• 《中国科学引文数据库(CSCD)》来源期刊
  • 中国科技期刊引证报告(核心版)期刊
  • 《中文核心期刊要目总览》核心期刊
  • RCCSE中国核心学术期刊

基于彩色点云图像的不同成熟阶段番茄果实数量的测定方法

张先洁, 汪小旵, 孙国祥, 施印炎, 魏天翔, 陈昊

张先洁, 汪小旵, 孙国祥, 等. 基于彩色点云图像的不同成熟阶段番茄果实数量的测定方法[J]. 华南农业大学学报, 2022, 43(2): 105-112. DOI: 10.7671/j.issn.1001-411X.202105021
引用本文: 张先洁, 汪小旵, 孙国祥, 等. 基于彩色点云图像的不同成熟阶段番茄果实数量的测定方法[J]. 华南农业大学学报, 2022, 43(2): 105-112. DOI: 10.7671/j.issn.1001-411X.202105021
ZHANG Xianjie, WANG Xiaochan, SUN Guoxiang, et al. Measurement of tomato fruits quantity at different ripening stages based on color point cloud images[J]. Journal of South China Agricultural University, 2022, 43(2): 105-112. DOI: 10.7671/j.issn.1001-411X.202105021
Citation: ZHANG Xianjie, WANG Xiaochan, SUN Guoxiang, et al. Measurement of tomato fruits quantity at different ripening stages based on color point cloud images[J]. Journal of South China Agricultural University, 2022, 43(2): 105-112. DOI: 10.7671/j.issn.1001-411X.202105021

基于彩色点云图像的不同成熟阶段番茄果实数量的测定方法

基金项目: 国家十三五重点研发计划(2019YFD1001900)
详细信息
    作者简介:

    张先洁,硕士研究生,主要从事图像处理研究;E-mail: 873941071@qq.com

    通讯作者:

    汪小旵,教授,博士,主要从事作物信息化检测研究;E-mail: wangxiaochan@njau.edu.cn

  • 中图分类号: S126

Measurement of tomato fruits quantity at different ripening stages based on color point cloud images

  • 摘要:
    目的 

    为测定温室中番茄不同成熟阶段的果实数量,提出一种基于彩色点云图像的测定方法。

    方法 

    在移动平台上搭载KinectV2.0采集温室中行栽番茄的图像信息合成番茄植株点云,再将二视角的番茄植株点云合成1个点云,并通过深度信息截取得到近处番茄植株点云,将标注的点云数据输入到PointRCNN目标检测网络训练预测模型,并识别番茄植株点云中的番茄果实,最后利用基于特征矩阵训练的支持向量机(Support vector machine, SVM)分类器对已经识别出来的果实进行成熟阶段分类,获得不同成熟阶段番茄果实的数量。

    结果 

    基于PointRCNN目标检测网络的方法识别番茄果实数量的精确率为86.19%,召回率为83.39%;基于特征矩阵训练的SVM分类器,针对番茄果实成熟阶段的预测结果在训练集上准确率为94.27%,测试集上准确率为96.09%。

    结论 

    基于彩色点云图像的测定方法能够较为准确地识别不同成熟阶段的番茄果实,可以为评估温室番茄产量提供数据支撑。

    Abstract:
    Objective 

    In order to measure the number of tomato fruits at different ripening stages in greenhouse, a method based on color point cloud images was proposed.

    Method 

    The image information of tomato in greenhouse was collected by KinectV2.0 on the mobile platform to synthesize the tomato plant point cloud, then the tomato plant point clouds from two perspectives were synthesized into a point cloud, and the point cloud of nearby tomato plant was obtained by depth information interception. The labeled point cloud data were input into the PointRCNN object detection network to train the prediction model and recognize tomato fruit in the tomato plant point cloud. Finally, support vector machine(SVM) classifier based on feature matrix training was used to classify ripeness of the identified fruits, and the number of tomato fruits at different ripening stages was obtained.

    Result 

    The precision rate of the method based on PointRCNN object detection network for identifying the number of tomato fruits was 86.19% and the recall rate was 83.39%. The accuracy of SVM classifier based on feature matrix training for predicting the ripeness of tomato fruits was 94.27% in the training set and 96.09% in the test set.

    Conclusion 

    The measurement method based on color point cloud images can accurately identify the number of tomato fruits at different ripening stages, and provide data supports for evaluating the yield of tomato fruits in greenhouse.

  • 图  1   番茄种植温室试验现场

    Figure  1.   Test site in the greenhouse for tomato plant

    图  2   番茄植株图像

    Figure  2.   Image of tomato plant

    图  3   番茄植株点云配准

    Figure  3.   Point cloud registration of tomato plant

    图  4   PointRCNN网络结构

    Figure  4.   PointRCNN network structure

    图  5   网络损失值的变化曲线

    Figure  5.   Change curve of the loss value of the network

    图  6   番茄果实的成熟阶段

    Figure  6.   Ripening stage of tomato fruit

    图  7   番茄果实识别结果分类示意图

    红框为人工标注框,绿框为识别结果框

    Figure  7.   Classification diagram of tomato fruit recognition results

    The red box is the manual marking box, and the green box is the recognition result box

    图  8   番茄果实识别结果

    红框为人工标注框,绿框为识别结果框

    Figure  8.   Recognition results of tomato fruit

    The red box is the manual marking box, and the green box is the recognition result box

    表  1   不同成熟阶段的番茄果实颜色特征

    Table  1   Color characteristics of tomato fruits at different ripening stages

    颜色特征
    Color feature
    绿熟
    Mature-green
    微熟
    Breaker
    成熟
    Ripe
    完熟
    Fully ripe
    变异系数/%
    Coefficient of variation
    $ {\mu }_{\rm{{R}}} $ 141.88 181.70 184.16 204.71 12.17
    $ {\mu }_{\rm{{G}}} $ 120.48 181.78 141.47 72.35 31.14
    $ {\mu }_{\rm{{B}}} $ 72.56 104.14 87.92 66.99 21.77
    $ {\mu }_{\rm{{S}}} $ 127.12 114.28 127.06 176.60 17.56
    $ {\mu }_{\rm{{V}}} $ 120.63 184.04 184.21 204.72 12.62
    $ {\sigma }_{\rm{{R}}} $ 1265.75 1777.64 1930.25 1876.25 27.45
    $ {\sigma }_{\rm{{G}}} $ 1636.00 1853.18 1288.50 1209.70 34.39
    $ {\sigma }_{\rm{{B}}} $ 882.39 1186.65 1083.63 1029.84 35.69
    $ {\sigma }_{\rm{{S}}} $ 426.20 334.06 488.73 742.12 57.12
    $ {\sigma }_{\rm{{V}}} $ 1637.36 1835.46 1927.17 1876.10 26.59
    下载: 导出CSV

    表  2   PointRCNN目标检测网络识别番茄果实位置的精度评价

    Table  2   Accuracy evaluation of tomato fruit position recognition based on PointRCNN object detection network

    点云序号
    Point cloud
    sequence number
    中心距离
    Center
    distance (Di)
    标注框边长均值
    Mean side length of
    dimension box (Ri)
    中心相对误差/%
    Center relative
    error (CR)
    1 0.943 1.579 59.72
    2 0.595 1.564 38.04
    3 0.606 1.487 40.75
    4 0.140 1.410 9.93
    5 0.562 1.572 35.75
    47 0.415 1.496 27.74
    48 0.741 1.528 48.49
    49 0.236 1.546 15.27
    50 0.547 1.389 39.38
    平均值 Mean 36.83
    下载: 导出CSV
  • [1] 罗华, 李敏, 胡大刚, 等. 不同有机肥对肥城桃果实产量及品质的影响[J]. 植物营养与肥料学报, 2012, 18(4): 955-964.
    [2] 武阳, 王伟, 雷廷武, 等. 调亏灌溉对滴灌成龄香梨果树生长及果实产量的影响[J]. 农业工程学报, 2012, 28(11): 118-124. doi: 10.3969/j.issn.1002-6819.2012.11.020
    [3] GONG A, YU J, HE Y, et al. Citrus yield estimation based on images processed by an android mobile phone [J]Biosystems Engineering, 2013, 115(2): 162-170.

    GONG A, YU J, HE Y, et al. Citrus yield estimation based on images processed by an android mobile phone[J]. Biosystems Engineering, 2013, 115(2): 162-170.

    [4] 刘芳, 刘玉坤, 林森, 等. 基于改进型YOLO的复杂环境下番茄果实快速识别方法[J]. 农业机械学报, 2020, 51(6): 229-237. doi: 10.6041/j.issn.1000-1298.2020.06.024
    [5] 王晓楠, 伍萍辉, 冯青春, 等. 番茄采摘机器人系统设计与试验[J]. 农机化研究, 2016, 38(4): 94-98. doi: 10.3969/j.issn.1003-188X.2016.04.020
    [6]

    SAEDI S I, KHOSRAVI H. A deep neural network approach towards real-time on-branch fruit recognition for precision horticulture[J]. Expert Systems with Applications, 2020, 159: 113594. doi: 10.1016/J.ESWA.2020.113594

    [7] 司永胜, 乔军, 刘刚, 等. 苹果采摘机器人果实识别与定位方法[J]. 农业机械学报, 2010, 41(9): 148-153.
    [8] 傅隆生, 宋珍珍, ZHANG X, 等. 深度学习方法在农业信息中的研究进展与应用现状[J]. 中国农业大学学报, 2020, 25(2): 105-120. doi: 10.11841/j.issn.1007-4333.2020.02.12
    [9]

    PRZYBYLO J, JABLONSKI M. Using deep convolutional neural network for oak acorn viability recognition based on color images of their sections[J]. Computers and Electronics in Agriculture, 2019, 156: 490-499.

    [10] 车金庆, 王帆, 吕继东, 等. 重叠苹果果实的分离识别方法[J]. 江苏农业学报, 2019, 35(2): 469-475. doi: 10.3969/j.issn.1000-4440.2019.02.030
    [11] 崔永杰, 苏帅, 王霞霞, 等. 基于机器视觉的自然环境中猕猴桃识别与特征提取[J]. 农业机械学报, 2013, 44(5): 247-252. doi: 10.6041/j.issn.1000-1298.2013.05.043
    [12]

    ZHANG Y D, DONG Z C, CHEN X Q, et al. Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation[J]. Multimedia Tools and Applications, 2019, 78(3): 3613-3632. doi: 10.1007/s11042-017-5243-3

    [13] 熊俊涛, 郑镇辉, 梁嘉恩, 等. 基于改进YOLO v3网络的夜间环境柑橘识别方法[J]. 农业机械学报, 2020, 51(4): 199-206. doi: 10.6041/j.issn.1000-1298.2020.04.023
    [14]

    PAYNE A B, WALSH K B, SUBEDI P P, et al. Estimation of mango crop yield using image analysis- Segmentation method[J]. Computers and Electronics in Agriculture, 2013, 91: 57-64. doi: 10.1016/j.compag.2012.11.009

    [15] 贾伟宽, 赵德安, 刘晓洋, 等. 机器人采摘苹果果实的K-means和GA-RBF-LMS神经网络识别[J]. 农业工程学报, 2015, 31(18): 175-183. doi: 10.11975/j.issn.1002-6819.2015.18.025
    [16] 金保华, 殷长魁, 张卫正, 等. 基于机器视觉的苹果园果实识别研究综述[J]. 轻工学报, 2019, 34(2): 71-81. doi: 10.3969/j.issn.2096-1553.2019.02.010
    [17]

    SI Y S, LIU G, FENG J. Location of apples in trees using stereoscopic vision[J]. Computers and Electronics in Agriculture, 2015, 112: 68-74. doi: 10.1016/j.compag.2015.01.010

    [18] 熊龙烨, 王卓, 何宇, 等. 果树重建与果实识别方法在采摘场景中的应用[J]. 传感器与微系统, 2019, 38(8): 153-156.
    [19]

    MEHTA S S, BURKS T F. Multi-camera fruit localization in robotic harvesting[J]. IFAC-PapersOnLine, 2016, 49(16): 90-95. doi: 10.1016/j.ifacol.2016.10.017

    [20] 李寒, 陶涵虓, 崔立昊, 等. 基于SOM-K-means算法的番茄果实识别与定位方法[J]. 农业机械学报, 2021, 52 (1): 23-29.
    [21] 张星, 张双星. 基于point-to-plane ICP的点云与影像数据自动配准[J]. 计算机与数字工程, 2017, 45(12): 2510-2514. doi: 10.3969/j.issn.1672-9722.2017.12.039
    [22]

    SHI S, WANG X, LI H. PointRCNN: 3D object proposal generation and detection from point cloud[C]//IEEE. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City: IEEE, 2019.

    [23]

    SAUNDERS C, STITSON M O, WESTON J, et al. Support vector machine: Reference manual[J]. Department Computer Science, 2000, 1(4): 1-28. doi: 10.1007/978-0-387-39940-9_557

图(8)  /  表(2)
计量
  • 文章访问数:  508
  • HTML全文浏览量:  6
  • PDF下载量:  726
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-10
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2022-03-09

目录

    /

    返回文章
    返回