, NARCISO A C, CAYO R, et al. SPM-1-producing Pseudomonas aeruginosa ST277 clone recovered from microbiota of migratory birds[J]. Diagnostic Microbiology and Infectious Disease, 2018, 90(3): 221-227. doi: 10.1016/j.diagmicrobio.2017.11.003
[12] FERNANDES M R, SELLERA F P, MOURA Q, et al. Zooanthroponotic transmission of drug-resistant Pseudomonas aeruginosa, Brazil[J]. Emerging Infectious Diseases, 2018, 24(6): 1160-1162. doi: 10.3201/eid2406.180335
[13] TREEPONG P, KOS V N, GUYEUX C, et al. Global emergence of the widespread Pseudomonas aeruginosa ST235 clone[J]. Clinical Microbiology and Infection, 2018, 24(3): 258-266. doi: 10.1016/j.cmi.2017.06.018
[14] PEREZ-VAZQUEZ M, SOLA-CAMPOY P J, ZURITA A M, et al. Carbapenemase-producing Pseudomonas aeruginosa in Spain: Interregional dissemination of the high risk-clones ST175 and ST244 carrying blaVIM-2, blaVIM-1, blaIMP-8, blaVIM-20 and blaKPC-2[J]. International Journal of Antimicrobial Agents, 2020, 56(1): 106026. doi: 10.1016/j.ijantimicag.2020.106026.
[15] XIANG Y, YAN L, ZHENG X C, et al. Rapid detection of Pseudomonas aeruginosa by cross priming amplification[J]. Journal of Integrative Agriculture, 2020, 19(10): 2523-2529. doi: 10.1016/S2095-3119(20)63187-2
[16] Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: 28th informational CLSI document: M100-S28[S]. 2018. www.clsi.org.
[17] CURRAN B, JONAS D, GRUNDMANN H, et al. Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa[J]. Journal of Clinical Microbiology, 2004, 42(12): 5644-5649. doi: 10.1128/JCM.42.12.5644-5649.2004
[18] DAVIS T J, KARANJIA A V, BHEBHE C N, et al. Pseudomonas aeruginosa volatilome characteristics and adaptations in chronic cystic fibrosis lung infections[J]. mSphere, 2020, 5(5): e00843-20.
[19] DAME J A, BEYLIS N, NUTTALL J, et al. Pseudomonas aeruginosa bloodstream infection at a tertiary referral hospital for children[J]. BMC Infectious Diseases, 2020, 20(1): 729. doi: 10.1186/s12879-020-05437-1.
[20] RAMOS M S, FURLAN J P R, GALLO I F L, et al. High level of resistance to antimicrobials and heavy metals in multidrug-resistant Pseudomonas sp. isolated from water sources[J]. Current Microbiology, 2020, 77(10): 2694-2701. doi: 10.1007/s00284-020-02052-w
[21] JACKSON L, DEPAS W, MORRIS A J, et al. Visualization of Pseudomonas aeruginosa within the sputum of cystic fibrosis patients[J]. Jove-Journal of Visualized Experiments, 2020(161): e61631.
[22] 秦柯君, 曹献芹, 陈派强, 等. 铜绿假单胞菌临床分布及耐药机制研究[J]. 中国病原生物学杂志, 2021, 16(2): 224-227. [23] 杨婧, 陈丽华. 铜绿假单胞菌生物被膜与宿主免疫的关系[J]. 中国微生态学杂志, 2017, 29(7): 861-865. [24] 吴振安, 张亮. 铜绿假单胞菌的临床分布及耐药性分析[J]. 中国临床医生杂志, 2021, 49(1): 55-57. doi: 10.3969/j.issn.2095-8552.2021.01.017 [25] 郑百慧, 龚春, 梅黎, 等. 呼吸与危重症医学病房分离的碳青霉烯耐药铜绿假单胞菌的分子流行病学[J]. 中华医院感染学杂志, 2020, 30(17): 2610-2614. [26] MOLINA-MORA J A, CHINCHILLA-MONTERO D, CHAVARRIA-AZOFEIFA M, et al. Transcriptomic determinants of the response of ST-111 Pseudomonas aeruginosa AG1 to ciprofloxacin identified by a top-down systems biology approach[J]. Scientific Reports, 2020, 10(1): 13717. doi: 10.1038/s41598-020-70581-2.
[27] MULET X, FERNANDEZ-ESGUEVA M, NORTE C, et al. Validation of MALDI-TOF for the early detection of the ST175 high-risk clone of Pseudomonas aeruginosa in clinical isolates belonging to a Spanish nationwide multicenter study[J]. Enfermedades Infecciosas y Microbiología Clínica, 2021, 39(6): 279-282.
[28] BOTELHO J, GROSSO F, PEIXE L. Unravelling the genome of a Pseudomonas aeruginosa isolate belonging to the high-risk clone ST235 reveals an integrative conjugative element housing a bla(GES-6) carbapenemase[J]. Journal of Antimicrobial Chemotherapy, 2018, 73(1): 77-83. doi: 10.1093/jac/dkx337
-
期刊类型引用(6)
1. 邱心洋,袁惠君,李梅,程建新,田世龙,李志忠. 马铃薯营养特性及其功能性产品开发研究进展. 中国食品添加剂. 2024(01): 272-278 . 百度学术
2. 张露,王新惠,冉凌云,杨婷婷,赵乐乐,吴明阳. 富含花青素紫马铃薯汁护色研究及酶解工艺优化. 中国酿造. 2024(02): 238-242 . 百度学术
3. 樊玉婷,李智昊,李月垣,张俊霞,张李一如,王璐,周鹏辉,李进,陈可钦,房玉林,张克坤. 不同品种葡萄添加量对果啤香气、理化指标及抗氧化活性的影响. 食品科学. 2024(13): 164-172 . 百度学术
4. 王蕾,赵进修,刘明亮,李博鹏,卢庆华,张玲,李雅丽. 响应面法优化百香果艾尔精酿啤酒发酵工艺. 中国酿造. 2024(11): 187-193 . 百度学术
5. 王琼,吴晓杰,郭华春,李俊,肖继坪. 滇紫甘薯新品种抗氧化物质含量及活性测定. 江苏农业科学. 2023(17): 179-185 . 百度学术
6. 庞莹莹,陈亮,徐绍丝,黄鹭强. 精酿啤酒特色辅料的应用概况. 福建轻纺. 2021(07): 2-6+10 . 百度学术
其他类型引用(2)