Eco-stoichiometric characteristics of carbon, nitrogen and phosphorus in Alternanthera philoxeroides-A. sessilis and their responses to heterogeneous environments
-
摘要:目的
探讨入侵植物空心莲子草Alternanthera philoxeroides与其共存本土同属种莲子草A.sessilis的元素化学计量比差异及环境驱动力,明晰其资源分配格局与营养策略。
方法在广西、广东、江西和河南等省(区)的野外生境中设置6个莲子草−空心莲子草共存群落样地和7个莲子草单生群落样地,分别测定这2种植物的w(C)、w(N)、w(P)及其化学计量比(C∶N、C∶P和N∶P),并记录样地环境指标,利用回归分析和典范对应分析探究空心莲子草、莲子草的营养策略差异及对异质生境的响应。
结果在莲子草−空心莲子草共存群落中,这2种植物的w(C)、w(N)、w(P)及其化学计量比均无显著性差异。w(C)均随气温上升呈“先上升后下降”趋势;空心莲子草w(N)随降雨量上升而下降,莲子草w(N)随降雨量上升呈“先下降后上升”趋势;莲子草w(P)随海拔上升而增加。C∶N均随海拔上升呈“先下降后上升”趋势,莲子草C∶P随海拔上升而下降、N∶P随土壤N上升而下降,空心莲子草C∶P和N∶P与环境因子之间均无显著性关系。在莲子草单生群落中,其w(C)随土壤w(NH4+-N)上升而降低、随降雨量上升而增加;其w(P)随海拔和土壤w(N)上升而降低;其C∶N随土壤w(NH4+-N)、w(NO3−-N)上升而降低;其C∶P随土壤w(N)上升而增加。
结论莲子草的C、N、P生态化学计量特征对异质环境的响应程度高于空心莲子草,莲子草在高海拔区域选择以“生长竞争策略”应对空心莲子草入侵。研究可为预测外来种的入侵力及深入理解物种共存机制提供理论依据。
Abstract:ObjectiveTo explore the difference of stoichiometric ratios between the invasive plant Alternanthera philoxeroides and the native congeneric species A. sessilis as well as the environmental driving forces, and clarify their resource allocation pattern and nutrition strategy.
MethodWe totally set up six A.sessilis-A. philoxeroides coexistent plots and seven A. sessilis single plots in the wild habitats of Guangxi, Guangdong, Jiangxi and Henan Provinces. We measured w(C), w(N), w(P) and C∶N, C∶P, N∶P of these two species, and recorded the environmental indicators in each plot. We then used regression analysis and canonical correspondence analysis (CCA) to examine the difference of nutrition strategies between A. sessilis and A. philoxeroides and their responses to the heterogeneous habitats.
ResultIn the coexistent communities, there was no significant difference of w(C), w(N), w(P) and their stoichiometric ratios between these two plant species. The w(C) all showed the ‘first rising and then decreasing’ trend with the increase of temperature. The w(N) of A. philoxeroides decreased with the increased precipitation, while the w(N) of A. sessilis showed the ‘first decreasing and then rising’ trend with the increase of precipitation. The w(P) of A. sessilis increased with the increase of elevation. C∶N of these two plant species all showed the trend of ‘first descending and then rising’ with the elevation rising. C∶P of A. sessilis decreased with the increase of elevation, and N∶P decreased with the increase of soil w(N). The C∶P and N∶P of A. philoxeroides had no significant relationship with the environmental factors. In the A. sessilis single communities, the w(C) of A. sessilis decreased with the increase of soil w(NH4+-N), and increased with the increased precipitation; w(P) decreased with the increase of elevation and soil w(N); C∶N decreased with the increase of soil w(NH4+-N) and w(NO3−-N), and C∶P increased with the increase of soil w(N).
ConclusionThe eco-stoichiometric characteristics of C, N, P in A. sessilis are more responsive to the heterogeneous environments than those of A. philoxeroides. A. sessilis chooses the ‘growth competition strategy’ for resisting A. philoxeroides invasion in higher elevation regions. The finding provides a theoretical basis for predicting the invasiveness of alien species and understanding the species coexistence mechanism in depth.
-
-
图 4 共存和单生群落中植物营养元素含量、化学计量比沿环境因子的CCA排序
w(C)、w(N)和w(P)分别代表植物的总碳、总氮和总磷含量,C∶N、C∶P、N∶P代表其化学计量比;LON、LAT、ELE、TEM、PRE、w(NH4+-N)、w(NO3−-N)、w(C)土、w(N)土和w(P)土分别代表纬度、海拔、年均温、年均降雨量、土壤氨态氮含量、土壤硝态氮含量、土壤总碳含量、土壤总氮含量和土壤总磷含量
Figure 4. CCA ordination of element content and stoichiometry in coexistent and single communities along environmental factors
The w(C), w(N) and w(P) represent the total carbon, total nitrogen and total phosphorus of plant tissues, while the C∶N, C∶P and N∶P represent their stoichiometric ratios; The LON, LAT, ELE, TEM, PRE, w(NH4+-N),w(NO3−-N),w(C)土, w(N)土 and w(P)土 represent the longitude, latitude, elevation, temperature, precipitation, soil total ammonium nitrogen content, soil total nitrate nitrogen content,soil total carbon content, soil total nitrogen content and soil total phosphorus content, respectively
表 1 野外调查样地的环境概况
Table 1 The environmental survey of sampling plots in the field
群落类型
Community type取样地
Sampling plot北纬/(°)
North latitude东经/(°)
East longitude海拔/m
Elevationw/(mg·kg−1) 年均温/℃
Mean annual temperature年均降雨量/cm
Mean annual precipitationw/(g·kg−1) NH4+-N NO3−-N C N P 共存
Coexistent桂林 25.562 110.668 211 8.530 32.540 19.754 157.317 21.604 2.290 0.663 高州
21.912 110.864 45 7.050 18.630 23.679 150.208 30.009 2.545 2.004 高州
21.919 110.885 43 5.140 49.930 23.679 150.208 30.808 3.084 1.749 河源
23.724 114.713 39 17.640 34.550 22.546 160.650 10.259 1.139 0.410 吉安
27.616 115.319 41 12.170 28.290 19.250 130.517 11.872 1.623 0.351 信阳
32.046 114.146 75 11.197 32.403 16.038 92.183 12.476 1.524 0.291 单生
Single梧州 23.478 111.383 35 3.480 2.320 21.790 121.075 13.775 0.522 0.403 九江
29.329 115.765 20 4.850 9.690 18.033 120.500 7.664 1.104 0.305 阳江
21.670 111.521 36 5.440 12.830 23.167 185.083 16.201 1.882 0.548 肇庆
23.405 110.500 50 3.730 12.520 23.238 136.083 26.058 1.512 0.634 肇庆
23.413 111.504 86 3.440 12.540 23.238 136.083 26.934 2.541 0.291 吉安
27.638 115.329 51 3.610 8.430 19.250 130.517 3.242 0.576 1.031 信阳
32.046 114.146 75 11.197 32.403 16.038 92.183 12.476 1.524 0.291 表 2 不同类型群落中空心莲子草和莲子草的养分含量及其化学计量比
Table 2 Nutrients and stoichiometry of Alternanthera philoxeroides and A. sessilis in different types of communities
群落类型
Community
type物种
Species统计参数1)
Parameterw/(g·kg−1) C∶N C∶P N∶P C N P 共存
Coexistent莲子草
A. sessilis$\overline x $ 380.567 26.473 3.297 18.819 129.759 8.913 SD
13.563 3.659 1.070 4.362 37.042 2.243 CV
0.036 0.138 0.325 0.232 0.285 0.252 空心莲子草
A. philoxeroides$\overline x $ 372.234 29.201 2.814 14.945 135.414 10.514 SD
17.587 4.408 0.449 2.939 20.484 2.248 CV
0.047 0.151 0.160 0.197 0.151 0.214 单生
Single莲子草
A. sessilis$\overline x $ 374.152 28.724 2.671 15.539 141.430 10.763 SD
12.285 1.760 0.185 2.221 11.512 0.863 CV 0.033 0.061 0.069 0.143 0.081 0.080 1) $\overline x $、SD、CV分别表示均值、标准差和变异系数
1) $\overline x $: Mean; SD: Standard deviation; CV: Coeffecient of variation表 3 环境因子与CCA排序轴的相关系数(r)及显著性检验1)
Table 3 Correlation coefficient (r) between environmental factor and the CCA ordination axis and its significance test
环境因子
Environmental factor共存群落 Coexistent community 单生群落 Single community CCA第1轴
CCA axis 1CCA第2轴
CCA axis 2CCA第1轴
CCA axis 1CCA第2轴
CCA axis 2纬度 Latitude 0.375 0.593 0.353 −0.423 经度 Longitude −0.481 0.499 −0.174 −0.508 海拔 Elevation 0.840* −0.390 0.226 0.722* 土壤铵态氮含量 Soil ammonia nitrogen content −0.404 0.394 0.824* 0.018 土壤硝态氮含量 Soil nitrate nitrogen content 0.153 −0.070 0.752* 0.215 年均温 Mean annual temperature −0.487 −0.479 −0.359 0.470 年均降雨量 Mean annual precipitation −0.252 −0.733 −0.421 0.324 土壤总碳含量 Soil total carbon content 0.169 −0.461 0.177 0.634 土壤总氮含量 Soil total nitrogen content 0.250 −0.529 0.122 0.823* 土壤总磷含量 Soil total phosphorus −0.111 −0.336 −0.492 −0.311 1) “*”表示在0.05水平显著相关(Monte-Carlo检验)
1) “*”represents significant correlation at 0.05 level(Monte-Carlo test) -
[1] WU H, DING J Q. Global change sharpens the double-edged sword effect of aquatic alien plants in china and beyond[J]. Frontiers in Plant Science, 2019, 10: 787. doi: 10.3389/fpls.2019.00787
[2] 吴昊, 丁建清. 入侵生态学最新研究动态[J]. 科学通报, 2014, 59(6): 438-448. [3] LANNES L S, BUSTAMANTE M M C, EDWARDS P J, et al. Alien and endangered plants in the Brazilian Cerrado exhibit contrasting relationships with vegetation biomass and N∶P stoichiometry[J]. New Phytologist, 2012, 196(3): 816-823. doi: 10.1111/j.1469-8137.2012.04363.x
[4] 贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34(1): 2-6. doi: 10.3773/j.issn.1005-264x.2010.01.002 [5] SARDANS J, BARTRONS M, MARGALEF O, et al. Plant invasion is associated with higher plant–soil nutrient concentrations in nutrient-poor environments[J]. Global Change Biology, 2017, 23(3): 1282-1291. doi: 10.1111/gcb.13384
[6] SORTE C J B, IBANEZ I, BLUMENTHAL D M. Poised to prosper? A cross-system comparison of climate change effects on native and non-native species performance[J]. Ecology Letters, 2013, 16(2): 261-270. doi: 10.1111/ele.12017
[7] 王晴晴, 高燕, 王嵘. 全球变化对食物网结构影响机制的研究进展[J]. 植物生态学报, 2021, 45(10): 1064-1074. doi: 10.17521/cjpe.2020.0061 [8] 胡朝臣, 刘学炎, 类延宝, 等. 西双版纳外来入侵植物及其共存种叶片氮、磷化学计量特征[J]. 植物生态学报, 2016, 40(11): 1145-1153. doi: 10.17521/cjpe.2016.0052 [9] 陈文, 王桔红, 陈晓芸, 等. 入侵植物红毛草碳、氮、磷化学计量特征及其营养策略[J]. 生态与农村环境学报, 2020, 36(10): 1293-1300. [10] 蒋利玲, 曾从盛, 邵钧炯, 等. 闽江河口入侵种互花米草和本地种短叶茳芏的养分动态及植物化学计量内稳性特征[J]. 植物生态学报, 2017, 41(4): 450-460. doi: 10.17521/cjpe.2016.0193 [11] WANG J H, CHEN W, ZHU H. Ecological stoichiometry and invasive strategies of two alien species (Bidenspilosa and Mikaniamicrantha) in subtropical China[J]. Ecological Research, 2019, 34(5): 612-623. doi: 10.1111/1440-1703.12027
[12] FUNK J L, VITOUSEK P M. Resource-use efficiency and plant invasion in low-resource systems[J]. Nature, 2007, 446(7139): 1079-1081. doi: 10.1038/nature05719
[13] 陈新微, 杨殿林, 刘红梅, 等. 不同N、P添加水平对黄顶菊叶片化学计量特征的影响[J]. 农业资源与环境学报, 2015, 32(2): 185-191. [14] 王桔红, 陈文, 张燕芳, 等. 不同入侵程度的微甘菊及本土种豨莶碳氮磷化学计量特征与营养策略[J]. 生态学杂志, 2020, 39(6): 1994-2003. [15] 吴昊, 张辰, 代文魁. 气候变暖和物种多样性交互效应对空心莲子草入侵的影响[J]. 草业学报, 2020, 29(3): 38-48. doi: 10.11686/cyxb2019277 [16] LU X M, SIEMANN E, HE M Y, et al. Warming benefits a native species competing with an invasive congener in the presence of a biocontrol beetle[J]. New Phytologist, 2016, 211(4): 1371-1381. doi: 10.1111/nph.13976
[17] 吴昊. 陆生生境入侵植物空心莲子草群落数量分类与排序[J]. 浙江农业学报, 2017, 29(3): 433-444. doi: 10.3969/j.issn.1004-1524.2017.03.13 [18] 吴昊, 韩美旭, 韩雪. 环境因子对入侵杂草空心莲子草化学计量特征的影响[J]. 西南农业学报, 2020, 33(8): 1816-1823. [19] 周建, 李红丽, 罗芳丽, 等. 施氮对空心莲子草(Alternanthera philoxeroides)和莲子草(Alternanthera sessilis)种间关系的影响[J]. 生态学报, 2015, 35(24): 8258-8267. [20] LU X M, SIEMANN E, HE M Y, et al. Climate warming increases biological control agent impact on a non-target species[J]. Ecology Letters, 2015, 18(1): 48-56. doi: 10.1111/ele.12391
[21] LU X M, HE M Y, DING J Q, et al. Latitudinal variation in soil biota: Testing the biotic interaction hypothesis with an invasive plant and a native congener[J]. The ISME Journal, 2018, 12(12): 2811-2822. doi: 10.1038/s41396-018-0219-5
[22] 高芳磊, 郭素民, 闫明, 等. 不同生境下空心莲子草响应模拟昆虫采食的生长和化学防御策略[J]. 生态学报, 2018, 38(7): 2344-2352. [23] 李建宇, 史梦竹, 郑丽祯, 等. 温度对2个地理种群莲草直胸跳甲成虫产卵量及存活率的影响[J]. 生物安全学报, 2013, 22(1): 57-60. [24] PAN X Y, JIA X, CHEN J K, et al. For or against: The importance of variation in growth rate for testing the EICA hypothesis[J]. Biological Invasions, 2012, 14(1): 1-8. doi: 10.1007/s10530-011-9941-x
[25] 于强, 王天铎. 光合作用−蒸腾作用−气孔导度的耦合模型及C3植物叶片对环境因子的生理响应[J]. 植物学报, 1998, 40(8): 740-754. [26] PAN X Y, GENG Y P, ZHANG W J, et al. The influence of abiotic stress and phenotypic plasticity on the distribution of invasive Alternanthera philoxeroides along a riparian zone[J]. Acta Oecologica, 2006, 30(3): 333-341.
[27] 朱志成, 黄银, 许丰伟, 等. 降雨强度和时间频次对内蒙古典型草原土壤氮矿化的影响[J]. 植物生态学报, 2017, 14(9): 938-952. [28] WANG A O, JIANG X X, ZHANG Q Q, et al. Nitrogen addition increases intraspecific competition in the invasive wetland plant Alternanthera philoxeroides, but not in its native congener Alternanthera sessilis[J]. Plant Species Biology, 2015, 30(3): 176-183. doi: 10.1111/1442-1984.12048
[29] HOUSE G L, BEVER J D. Disturbance reduces the differentiation of mycorrhizal fungal communities in grasslands along a precipitation gradient[J]. Ecological Applications, 2018, 28(3): 736-748. doi: 10.1002/eap.1681
[30] 王桔红, 许泽璇, 陈文, 等. 不同入侵程度喜旱莲子草化学计量特征及其与共存种银花苋的比较[J]. 草业学报, 2021, 30(2): 115-123. doi: 10.11686/cyxb2020286 [31] STERNER R W, ANDERSEN T, ELSER J J, et al. Scale-dependent carbon: nitrogen: phosphorus seston stoichiometry in marine and freshwaters[J]. Limnology and Oceanography, 2008, 53(3): 1169-1180. doi: 10.4319/lo.2008.53.3.1169
[32] 何桂萍, 田青, 李宗杰, 等. 摩天岭北坡森林木本植物叶性状在物种和群落水平沿海拔梯度的变化[J]. 西北植物学报, 2018, 38(3): 553-563. doi: 10.7606/j.issn.1000-4025.2018.03.0553 [33] 张小芳, 刘贤德, 敬文茂, 等. 祁连山不同海拔火绒草叶片生态化学计量特征及其与土壤养分的关系[J]. 应用生态学报, 2019, 30(12): 4012-4020. [34] ZERCHE S, LOHR D, MEINKEN E, et al. Metabolic nitrogen and carbohydrate pools as potential quality indicators of supply chains for ornamental young plants[J]. Scientia Horticulturae, 2019, 247: 449-462. doi: 10.1016/j.scienta.2018.12.029
[35] XIAO L, DING J Q, ZHANG J L, et al. Chemical responses of an invasive plant to herbivory and abiotic environments reveal a novel invasion mechanism[J]. Science of the Total Environment, 2020, 741: 140-452.
[36] 康喜坤, 陈小红, 龚伟, 等. 圆叶玉兰叶片非结构性碳水化合物与氮、磷含量对海拔的响应[J]. 生态学报, 2019, 39(11): 4049-4055. [37] VAN DEN BERG L J, PETERS C J, ASHMORE M R, et al. Reduced nitrogen has a greater effect than oxidised nitrogen on dry heathland vegetation[J]. Environmental Pollution, 2008, 154(3): 359-369. doi: 10.1016/j.envpol.2007.11.027
[38] KOERSELMAN W, MEULEMAN A F M. The vegetation N∶P ratio: A new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33(6): 1441-1450. doi: 10.2307/2404783
[39] 王菲, 李琬婷, 程小毛, 等. 急尖长苞冷杉叶光合特性及营养元素对海拔的响应[J]. 西南林业大学学报(自然科学版), 2021, 41(1): 55-61. [40] GENG Y P, PAN X Y, XU C Y, et al. Phenotypic plasticity rather than locally adapted ecotypes allows the invasive alligator weed to colonize a wide range of habitats[J]. Biological Invasions, 2007, 9(3): 245-256. doi: 10.1007/s10530-006-9029-1
[41] 吴昊, 邹梦茹, 王思芊, 等. 秦岭松栎林土壤生态化学计量特征及其对海拔梯度的响应[J]. 生态环境学报, 2019, 28(12): 2323-2331. [42] OLANDER P, VITOUSEK P M. Regulation of soil phosphatase and chitinase activity by N and P availability[J]. Biogeochemistry, 2000, 49(2): 175-190. doi: 10.1023/A:1006316117817
[43] 刘德燕, 宋长春. 湿地植物小叶章对外源氮输入的响应[J]. 应用生态学报, 2008, 19(12): 2599-2604. [44] 俞琳莺, 孙志高, 孙文广, 等. 外源氮输入对生长季黄河口碱蓬−土壤系统磷分布规律的影响[J]. 环境科学研究, 2019, 32(6): 1052-1062. [45] BLUMENTHAL D. Interactions between resource availability and enemy release in plant invasion[J]. Ecology Letters, 2006, 9(7): 887-895. doi: 10.1111/j.1461-0248.2006.00934.x