Measurement of tomato fruits quantity at different ripening stages based on color point cloud images
-
摘要:目的
为测定温室中番茄不同成熟阶段的果实数量,提出一种基于彩色点云图像的测定方法。
方法在移动平台上搭载KinectV2.0采集温室中行栽番茄的图像信息合成番茄植株点云,再将二视角的番茄植株点云合成1个点云,并通过深度信息截取得到近处番茄植株点云,将标注的点云数据输入到PointRCNN目标检测网络训练预测模型,并识别番茄植株点云中的番茄果实,最后利用基于特征矩阵训练的支持向量机(Support vector machine, SVM)分类器对已经识别出来的果实进行成熟阶段分类,获得不同成熟阶段番茄果实的数量。
结果基于PointRCNN目标检测网络的方法识别番茄果实数量的精确率为86.19%,召回率为83.39%;基于特征矩阵训练的SVM分类器,针对番茄果实成熟阶段的预测结果在训练集上准确率为94.27%,测试集上准确率为96.09%。
结论基于彩色点云图像的测定方法能够较为准确地识别不同成熟阶段的番茄果实,可以为评估温室番茄产量提供数据支撑。
Abstract:ObjectiveIn order to measure the number of tomato fruits at different ripening stages in greenhouse, a method based on color point cloud images was proposed.
MethodThe image information of tomato in greenhouse was collected by KinectV2.0 on the mobile platform to synthesize the tomato plant point cloud, then the tomato plant point clouds from two perspectives were synthesized into a point cloud, and the point cloud of nearby tomato plant was obtained by depth information interception. The labeled point cloud data were input into the PointRCNN object detection network to train the prediction model and recognize tomato fruit in the tomato plant point cloud. Finally, support vector machine(SVM) classifier based on feature matrix training was used to classify ripeness of the identified fruits, and the number of tomato fruits at different ripening stages was obtained.
ResultThe precision rate of the method based on PointRCNN object detection network for identifying the number of tomato fruits was 86.19% and the recall rate was 83.39%. The accuracy of SVM classifier based on feature matrix training for predicting the ripeness of tomato fruits was 94.27% in the training set and 96.09% in the test set.
ConclusionThe measurement method based on color point cloud images can accurately identify the number of tomato fruits at different ripening stages, and provide data supports for evaluating the yield of tomato fruits in greenhouse.
-
Keywords:
- Tomato fruit /
- Color point cloud /
- PointRCNN /
- Support vector machine /
- Ripening stage
-
-
表 1 不同成熟阶段的番茄果实颜色特征
Table 1 Color characteristics of tomato fruits at different ripening stages
颜色特征
Color feature绿熟
Mature-green微熟
Breaker成熟
Ripe完熟
Fully ripe变异系数/%
Coefficient of variation$ {\mu }_{\rm{{R}}} $ 141.88 181.70 184.16 204.71 12.17 $ {\mu }_{\rm{{G}}} $ 120.48 181.78 141.47 72.35 31.14 $ {\mu }_{\rm{{B}}} $ 72.56 104.14 87.92 66.99 21.77 $ {\mu }_{\rm{{S}}} $ 127.12 114.28 127.06 176.60 17.56 $ {\mu }_{\rm{{V}}} $ 120.63 184.04 184.21 204.72 12.62 $ {\sigma }_{\rm{{R}}} $ 1265.75 1777.64 1930.25 1876.25 27.45 $ {\sigma }_{\rm{{G}}} $ 1636.00 1853.18 1288.50 1209.70 34.39 $ {\sigma }_{\rm{{B}}} $ 882.39 1186.65 1083.63 1029.84 35.69 $ {\sigma }_{\rm{{S}}} $ 426.20 334.06 488.73 742.12 57.12 $ {\sigma }_{\rm{{V}}} $ 1637.36 1835.46 1927.17 1876.10 26.59 表 2 PointRCNN目标检测网络识别番茄果实位置的精度评价
Table 2 Accuracy evaluation of tomato fruit position recognition based on PointRCNN object detection network
点云序号
Point cloud
sequence number中心距离
Center
distance (Di)标注框边长均值
Mean side length of
dimension box (Ri)中心相对误差/%
Center relative
error (CR)1 0.943 1.579 59.72 2 0.595 1.564 38.04 3 0.606 1.487 40.75 4 0.140 1.410 9.93 5 0.562 1.572 35.75 ︙ ︙ ︙ ︙ 47 0.415 1.496 27.74 48 0.741 1.528 48.49 49 0.236 1.546 15.27 50 0.547 1.389 39.38 平均值 Mean 36.83 -
[1] 罗华, 李敏, 胡大刚, 等. 不同有机肥对肥城桃果实产量及品质的影响[J]. 植物营养与肥料学报, 2012, 18(4): 955-964. [2] 武阳, 王伟, 雷廷武, 等. 调亏灌溉对滴灌成龄香梨果树生长及果实产量的影响[J]. 农业工程学报, 2012, 28(11): 118-124. doi: 10.3969/j.issn.1002-6819.2012.11.020 [3] GONG A, YU J, HE Y, et al. Citrus yield estimation based on images processed by an android mobile phone [J]Biosystems Engineering, 2013, 115(2): 162-170. GONG A, YU J, HE Y, et al. Citrus yield estimation based on images processed by an android mobile phone[J]. Biosystems Engineering, 2013, 115(2): 162-170.
[4] 刘芳, 刘玉坤, 林森, 等. 基于改进型YOLO的复杂环境下番茄果实快速识别方法[J]. 农业机械学报, 2020, 51(6): 229-237. doi: 10.6041/j.issn.1000-1298.2020.06.024 [5] 王晓楠, 伍萍辉, 冯青春, 等. 番茄采摘机器人系统设计与试验[J]. 农机化研究, 2016, 38(4): 94-98. doi: 10.3969/j.issn.1003-188X.2016.04.020 [6] SAEDI S I, KHOSRAVI H. A deep neural network approach towards real-time on-branch fruit recognition for precision horticulture[J]. Expert Systems with Applications, 2020, 159: 113594. doi: 10.1016/J.ESWA.2020.113594
[7] 司永胜, 乔军, 刘刚, 等. 苹果采摘机器人果实识别与定位方法[J]. 农业机械学报, 2010, 41(9): 148-153. [8] 傅隆生, 宋珍珍, ZHANG X, 等. 深度学习方法在农业信息中的研究进展与应用现状[J]. 中国农业大学学报, 2020, 25(2): 105-120. doi: 10.11841/j.issn.1007-4333.2020.02.12 [9] PRZYBYLO J, JABLONSKI M. Using deep convolutional neural network for oak acorn viability recognition based on color images of their sections[J]. Computers and Electronics in Agriculture, 2019, 156: 490-499.
[10] 车金庆, 王帆, 吕继东, 等. 重叠苹果果实的分离识别方法[J]. 江苏农业学报, 2019, 35(2): 469-475. doi: 10.3969/j.issn.1000-4440.2019.02.030 [11] 崔永杰, 苏帅, 王霞霞, 等. 基于机器视觉的自然环境中猕猴桃识别与特征提取[J]. 农业机械学报, 2013, 44(5): 247-252. doi: 10.6041/j.issn.1000-1298.2013.05.043 [12] ZHANG Y D, DONG Z C, CHEN X Q, et al. Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation[J]. Multimedia Tools and Applications, 2019, 78(3): 3613-3632. doi: 10.1007/s11042-017-5243-3
[13] 熊俊涛, 郑镇辉, 梁嘉恩, 等. 基于改进YOLO v3网络的夜间环境柑橘识别方法[J]. 农业机械学报, 2020, 51(4): 199-206. doi: 10.6041/j.issn.1000-1298.2020.04.023 [14] PAYNE A B, WALSH K B, SUBEDI P P, et al. Estimation of mango crop yield using image analysis- Segmentation method[J]. Computers and Electronics in Agriculture, 2013, 91: 57-64. doi: 10.1016/j.compag.2012.11.009
[15] 贾伟宽, 赵德安, 刘晓洋, 等. 机器人采摘苹果果实的K-means和GA-RBF-LMS神经网络识别[J]. 农业工程学报, 2015, 31(18): 175-183. doi: 10.11975/j.issn.1002-6819.2015.18.025 [16] 金保华, 殷长魁, 张卫正, 等. 基于机器视觉的苹果园果实识别研究综述[J]. 轻工学报, 2019, 34(2): 71-81. doi: 10.3969/j.issn.2096-1553.2019.02.010 [17] SI Y S, LIU G, FENG J. Location of apples in trees using stereoscopic vision[J]. Computers and Electronics in Agriculture, 2015, 112: 68-74. doi: 10.1016/j.compag.2015.01.010
[18] 熊龙烨, 王卓, 何宇, 等. 果树重建与果实识别方法在采摘场景中的应用[J]. 传感器与微系统, 2019, 38(8): 153-156. [19] MEHTA S S, BURKS T F. Multi-camera fruit localization in robotic harvesting[J]. IFAC-PapersOnLine, 2016, 49(16): 90-95. doi: 10.1016/j.ifacol.2016.10.017
[20] 李寒, 陶涵虓, 崔立昊, 等. 基于SOM-K-means算法的番茄果实识别与定位方法[J]. 农业机械学报, 2021, 52 (1): 23-29. [21] 张星, 张双星. 基于point-to-plane ICP的点云与影像数据自动配准[J]. 计算机与数字工程, 2017, 45(12): 2510-2514. doi: 10.3969/j.issn.1672-9722.2017.12.039 [22] SHI S, WANG X, LI H. PointRCNN: 3D object proposal generation and detection from point cloud[C]//IEEE. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City: IEEE, 2019.
[23] SAUNDERS C, STITSON M O, WESTON J, et al. Support vector machine: Reference manual[J]. Department Computer Science, 2000, 1(4): 1-28. doi: 10.1007/978-0-387-39940-9_557